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Abstract

Deep Learning (DL) models use representational learning to discover the rep-
resentation for classification and detection. Learned representations present a
problem because the representation is encoded in such a way that cannot be ex-
plained using human intuition and known mathematics, thus not allowing us to
reason out and interpret results from DL models. Knowledge learned by a neural
network is internally stored in the weights. In this research project, we present
a novel approach to building a polynomial representation of the learned func-
tion using the weight matrices. We were able to represent the learned function
and also use convolution to map and to visualise the behaviour of the model.
A popular explanation method, Local interpretable model agnostic explanations
(LIME) was also used to obtain an understanding of predictions made using the
Feedforward neural network (FFNN).
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1 Introduction

Machine Learning (ML) is the technology of having computers to act without having to write
specific set of the instructions for the machine [1]. Computers have the ability to learn using
ML algorithms or models, ML algorithms can be explained as mathematical expressions
used to represent data in a context of a problem and gain insights from the data [2]. Neural
Networks (NN) are a class of models within the general machine learning literature.

NN architecture was modelled after the neuronal structure of the animal brain [3]. NN
are made up of many straightforward connected processors known as neurons, each produc-
ing a sequence of real-valued activations. Input neurons are activated through the settings,
while other neurons are activated through weights of the previous layer. There are two types
of NN namely, single layer perceptrons and multi-layer perceptrons. A single-layer percep-
tron is a linear classifier that is used for binary classification, a multi-layer perceptron is used
in learning and identifying non-linear patterns [4].

Deep Learning (DL) is an extension of multi-layer perceptrons and it doesn’t depend
on the hand-crafted representation. DL uses representational learning to discover the rep-
resentations required for detection or classification [5]. The DL model discovers layers of
representation jointly simultaneously instead of one at a time. In joint feature learning the
model automatically adjusts all its internal options when one is adjusted while not requiring
human intervention [6]. Traditional ML uses hand-crafted features to get the desired output.
The learning process in DL is an automated process for finding better representation. One
advantage of learned representation is that it has better performance compared to predefined
learned features [7].

The adoption of the DL methods was not popular when they were proposed by Frank
Rosenblatt in 1957 [8], even though his focus was on the hardware, his work laid a founda-
tion for the development of DL. This changed after the availability of faster Graphics Pro-
cessing Units (GPUs) and large labelled data sets [9]. Real-world data is often challenging to
work with since it is more complex and often can suffer from the corruption that may affect
data interpretations, data processing, classifiers and models generated from data as well as
decisions made based on data.

DL methods have been successful in image processing and natural language processing,
because they do not use hand-crafted features. Despite their impressive accuracy, the DL
models are treated as black-box approximators, which fulfill a nonlinear mapping from an
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input variable to a corresponding output variable [10]. These methods are now being ap-
plied in different fields such as health sciences for medical diagnosis, planning and control,
legal and justice for profiling cases (legal documents) and human profiling. This increases
the need for human beings to be able to understand the inner workings of the model [11].
European General Data Protection Regulation (EGDPR) specifies that all the decisions made
using ML models especially relating or affecting individuals must be explainable, which in-
creased the demand for the interpretability and explainability of the black-box models [12].

Model interpretability is tied in with having the option to make-out the mechanics with-
out fundamentally knowing why. It is also characterised as the measure of reliably foresee-
ing a model’s outcome without endeavouring to know the explanations for the scene. It is
simpler to know the purpose of specific choices or forecasts if the interpretability of an ML
model is higher. While model explainability provides the information to truly clarify what is
going on. In essence, it is the comprehension of the inquiry ”Why is this happening ?”. Over
the years methods such as Local Interpretable Model-Agnostic Explanations (LIME) [13], Re-
versed Time Attention Model (RETAIN) [14], Layer-wise Relevance Propagation (LRP) [15],
Black Box Explanation through Transparent Approximations (BETA) [16], and others have
been developed to explain and interpret black box models.

Learned representations do present a problem, because the representation is encoded in
such a way that cannot be explained using human intuition and known mathematics, thus
not allowing us to reason out and fully interpret results with understanding of how they
were obtained. In this project we explore a method to extract the representation into a pure
mathematical representation which will afford us the opportunity to analyse the inner work-
ings of the model.

Polynomial interpolation is concerned with reproducing the learned function from the
Feed-forward neural network (FFNN) as a numerically analysable function at a lower di-
mensional space. One might question why don’t we attempt to model the problem using
these numerical tools from scratch without going through ANNs. The answer is that ANNs
are well suited at learning complex functions of unknown origins, then it becomes easier to
extract the already learned function and analyse it further.

The aim of this project is to expose the inner working of the learnt function of a deep neu-
ral network. A way to map the training process is proposed, which stores weights at each
epoch then builds polynomials from the first principal component of each. After a polyno-
mial representation has been built, mathematical tools are available to assess the training
process.

We applied basic analysis on the polynomial to try and interpret the deep learning models
training process. The one method used was to map out how each epoch’s function affected
the transformation of the next epoch by taking the convolution of the first epoch with the
second epoch which is representative of the transformation that has occurred. This gives an
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advantage over the tree surrogate technique because tree surrogates only explain the final
black box, without giving explanation to how the black box has evolved from random ma-
trices to the learned function.

Addition of explaination or interpretability of DNN, will not only increase the trust in
the model but also adoption of them. The contribution from this project is the proposal of
a method that will help in understanding the general behaviour of the model instead of ex-
plaining a particular instance. This work will help in improving the overall value of the
DNN. This method can be used in different scenarios in different fields.

The thesis is structured as follows: Chapter 2 is separated in two sections: the back-
ground which gives an overview of several standard machine learning procedures such as
CNNs and DNNs, explanation to interpretability and explainability and related work where
different methods are reviewed. Chapter 3 gives detail on the approach and datasets used.
Chapter 4 gives a description and analysis of the results and Chapter 5 is the conclusion and
future work in the expansion of DNN explanation.

1.1 Research Aim

In this project we looked at the classification problem of 3 datasets using Feedforward neural
networks (FFNN). The aim of this project is to translate a deep learning model representation
into a pure mathematical representation. This will be used to analyse the internal mechanism
of the model and expose the inner working of the learnt function of a deep neural network.
A method of mapping the training process is proposed that stores weights at each epoch and
thereafter builds polynomials from the first principal component of each. The polynomial
function is then used to explain and interpret the results of an ML model using functional
analysis.

1.2 Research Questions

• Can the proposed technique be utilised to give the behavioural extrapolation and give
usable knowledge into deep network operation enabling system behaviour under-
standing and improvement?

• Can we explain how the model works, and how it reaches certain conclusions?

Hypothesis: Given a DL model, we can model the change in weights during the training
process, by building an Nth degree polynomial and analysing the resultant.
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2 Background and Related work

2.1 What is Deep Learning?

Deep learning is a mathematical framework for learning representation from data. It gained
popularity from the year 2013. In deep learning feature extraction is included as part of their
learning process [7]. DNN works as a multistage information extraction process, where data
goes through sequential filter and returns some information regarding the task [17]. The
data will be represented in multiple levels where the higher level features will represent an
abstract explanation of the data. This abstract representation makes the deep network more
robust to intra-class variability [18]. In order to get high-level features, the low-level features
are extracted first. For example when using DNN in images classification or detection, local
combinations of edges create a certain pattern, which are used to construct parts and parts
result in objects [19].

