
Implementing a robust anti-QCD tagger with mass de-correlated jet

image data

by

Rapetsoa Kokotla

Student no: 11640816

Research report submitted in partial fulfilment of the requirements for Master of

Science Degree in Physics (e-Science)

School of Mathematical and Natural Sciences

University of Venda

Thohoyandou, Limpopo

South Africa

Supervisor/Promoter: Prof. Deepak Kar

Co-Supervisor/Co-Promoter: Dr Eric Maluta

Abstract

This project studies a robust anti-QCD tagger with mass de-correlating jet image

data produced using the pre-processing method introduced in arXiv: 1903.02032.

A semi-supervised (where data is only trained on background) learning anomaly

detection approach using convolutional autoencoder neural networks is explored as

an anti-QCD tagger in this study. Jet image data is used to train the algorithm in-

stead of conventional high level multivariate observables. The pre-processing steps

first perform momentum re-scaling followed by a Lorentz boost transformation to

find a frame of reference where any given jet is characterised by the same mass and

energy, and remove the residual rotation by applying the Gram-Schmidt method

on the transverse plane to the jet axis. This is expected to increase the sensitivity

of the autoencoder to non-hypothesised resonance and particles as it will not expe-

rience non-linear correlation of the jet-mass with other jet observables. A negative

result shows that contrary to the convolutional autoencoder outperforming autoen-

coder in every case where image data is used, it failed to do so in this project.

The pre-processing method results in jet images data that the convolutional layer

cannot extract information or features from.

i

Declaration

I, Kokotla Rapetsoa [student number: 11640816] declare that this research project is my

original work and has not been submitted for any degree at any other university or institution.

The project does not contain other persons' writing unless specifically acknowledged and

referenced accordingly.

Signed (Student):.. Date:03/09/2020.........

Acknowledgement

I would like to express my greatest gratitude to the DST-CSIR National e-Science

Postgraduate Teaching and Training Platform for funding and supporting this Mas-

ters of Science in e-Science qualification. I would also like to offer my special ap-

preciation and thanks to my supervisor Prof. Deepak Kar for his guidance and

constant support during the research project. I would also like to acknowledge

the University of the Witwatersrand CSAM department for providing me access to

their GPU cluster which was necessary to train the algorithms. I would also like to