A Feed Forward Neural Network (FFNN) takes an input X and tries to map it to the cor-
rect target value Y. These mappings happen through a series of simple data transformation
layers that are learned through the exposure to examples or training, this mapping can be
defined as "Y = f (X, θ) and learns the value of the parameters θ that results in the best func-
tion" [20]. These networks are called feed forward because information flows in the forward
and are such that X is used calculate some intermediate function in the hidden layer which
in turn is used to calculate Y [21]. Forward propagation passes input data in the forward di-
rection through the network [22], back propagation allows the information to be passed back
into the network to adjust the weights of the network and minimise the distance between
output score and desired target score [23].

The process of training optimises the weights so that the neural network can learn how
to correctly map arbitrary inputs to outputs. Figure 2.1 shows how the learning process is
implemented in DNN. The weights (which are numerical values) on each layer stores spec-
ifications of what the layer does to its input data [17]. To correctly map the input to the
targeted value, one must determine the right set of values for the weights of all layers in a
network because a network may contain many weights. This task might seem a little com-
plicated because changing a single parameter value will affect the whole network. To be able
to control the output of a network, we must be able to measure how far this output is from
the expected results, this is achieved by using a loss function [17]
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Loss functions are used to evaluate a set of parameters also known as a candidate solu-
tions [6]. In DL a loss function has an important job in that it must faithfully distil all aspects
of the model down into a single number in such a way that improvements in that number
are a sign of a better model [6]. The loss function computes the distance score between the
output of a model and the target value, this shows how well the model performed and this
score is used as a feedback signal to adjust the weights. Figure 2.1 shows process of weight
adjustment. Back-propagation is used to adjust the weights by looking for the minimum
error function in the weight space using the gradient descent method. This method looks
for a combination of weights that minimises the loss function and uses that as a solution for
learning problem [24].

FIGURE 2.1: Training of Feedforward Neural Network: [25]

NN are made up of neurons, these neurons are ordered into layers figure 2.2 shows the
structure of NN, the first layer called input layer, hidden layer and output layer. The neurons
are connected to at least one neuron from the previous layer and every connection is mea-
sured by a real number called the weight coefficient, which shows the degree of importance
for a given connection in a NN.

FIGURE 2.2: Architecture of Neural Network: [26]

The input layer collects patterns in the input data, the output layer produces results of a
given input and hidden layers can extrapolate salient capabilities inside the input data that
have predictive power regarding the outputs [27]. There are different types of NN but they
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all have similar principles.

Convolutional Neural Networks (CNNs) have become popular and are considered as
powerful tools in computer vision related tasks such as image classification, object detection,
face recognition and scene labelling, because of their performance compared to other models.
When training a DL model for an image, the image is taken as input and passed to layers
of the model for feature extraction. CNNs neurons are structured in a manner similar to a 3
dimensional shape having width, length and depth [28]. CNNs are powerful because of their
ability to extract important features at different levels of abstraction[29]. CNN learns higher-
order features in the data using convolution by transforming input data from the input layer
through all connected layers into a set of the class score given by the output layer. CNN’s
are organised into three main layers, the input, feature learning and classification layers

FIGURE 2.3: Covolutional Neural Network: [30]

The input layer takes in input data and stores it before it gets processed. This data is
stored in a three dimension width, length and depth. It is easy to scale a CNN compared to
the traditional NN because neurons in a layer are not fully connected to the neurons from
the previous layer.

The feature learning layer consists of a combination of layers, that is repeated in a se-
quence of convolutional layer and pooling layer. The convolutional layer extracts features
from an input image and maintains dimensional relationship between pixels by learning fea-
tures of an image using small squares of input data. Given a 5 × 5 image, to find a feature
map of a 3 × 3 matrix we slide a filter or kernel over the original image using a skipping
factor of 1 pixel (skipping factor specifies the number of pixels you want to skip), for every
position. The dot product between the two matrices is computed an multiplication outputs
added to get integer value which forms a single element of the output matrix. The filter or
kernel sees the only part in the current stride and acts as a feature detector from the original
image. This convolution gives different feature maps because this operation captures the
local dependencies in the original image [31]. The output size of the map is defined by
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where M is the feature map and S is the skipping factor with x and y denoting the number
of pixels to be skipped in the horizontal direction and vertical direction respectively.

Convolution is a linear operation, so to account for non-linearity we use Rectified Linear
Unit (ReLU). Most of real world data is non-linear it is important to use a non-linear opera-
tion to introduce non-linearity in the CNN. ReLU is used after every convolution operation
[31]. The pooling layer is responsible for merging similar features into one by evaluating the
maximum of a local patch of units in one feature map, to reduce computational power [32].
Pooling reduces the dimensionality of each feature but retains the most important informa-
tion [31].

The classification layer is a fully connected layer, this layer maps the score of each image
to the score of the class by connecting neurons on the previous layer to all neurons on the
current layer [33].

Deep learning has proven to be highly accurate when used for supervised learning. DL
models depend on the amount of available labelled data for training [34]. Using transfer
learning is one of the solutions used when there is not enough labelled training data for the
classification purpose. These models are already trained on large labelled data sets by learn-
ing information about object characteristics that is enough to transfer to the objects that are
not in the original data set [35]. These methods are used for unsupervised image classifica-
tion in CNN. Deep learning models are often referred to as black box approaches as they are
able to accurately classify large data sets without showing how they arrive at conclusions.
This is a disadvantage especially if you are unable to explain the classified data points.

Before the implementation of Graphics Processing Unit (GPUs), DNN took a long time to
train using Central Processing Unit (CPUs), this was one of the challenges during the initial
development of DNN. GPUs are trained online and where the weights are updated after
every error backpropagation step [36],[37]. The adoption and implementation of the DNN is
dependent on fast and powerful hardware.

2.2 Interpretability and explainability

Over the years, DNN models have shown an impressive accuracy in object detection and
classification, one major limitation of the DNN is understanding the internal operations and
behaviour of the model [38]. Sometimes we look for more than good accuracy in a model,
to be able to trust the decision made by a model we should be able to understand how it
reaches a certain conclusion and be able to explain its errors [39]. In classification and detec-
tion tasks it is important to prove that the high accuracy is the result of using proper problem
representation instead of exploitation of artefact’s in data. DNN had been shown misclassify
inputs without a resemblance to the proper class.
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In 2015 Google and Android released an app that can be used to tag and arrange pho-
tos automatically. The photo app was meant to store your pictures in albums, this would
make the storage and searching for pictures easy [40]. This application was able to identify
some pictures correctly and arranged them in right folders while other pictures were not
correctly tagged and arranged in wrong folders [40]. In China, the police department uses
facial recognition system to detect jaywalkers. The names and pictures of the jaywalkers are
exposed and the perpetrators are then warned of the legal implications of jaywalking [41].
The disadvantage of this system is that it could not differentiate adverts and people. This led
to a public shaming of a well-known business woman by accusing her of jaywalking after
her bus advertisement was misinterpreted by the system.

Correctional Offender Management Profiling for Alternative Sanctions (COMPAS) is used
by some of U.S states to predict probability that defendants might commit future crimes.
The results of this software were proven to be socially biased and unreliable [42]. This has
resulted in the demand for techniques that will interpret and help understand what was
learned by the model [43]. The ability to interpret and explain the DL models is important
because of their application in the field such as self driving cars, diagnosis in medicine, loan
approval in banks where the unseen failures might result in life-threatening actions or enor-
mous economic loss.

Interpretability can be thought of as a science of understanding how the model works
and what it does [19], by using the visual or textual presentation of the connection between
input features and the output prediction. The objective of interpretability is to depict the
internals of a framework in a way that is reasonable to people. The victory of this objective
is tied with the cognition, information and inclinations of the client. Is the degree to which
human can reliably anticipate the models comes about and it is also the extend which a user
can understand the cause of a decision [44].

Model explainability is important for when we detecting weaknesses of a model and to
check if there are any biases in the data. It is also used to justify models result and this
can be useful when we want to improve the model or try to discover new information on
the data. Explainability of the model also increases the end users trust in the model. The
importance of this is shown in medical sciences where the doctors can not blindly trust the
models without understanding how the models reach those conclusions [12]. To explain an
event is to provide some information about its casual history.

2.3 Related Work

In this section we will look at other proposed methods for interpreting the DNN.
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2.3.1 Network weights

In this section we will be looking at methods that use network weight to explain the models
results. Network weights are described as the strength of the connection between the nodes.
Weights suggest the importance of the input value and what sort of impact the input can
have on the output [45].

Neural Networks are known for their ability to automatically extract features during
learning process and to model complex statistical interactions. These interactions shows sig-
nificant information about where features often have common impacts on other features on
predicting an outcome. The NN’s weights are nonzero in which all features interact blindly.
Before the final output in (FFNN), any interacting features must follow strongly weighted
links to a prevailing hidden unit. That is, in the corresponding directed chart, at least one
common descendant will share interacting features[46]. There are generally two approaches
used for interaction detection. First approach is to conduct individual tests for every combi-
nation of features [47], and the second approach pre-specifies all interaction forms of inter-
est, then uses an regression analysis method to simultaneously determine important features
[48].

Neural Interaction Detection (NID) detects the statistical interactions by interpreting the
learned weights of an FFNN. In NID the interaction detection is made up of 3 steps which
are generating interaction ranking, determining cutoff on interaction ranking and pairwise
interaction detection. Training an FFNN with regularisation by applying sparsity regularisa-
tion to restrain insignificant interacting paths and push the modelling of major effects toward
any univariate networks. We note that this method can additionally generalise beyond spar-
sity regularisation. In the second step, we interpret the learned weights to find the ranking
of interaction candidates [46].

The framework has the practical utility of accurately detecting general types of inter-
actions without searching an exponential solution space of interaction candidates. These
methods provide theoretical justification on why interactions between features are created
at hidden units and why hidden unit importance approximation satisfies bounds on hidden
unit gradients. This approach extracts generalised non-additive interactions between vari-
ables from the weights of a neural network [46].

Sensitivity analysis is the examinations of how the shortcoming of the output of the sci-
entific model can be isolated and distributed to different sources of instability in its input
[49]. The features that form the definition can be augmented by pertinence scores showing
the contribution for each feature. The clarification will be real-valued vector of the same
measure as the input, where significant highlights are given positive scores and insignificant
highlights are set to zero [43].

Sensitivity analysis may be an essential approach for understanding the relationship and
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the impact of each input parameter on the yield of a issue. The key point behind sensitiv-
ity analysis is that by somewhat shifting each explicative input parameter and enlisting the
reaction within the yield, parameters are explained with the most alevated affectability val-
ues picking up the most noteworthy significance. Sensitivity analysis of the foremost critical
parameters can be exceptionally valuable for dissecting complex issues. Sensitivity analysis
is picking up more significance due to the surprising capacity of NN to clarify the nonlinear
connections between the explicative and reaction factors of a issue [50].

A common formulation of sensitivity analysis defines relevance score as:

Sk, l =
∂ok

∂Xi
(2.2)

Where Sk, l is the explanation, Xi is the input and ok is the output. Sensitivity analysis
uses a sensitivity matrix calculated based on the partial derivatives of the outputs of the
network with respect to each input.

ANN are black box models therefore it is unclear on which features are useful in defin-
ing the key properties of the input vector class. This visualisation technique reduces the
complexity of the problem by removing less important features without compromising the
results of the model. The Garson Algorithm shows which inputs are important in the multi-
class output classification problems [51].

.

2.3.2 Proxy models

In this we will be looking at surrogate models. These methods are aimed to estimate the
predictions of the hidden black-box approach.

Permutation feature importance is defined as a model inspection technique that is used
for any fitter estimator. This approach offers a distinctly compressed global insights into the
models behaviour [52]. This method measures the importance of a feature by calculating
the increase of a models prediction error after the feature is rearranged. A feature is said to
be important if rearranging the values of that feature increases the models error, this proves
that the model depends on that feature for the prediction. And a feature is said to be unim-
portant if rearranging its values does not affect the model’s error [53]. This technique takes
into account all interactions with other functions, through permuting the characteristic you
also break the interaction outcomes with different features. By permuting the feature you
furthermore might break the interplay consequences with different capabilities [53].

Local Interpret able Model-Agnostic Explanations (LIME) are another example of meth-
ods that can be used to understand how each feature contributes to the prediction. They are
used to attempt to learn and understand why the models have made certain conclusions.
LIME is one of the few methods that can be applied to images, tabular and text data. This
method can be used to point out important regions or features of an input for decision across
a variety of models and problem domains [54]. This method assesses what occurs to the
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predictions while you deliver variations of your data into the machine learning model. This
approach also generates a new dataset such as permuted samples and the corresponding
predictions of the black-box [53].

In a tabular dataset LIME’s output is a list of features 2.4 and their contributions in pre-
diction of a data sample. This helps in determining which feature changes will have more
impact on the prediction.

FIGURE 2.4: Tabular LIME:[55]

For images, since the interpretable space is a binary vector demonstrating the existence
or absence of a super-pixel (important pixel). The procedure comprises of randomly making
a portion of the super-pixels grey. At the end of the day, on the off chance that we need to
clarify prediction for a picture, we will disturb the image and get predictions on images with
other hidden super-pixels. This procedure is illustrated by the figure 2.4

LIME methods cannot be used for compliance scenarios, where you might be legally
required to fully explain a prediction because it is not sufficient for complete attributions.
These explanations are unstable, this instability makes it difficult to trust the explanations.
The explanations of closely related points may have different explanations, and if the sam-
pling process is repeated the explanation that comes out might be different [53].
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FIGURE 2.5: LIME for Images: [56]

SHapleyAdditive exPlanations (SHAP) is one of the methods that is used to give a value
of importance for a feature for every prediction. Unlike LIME methods this method presents
results that are consistently and locally accurate. The additive feature attribution method
based on expectation. It is also explained as an integreted approach used to explain the out-
put of any given ML model, it gives different combinations of features [57].

Deep Learning Important FeaTures (DeepLIFT) is a back-propagation based approach
unlike perturbation methods such as LIME and permutation feature importance, this tech-
nique engenders the significance sign from an output neuron in reverse through the layers to
the enter in a single by pass, making them productive. This method calculates an importance
score for each input for a given output. DeepLIFT clarifies the contrast in output from a few
‘reference’ output in terms of the distinction of the input from a few ‘reference’ inputs. The
‘reference’ input speaks to a few default or ‘neutral’ input that’s chosen concurring to what
is suitable for the issue at hand [58]

Layer-wise Relevance Propagation method starts from the output going to the input.
It weights the neurons with more contributions. The results of this method are given in
the form of a heatmap. The relevance of each neutron can be defined using the following
formulae:

Ri = ∑
aiWi j+

∑ aiWi j
RJ (2.3)
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j passes through all the neurons that exist on a path between i and j, Wi j shows the connec-
tion weight and ai’s are the results of the data form neuron i, during classification [59]

The Convolutional Neural Network Interpretation (CNN-INTE) method uses Decision
Trees (DT) to interpret the inner workings of hidden layers and how the model classifies
the test instances to increase trust on a trained DNN. The results of this method are repre-
sented in a graph that indicates the consecutive separations of the true category and also
the hypotheses [60]. CNN-INTE offers the global interpretation for any check instances on
the hidden layers within the whole feature area, it does not compromise the accuracy of the
model to be interpretable. It is designed on the Tensorflow platform, this makes the model
scalability easy to accommodate larger datasets and it interprets the inner workings of Deep
CNN models, this are some of the advantages of the CNN-INTE method.

Automatic rule extraction is another example of method used for understanding the
learning process in DL and and how the prediction is made. The rule extraction techniques
can be split into decompostional and pedagogical methods [61]. Decompositional algorithms
draw out the rules to copy the behaviour of each unit at the neural level. These methods are
said to be better compared to pedagogical algorithms with regards to understanding the
internal structure of NN. The purpose of pedagogical algorithms is to extract rules, which
maps out the inputs to the outputs instead of considering the internal structures of the NN.
"they treat the network as a black box, and discovers trends and functions from the inputs to
the output" [54].

Polynomial’s methods are an example of decompositional approach. The function ap-
proximation task is to build a function that reproduces a given relationship between input
and output. Using artificial neural networks to estimate functions involves building a neural
network that approximates the desired functional mapping from numerical input vectors to
numerical output vectors. Polynomials are widely used as the basis of non-linearity mod-
elling [62].
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3 Methodology

This part of the project is concerned with reproducing the learnt function (after training the
FFNN) as a numerically analysable function at a lower dimensional space. ANNs are well
suited at learning complex functions of unknown origins, so it is easier to extract the already
learnt function and analyse it further instead of attempting to start with a polynomial model.

3.1 Data set

1. Iris dataset: "The Iris flower data set or Fisher’s Iris data set is a multivariate data set
introduced by the British statistician and biologist Ronald Fisher in his 1936 paper [63]. The
Data set has the following classes: setosa, versicolor, virginica. Each class has 50 samples.

TABLE 3.1: Iris Data set

Setosa Versicolor Virginica

Samples per class 50 50 50

2. Wine Quality Datasets:" Two datasets are included, related to red (1) and white (0)
vinho verde wine samples, from the north of Portugal. The goal is to model wine quality
based on physicochemical tests" [64]. Table 3.2 shows the total number of samples available
for each class

TABLE 3.2: Wine data set

Red White

Samples per class 1599 4898

3. Fashion-MNIST: is an image dataset from Zalando’s article [65], it has 60000 training
dataset and 10000 testing dataset. Every image is a 28 × 28grayscale and it has 10 classes.
Table 3.3 is a description of the data and number of samples for each class. Table 3.4 gives a

TABLE 3.3: Data description

Training Testing

Classes 10 10

Samples per class 6000 1000

description of classes.



15

TABLE 3.4: Fashion Mnist

Code 0 1 2 3 4 5 6 7 8 9

Name
T-shirt
or top

Trouser Pullover Dress Coat Sandal Shirt Sneaker Bag Ankle

3.2 Method

The advantage of deep learning models is the fact that it can detect and successfully map
high dimensional abstract features into low some function. The implication is that there is
a mathematically sound function that is being developed by the deep learning algorithm.
In this research we propose methods to extract such functions. Our methodology is com-
prised of three main steps: train FFNN, polynomial interpolation and functional analysis.
In polynomial interpolation we will use Singular Value decomposition to identify principal
directions for each layer’s weight at every epoch, and we are going to use Lagrange interpo-
lation to build the polynomial representation of the learnt function.

Given some training data which consists of x as inputs and Y as output, a single layer
neural network is the approximation: Y = Ax where A is a weight matrix, the process of
deep learning uses two passes (forward and backward) to optimise A to fit Y better. We can
increase the number of weight matrix (A) to help in representing more abstract function rep-
resentations. e.g Y = f (x) where f is a linear transform of x modelled by A.

1: Train FFNN Train a FFNN with 3 hidden layers and one output layer. The rectified
linear unit (ReLU) was used as the activation function in the hidden layers and softmax for
the output layer. The model takes in input features and maps them to output categories, this
is illustrated by figure 3.1.
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FIGURE 3.1: Feedforward Neural Network

Extract principle directions from the weight matrices in the trained model using singular
value decomposistion (SVD). In dimensionality reduction we reduce the high-rank matrix to
a low-rank matrix while preserving important information. SVD decomposes matrix A into
three product matrices U,D and V, and is represented as :

A = UDVT (3.1)

Where U m × m and V n × n matrices are orthogonal matrices of A and D m × n is a diagonal
matrix of A. U can also be referred to as left singular vector and V as the right singular vector,
D is also known as the singular values of matrix, which represents importance of values of
different features in the matrix. The first principal component of V is obtained because V
carries most of the variance.
"Example of SVD: Let’s look at a classical application of this. Imagine that we have a matrix A
whose columns represent movies and the rows different users. The entries of the matrix are
numbers 0 to 5 where 0 means a user does not like a certain movie and 5 means they really
like a given movie as illustrated below: The U matrix will represent weights that would
match each user’s preference to movies categories, D represents the weight of the movie
category and V represents the degree to which a movie belongs to a category" [66].

A polynomial is fitted on the new weight matrix (after matrice decomposition) using
langrage interpolation, which is given by:

P(x) =
(x − x2)(x − x3)(...)(x − xn)

(x1 − x2)(x1 − x3)(...)(x1 − xn)
(3.2)

This function will show how the weights are adjusted when training. The polynomial
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function interprets the learning process in a FFNN, and we are going to use analytical tools
to understand the learned functions. The polynomial function are subjected to analytical ex-
amination using other tools such as plot training data against new functions on the domain,
convergence analysis or run convolutions of the final layers of different epochs.
The following steps were followed to get results for this part of the project:

• In each epoch iterate through the layers

• For each layer send the matrix to the SVD algorithm and take the first principal com-
ponent

• Use the results from SVD as Y and generate the X from the length of the SVD result

• Use (X, Y) as arguments to the Lagrangian polynomial interpolation algorithm

• Store the polynomial in a dictionary indexed by the layer number

• Repeat this for the next epoch

3: Functional analysis and model interpretation We used convolution method to map
out how each epoch’s function affected the transformation of the next epoch by simply con-
volving the first epoch with the second epoch the resulting convolution is representative of
the transformation that has occurred

3.3 Explanation method

In this section we will be looking at the LIME method. These method looks at important
features in the datasets. These methods will be used to answer the questions "Why was this
prediction made? and which features or variables were used?". Local Interpretable Model-
Agnostic Explanations (LIME) method is used to attempt to learn and understand the models
output. The following steps are used for training a LIME method

• After training FFNN model.

• Select the data point you want to explain.

• Shuffle values of one column on the given dataset, use the new dataset to make predic-
tions and see how this has affected the loss function.

• This process is the repeated for all columns in a dataset.

• The decrease of performance shows how important a feature is.

3.4 Performance measures

Accuracy: We used classification accuracy to evaluate how the model performs. Accuracy is
another measure used to evaluate models of classification. Accuracy represents a percentage
of predictions that the model gets correct, represented by equation 3.3:
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Accuracy =
correct Predictions
Overall prediction

(3.3)

Confusion matrix or a heatmap gives the description of the prediction outcomes for a clas-
sification problem. Total number of right and wrong predictions is presented by counting
values and divided per class.
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4 Results

Given a DL model, we can model the change in weights during the training process, by
building an Nth degree polynomial and analysing the resultant. In this section we looked
at the trained 3 layer FFNN, layer0 has 15 neurons, layer1 has 10 and layer2 (output) has
different neurons depending on the dataset. We used ReLU as the activation function and
softmax function for the output layer.

The aim of this work is to expose the inner working of the learnt function of a deep
neural network. We also proposed a way to map the training process by storing weights at
each epoch then building polynomials from the first principal component of each layer. We
used SVD to extract the first principal component of the V matrices, the output from this is
then used to fit a polynomial function. Appendix B shows the results for the three datasets
used for this experiment. The one method used was to map out how each epoch’s function
affected the transformation of the next epoch by obtaining the convolution of the first an
second epoch such that it represents the transformations that occurred. Appendix A shows
the results for simple convolution.

The LIME method was used to understand which features are important. The LIME
method results showed the prediction probability for each class, relative importance and
value ranges for each feature. We looked at the explanations for each class for Iris and Wine
quality dataset, and we looked at the explanation for class 9 on the fashion Mnist dataset.

4.1 Data Exploration

In this section we look at models performance, correlation matrix, and heat-map for all the
datasets.

4.1.1 Iris data set

Table 4.1 is the correlation matrix for the features of the Iris data set which are sepal length,
sepal width, petal length and petal width. Sepal length has a high positive correlation (>0.8)
with petal length and petal width. However, sepal length similar to petal length and petal
width, has a low negative correlation with sepal width.
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TABLE 4.1: Correlation matrix

Sepal length(cm) Sepal width(cm) Petal length(cm) Petal width(cm) Target
sepal length(cm) 1.000000 -0.109369 0.871754 0.817954 0.782561
sepal width (cm) -0.109369 1.000000 -0.420516 -0.356544 -0.419446
petal length (cm) 0.871754 -0.420516 1.000000 0.962757 0.949043
petal width (cm) 0.817954 -0.356544 0.962757 1.000000 0.956464
target 0.782561 -0.419446 0.949043 0.956464 1.000000

Figure 4.1 shows the models performance after training the 3 layer FFNN over 1000
epochs, the red lines represent the testing accuracy and the blue lines represents the training
accuracy. The distance between the red graph and the blue graph shows that the model is
overfitting. Overfitting indicates the the model has modelled data very well including the
noise in the training data set. The average performance is 97.63%.

FIGURE 4.1: Iris: Model perfomance



21

Figure 4.2 shows the heatmap of Iris data set. The Y-axis represents the true label while
the X-axis represents the predicted label/ labels predicted by the model (FFNN). The heatmap
shows the relationship between two classes. It shows how many data points were not cor-
rectly classified. The numbers 0, 1, 2 represents the classes Iris Setosa, Iris Versicolour, Iris
Virginica. The heatmap shows that no data point was misclassified.

FIGURE 4.2: Iris: Heatmap
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4.1.2 Wine quality

Figure 4.3 show the accuracy of the model at 100 epochs. The average model’s performance
is 97.05%. This means the model is able to accurately classify over 90% of the test data
set. The validation accuracy graph has two spikes which might be the results of overfitting,
because we have more data points for class 0 compared to class 1. The test data set has 1300
total observations, 989 represents class 0 (red wine) and 311 represents class 1 (white wine).
Figure 4.4 shows the heatmap for the Wine quality data set, we have 11 data points that are
classified as class 0 while they belong to class 1, and 6 data points classified as class 1 while
they belong to class 0. Out of 989 in class 0 983 we correctly classified and in class 1 300 were
correctly classified from the 311. that

FIGURE 4.3: Wine quality: Model performance
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FIGURE 4.4: Wine quality: Heatmap

4.1.3 Fashion Mnist

Average model performance is 79.80%. Figure 4.5 shows the performance of the model at
1000 epochs. The test data set has 10000 samples in total, and 1000 samples from each class.
The heatmap 4.6 shows total number of samples that are misclassified for each class. For
example we can see that class 6 has the highest number of samples that are misclassified as
class 0 or class 4, and class 2 has 158 samples that are misclassified as class 4. This graph
also shows that class 9 and 7 had no samples that are misclassified as class 0, 1, 2, 3, 4. Table
4.2 shows that class 6 has the lowest precision, recall and f1-score and class1 has the highest
precision, recall and f1-score.

TABLE 4.2: Fashion Mnist: Precision and recall

precision recall f1-score support
0 0.74 0.75 0.75 1000
1 0.94 0.94 0.94 1000
2 0.67 0.52 0.58 1000
3 0.74 0.84 0.79 1000
4 0.66 0.56 0.61 1000
5 0.95 0.83 0.89 1000
6 0.37 0.47 0.42 1000
7 0.80 0.94 0.87 1000
8 0.92 0.88 0.90 1000
9 0.91 0.88 0.89 1000
AVG/Total 0.77 0.76 0.76 10000
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FIGURE 4.5: Fasion Mnist: Performance

FIGURE 4.6: Heatmap matrix
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4.2 LIME Method

4.2.1 Iris Data

Class 1 explanation: for class 1 explanation we looked at instance 1. Instance 1 true positive of
class 1, the description of this instance is as follows, sepal length(cm) is 6.00, sepal width(cm)
is 2.20, petal width (cm) is 1.00 and petal length (cm) is 4.00 refer to 4.8. Petal length and
petal width are positively contributing to the prediction of class 1 while sepal width and
sepal length are negatively contributing to the prediction of class 1, this is illustrated by
figure 4.7. Class 1 was predicted with a prediction probability of 1.0, figure 4.8 shows the
prediction, values for the feature and relative importance for each feature. Petal length has
relative importance of 0.23 which is the highest compared to other features, and sepal length
has the lowest relative importance.

FIGURE 4.7: Class 1 Explanation
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FIGURE 4.8: Class 1 Explanation features

Class 2 explanation: for class 2 explanation we used instance 10. Instance 10 has the
following description Sepal length(cm) is 6.10, sepal width(cm) is 2.60, petal width (cm) is
1.40 and petal length (cm) is 5.60,figure 4.10 shows the prediction probability of class 2 as
0.94. Petal length, petal width and sepal width are features providing negative valuation to
the prediction of class 2, while sepal length is the only feature providing positive valuation
to the prediction, this is shown by figure 4.9.

FIGURE 4.9: Class 2 Explanation
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FIGURE 4.10: Class 1 Explanation features

Class 0 Explanation: We looked at instance 15 for class 0 explanation. The instance has
the following description petal length (cm) 1.50, petal width (cm) 0.10, sepal length (cm) 4.90
and sepal width (cm) 3.10, figure 4.12 show the prediction probability of class 0 1.00.The
graph also shows the relative importance for each feature as follows petal length (cm) 0.36,
petal width (cm) 0.08, sepal length (cm) 0.02 and sepal width (cm) 0.01. Petal length and
sepal width are features that provide negative valuation and petal width and sepal length
are positive valuation for the prediction illustrated by figure 4.11.

FIGURE 4.11: Class 0 Explanation
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FIGURE 4.12: Class 0 Explanation features

4.2.2 Wine quality

Class 0 explanation: We used instance 1 for class 0 explanation. We looked at the top 5 fea-
tures. The description of this instance areas follows; volatile acidity 0.14, residual sugar 1.40,
citric acid 0.18, chloride 0.05, fixed acidity 6.80. Figure 4.13 shows the prediction probability
of class 0 as 0.73. Figure 4.14 shows most important 5 feature for class 0. shows that volatile
acidity, residual sugar provide negative valuation to the prediction, while fixed acidity, chlo-
rides and citric acid provide positive valuation to the prediction.
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FIGURE 4.13: Class 0 Explanation

FIGURE 4.14: Class 0 Explanation features
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Class 1 explanation: we used instance 100 for class 1 explanation. Top 5 important fea-
tures for instance are total sulfur dioxide 16.0, fixed acidity 10.70, sulphates 0.65, free sulfur
dioxide 5.0, and chlorides 0.07. Figure 4.16 shows the prediction probability of 1.00. To-
tal sulfur dioxide has the highest relative importance of 0.61 while chlorides has the lowest
relative importance of 0.05. Total sulfur dioxide, sulphates, fixed acidity and chloride have
positive valuation to the prediction while free sulfur dioxide is the only that provides nega-
tive valuation, shown on figure 4.15.

FIGURE 4.15: Class 1 Explanation
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FIGURE 4.16: Class 1 Explanation features

Using 842 where the label was 0 and the model predicted 1 The sulphates value is 0.69
and the value for volatile acidity is 0.20 4.17. Sulphates has a higher relative importance than
volatile acidity hence it is classified as class 1 at 83% instead of class 1 4.18.

FIGURE 4.17: Local explanation
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FIGURE 4.18: Local explanation features

4.2.3 Fashion Mnist

Figure 4.19 shows regions that are important for classifying class 9. Figure 4.20 shows posi-
tive regions for all classes in comparison with class 9 (Ankle boots). Class 7 (sneakers) and
Class 9 have similar activation regions this could help explain why 81 instances of class 7
were classified as class 9 refer to the heatmap 4.6.

FIGURE 4.19: Class 9 Regions
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FIGURE 4.20: Positive regions for class 9

4.3 Polynomial interpolation

Table 4.3, shows the results for polynomial interpolation part in the methodology. The results
are only representing two epochs (epoch 0 and epoch 1) for each data set, P(x) represents the
polynomial function, X shows the number of nodes at that layer and y are SVD results. Figure
4.21a shows the convolution of the polynomial function. Convolution method was used to
show the behaviour of the model. In figure 4.21a, shows that there is not a lot of changes in
the models behaviour from epoch 1 to the last epoch, because there is no significant change
in the graphs. The blue graph represents the training results per epoch and the red graphs
shows convolution of two epochs, the graphs shows similar behaviour or pattern from epoch
1 to epoch 90 and the convolution graphs also have similar pattern.

TABLE 4.3: Wine Polynomial interpolation

epoch0

layer0 p(x) x y
-3.23862482e-10, 2.06164715e-08, -3.47411891e-07,
-7.78649556e-06, 4.72200195e-04, -1.04102940e-02,
1.36920408e-01, -1.19135346e+00, 7.07056301e+00,
-2.85593054e+01, 7.63067943e+01, -1.26768356e+02,
1.15621829e+02, -4.25672737e+01, -9.11021754e-02

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14
-0.09110218, -0.05122982, 0.33642676, -0.27325457, 0.28258833,
-0.01930992, -0.3615444 , -0.2563718 , 0.03383022, 0.12903747,
-0.28134817, -0.37012035, 0.31131324, -0.01845747, 0.43972418

layer1

2.09854878e-05, -9.98133781e-04, 1.94259829e-02,
-2.01178852e-01, 1.20330946e+00, -4.20330980e+00,
8.16980976e+00, -7.55285041e+00, 1.86167142e+00,
1.33857489e-01

0, 1, 2, 3, 4, 5, 6, 7, 8, 9
0.13385749, -0.57024211, -0.3764759 , -0.04627177, 0.07858355,
0.44721633, 0.36031622, -0.36523172, 0.00297101, 0.20885958

layer2 0.2073358 , -1.65089554, 4.12884364, -3.33680005, -0.05854975 0, 1, 2, 3, 4 [-0.05854975, -0.7100659 , -0.10656677, -0.68933666, 0.07639947
layer3 1.22431305, -0.2582294 0, 1 -0.2582294 , 0.96608365

Epoch1

layer0

-3.23858952e-10, 2.06161218e-08, -3.47396301e-07,
-7.78690895e-06, 4.72207451e-04, -1.04103828e-02,
1.36921185e-01, -1.19135835e+00, 7.07058517e+00,
-2.85593761e+01, 7.63069477e+01, -1.26768568e+02,
1.15621996e+02, -4.25673282e+01, -9.11021456e-02

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14
0.09110215, -0.05122979, 0.33642685, -0.2732546 , 0.28258833,
-0.01930995, -0.36154437, -0.25637183, 0.03383023, 0.12903745,
-0.2813482 , -0.37012032, 0.31131324, -0.01845748, 0.43972412

layer1

2.09855217e-05, -9.98135205e-04, 1.94260081e-02,
-2.01179096e-01, 1.20331086e+00, -4.20331469e+00,
8.16981961e+00, -7.55286070e+00, 1.86167550e+00,
1.33857548e-01

0, 1, 2, 3, 4, 5, 6, 7, 8, 9
0.13385755, -0.57024211, -0.37647596, -0.04627169, 0.07858351,
0.4472163 , 0.36031622, -0.36523166, 0.00297108, 0.20885953

layer2 0.20733574, -1.650895 , 4.12884229, -3.33679901, -0.05854993 0, 1, 2, 3, -0.05854993, -0.7100659 , -0.10656697, -0.6893366 , 0.07639939
layer3 1.22431293, -0.25822929 0, 1 -0.25822929, 0.96608365
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(A) Wine quality Epoch Convolution



35

4.4 Discussion

In this project we looked at using polynomials functions to expose the inner workings of a
deep learning method. After training a FFNN, we then mapped the weights and ran SVD
on the extracted weight matrix and then fitted a polynomial function. After these polyno-
mials were generated, mathematical analysis was applied to understand the network. This
function was used for further analysis such as understanding how each layer weight matrix
changed over training, this can be achieved by using convolution method. If you convolve
the first one to the second one to see how they changed, operations ran on the first one to
get the second one. This is the method used on this project to get behaviour of a FFNN 6,
because the data that was used to test this method was simple and clean it does not show
any major changes during the training process.

Polynomial functions can also be used to show which features are important and this can
be achieved by using penalising regression along the lines of Lasso to extract those dynamics.

This gives an advantage over the tree surrogate technique because tree surrogates only
explain the final black box, without giving explanation to how the black box has evolved
from random matrices to the learned function. This also validates the hypothesis that poly-
nomials can be used to extract the learned function of a NN.
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5 Conclusion

5.1 Future Work

What makes a good explanation?. With the current revival of explainability and interpretabil-
ity around DL, most of the work and research in this field tends to follow the researchers’
intuitions about what makes a ‘good’ interpretation [44]. To ensure that the explanation is
valid and unbiased, the method used for explanation and interpretation must be clear and
understood. In reality, several recent studies have shown that assignment approaches can
actually yield inaccurate or deceptive outcomes, given the reality that they are visually at-
tractive to humans [67]. Some literature demonstrates only a limited sample that study in
explainable AI usually does not follow or draw on structures of interpretation from social
science and this might be a disadvantage. For the future project in the explainable DL, it is
important to understand how how humans identify, produce, choose, analyse, and present
explanations seems almost necessary. We also need to look at robust quantitative metrics to
evaluate explanations generated.

On this project we looked at the interpretation and the explanation of a simple FFNN,
where we were able to show that you can use to analyse the learnt function. The method
might not be applicable to other DL models because of how the learning process in different
models. For example in CNN the nodes are not fully connected which might affect the learnt
function.

5.2 Conclusion

Increasing popularity of DL models in fields such as medicine, legal system, banking and
self driving cars, increases the need for explanation and interpretation of black-box models.
Explanability and interpretability of DL model are domain-specific approaches, hence it i dif-
ficult to have a formal or all-purpose explanation. This implies that model’s interpretation
or explanation applications must be domain and use-case specific problem. The proposed
method can be applied for different problems

LIME methods are known to be unstable, this makes them unreliable because their ex-
planations may change from one prediction to the next.
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6 Appendix A

These graphs shows how the behaviour of a model, using convolution.

epoch to epoch convolutions:

(A) Iris Epoch Convolution
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(A) Wine quality Epoch Convolution
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(A) Fashion MNIST Epoch Convolution
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7 Appendix B

In this appendix we are looking at the sample results for polynomial interpolation part in the
methodology. The results are only representing two epochs (epoch 0 and epoch 1) for each
data set, P(x) represents the polynomial function, X shows the number of nodes at that layer
and y are SVD results.

epoch0

layer0 p(x) x y
-3.23862482e-10, 2.06164715e-08, -3.47411891e-07,
-7.78649556e-06, 4.72200195e-04, -1.04102940e-02,
1.36920408e-01, -1.19135346e+00, 7.07056301e+00,
-2.85593054e+01, 7.63067943e+01, -1.26768356e+02,
1.15621829e+02, -4.25672737e+01, -9.11021754e-02

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14
-0.09110218, -0.05122982, 0.33642676, -0.27325457, 0.28258833,
-0.01930992, -0.3615444 , -0.2563718 , 0.03383022, 0.12903747,
-0.28134817, -0.37012035, 0.31131324, -0.01845747, 0.43972418

layer1

2.09854878e-05, -9.98133781e-04, 1.94259829e-02,
-2.01178852e-01, 1.20330946e+00, -4.20330980e+00,
8.16980976e+00, -7.55285041e+00, 1.86167142e+00,
1.33857489e-01

0, 1, 2, 3, 4, 5, 6, 7, 8, 9
0.13385749, -0.57024211, -0.3764759 , -0.04627177, 0.07858355,
0.44721633, 0.36031622, -0.36523172, 0.00297101, 0.20885958

layer2 0.2073358 , -1.65089554, 4.12884364, -3.33680005, -0.05854975 0, 1, 2, 3, 4 [-0.05854975, -0.7100659 , -0.10656677, -0.68933666, 0.07639947
layer3 1.22431305, -0.2582294 0, 1 -0.2582294 , 0.96608365

Epoch1

layer0

-3.23858952e-10, 2.06161218e-08, -3.47396301e-07,
-7.78690895e-06, 4.72207451e-04, -1.04103828e-02,
1.36921185e-01, -1.19135835e+00, 7.07058517e+00,
-2.85593761e+01, 7.63069477e+01, -1.26768568e+02,
1.15621996e+02, -4.25673282e+01, -9.11021456e-02

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14
0.09110215, -0.05122979, 0.33642685, -0.2732546 , 0.28258833,
-0.01930995, -0.36154437, -0.25637183, 0.03383023, 0.12903745,
-0.2813482 , -0.37012032, 0.31131324, -0.01845748, 0.43972412

layer1

2.09855217e-05, -9.98135205e-04, 1.94260081e-02,
-2.01179096e-01, 1.20331086e+00, -4.20331469e+00,
8.16981961e+00, -7.55286070e+00, 1.86167550e+00,
1.33857548e-01

0, 1, 2, 3, 4, 5, 6, 7, 8, 9
0.13385755, -0.57024211, -0.37647596, -0.04627169, 0.07858351,
0.4472163 , 0.36031622, -0.36523166, 0.00297108, 0.20885953

layer2 0.20733574, -1.650895 , 4.12884229, -3.33679901, -0.05854993 0, 1, 2, 3, -0.05854993, -0.7100659 , -0.10656697, -0.6893366 , 0.07639939
layer3 1.22431293, -0.25822929 0, 1 -0.25822929, 0.96608365

TABLE 7.1: Wine Polynomial interpolation

epoch_0
layer_0 p(x) x y

2.11165326e-09, -2.08923483e-07, 9.30895735e-06,
-2.46540329e-04, 4.31324442e-03, -5.23930865e-02,
4.52069099e-01, -2.78706145e+00, 1.21851705e+01,
-3.70031899e+01, 7.52093779e+01, -9.61425493e+01,
6.89978348e+01, -2.10335430e+01, -1.83148041e-01

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14
-0.18314804, -0.35335666, -0.19154304, 0.13358602, -0.20581752,
0.00296288, 0.33001527, -0.01718213, -0.17726921, 0.21877842,
0.19866423, -0.4226566 , 0.20452492, -0.42926955, 0.33464867

layer_1

6.45762628e-05, -3.08161981e-03, 6.12844035e-02,
-6.60305067e-01, 4.18780645e+00, -1.58630869e+01,
3.46127651e+01, -3.91269869e+01, 1.72929818e+01,
-2.86095679e-01

0, 1, 2, 3, 4, 5, 6, 7, 8, 9
[-0.28609568, 0.21534608, -0.27649617, 0.44069314, -0.12008888,
0.01072556, 0.43940082, -0.01699707, 0.48005292, -0.40344214

layer_2 -0.01803438, 0.0971183 , 0.00648505, -0.40281079, 0.51524073 0, 1, 2, 3, 4 0.51524073, 0.19799891, 0.22395571, 0.52658331, 0.60652888
layer_3 0.84554413, -1.23403091, 0.01237822 0, 1,2 0.01237822, -0.37610856, 0.92649293

Epoch_1

layer_0

7.10034958e-09, -6.99202329e-07, 3.09801650e-05,
-8.15726088e-04, 1.41986457e-02, -1.71924242e-01,
1.48374433e+00, -9.19615183e+00, 4.07029566e+01,
-1.26237762e+02, 2.64683559e+02, -3.52309661e+02,
2.64306354e+02, -8.34098737e+01, -1.96195215e-01

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14
-0.19619521, -0.33154008, -0.25403646, 0.19136032, -0.2110734 ,
-0.03950047, 0.39795822, -0.02074713, -0.13172838, 0.16857493,
0.12928137, -0.41482899, 0.2130491 , -0.44800684, 0.25466684

layer_1

2.09855217e-05, -9.98135205e-04, 1.94260081e-02,
-2.01179096e-01, 1.20331086e+00, -4.20331469e+00,
8.16981961e+00, -7.55286070e+00, 1.86167550e+00,
1.33857548e-01

0, 1, 2, 3, 4, 5, 6, 7, 8, 9
0.13385755, -0.57024211, -0.37647596, -0.04627169, 0.07858351,
0.4472163 , 0.36031622, -0.36523166, 0.00297108, 0.20885953

layer_2 0.04982924, -0.36004673, 0.68235952, -0.14712773, -0.55205303 0, 1, 2, 3, 4 -0.55205303, -0.32703874, -0.19997643, -0.53729391, -0.50951725
layer_3 0.56217916, -0.56605118, -0.13576214 0, 1,2 -0.13576214, -0.13963416, 0.98085213

TABLE 7.2: Iris Polynomial interpolation
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Epoch_0
p(x) x y

layer_0

1.02713374e-08, -1.04067023e-06, 4.75303997e-05,
-1.29280004e-03, 2.33016049e-02, -2.92976344e-01,
2.63377619e+00, -1.70635435e+01, 7.92399001e+01,
-2.58775794e+02, 5.72929543e+02, -8.05914511e+02,
6.36736316e+02, -2.09219360e+02, 1.40661508e-01

0,1,2,3,4,5,6,7,8,9,10,11,12,13,14

0.14066151, 0.4360671 , 0.24076241,
0.23281349, 0.21986179, -0.5683618 ,
-0.05118958, -0.09608509, -0.14950033,
0.12232888, 0.02291792, -0.2592896 ,
0.02036167, -0.36860955, -0.23087966

layer_1
1.92844663e-04, -8.01074263e-03, 1.40584236e-01,
-1.35575277e+00, 7.81723926e+00, -2.74085052e+01, 5.65317582e+01,
-6.18616364e+01, 2.70131392e+01, -3.84061396e-01

0,1,2,3,4,5,6,7,8,9
-0.3840614 , 0.4849473 , -0.6600985 ,
0.10955357, -0.07966646, 0.12726319, 0.0113221 ,
0.24675584, 0.16655742, -0.24143380.18

layer_2
-2.07994739e-04, 8.24208785e-03, -1.37146018e-01,
1.24615294e+00, -6.72997002e+00, 2.20037955e+01, -4.22829683e+01,
4.33524484e+01, -1.80105394e+01, 3.84119093e-01

0,1,2,3,4,5,6,7,8,9
0.3841191 , -0.16607362, 0.41335428,
0.29864177, 0.22447771, -0.07972511,
0.3984914 , -0.3090847 , 0.0412868 , -0.50203955

Epoch_1

layer_0

1.43892292e-08, -1.44301530e-06, 6.52130059e-05,
-1.75467659e-03, 3.12825489e-02, -3.89050489e-01,
3.46006370e+00, -2.21849214e+01, 1.02012273e+02, -3.30125475e+02,
7.24974308e+02, -1.01269781e+03, 7.95593243e+02, -2.60335608e+02,
1.63853228e-01

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14

0.16385323, 0.500466 , 0.25013566,
0.19779144, 0.19193129, -0.5924296 ,
0.0011992 , -0.06613187, -0.08952589, 0.05943337,
-0.00692113, -0.24093635, 0.05037161,
-0.31999648, -0.23287505

layer_1
2.07868084e-04, -8.60913180e-03, 1.50572889e-01,
-1.44646470e+00, 8.30371073e+00, -2.89709744e+01,
5.94312297e+01, -6.46564264e+01, 2.80441049e+01, -3.46218497e-01

0, 1, 2, 3, 4, 5, 6, 7, 8, 9
-0.3462185 , 0.50113297, -0.6486435 ,
0.11134157, -0.09344627, 0.15072656, 0.01577904,
0.2853177 , 0.17956963, -0.2247488

layer_2
-3.02715961e-04, 1.20367557e-02, -2.00799796e-01,
1.82613163e+00, -9.84227549e+00, 3.19640994e+01,
-6.05758669e+01, 6.06254627e+01, -2.42383023e+01, 3.50098968e-01

0, 1, 2, 3, 4, 5, 6, 7, 8, 9
0.35009897, -0.07971777, 0.33765432, 0.2506581 ,
0.2850958 , -0.29880172, 0.34176072,
-0.40072697, 0.05368976, -0.49336466

TABLE 7.3: Fashion mnist Polynomial interpolation



42

8 Appendix C

This show the results from functional analysis using infima and suprema. This was done to
see how the model behaves from random step.

FIGURE 8.1: Iris Suprema

[h]
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FIGURE 8.2: Iris Infima

FIGURE 8.3: Wine quality Infima
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FIGURE 8.4: Wine quality Suprema

FIGURE 8.5: Fashion MNIST Suprema



45

FIGURE 8.6: Fashion MNIST Infima
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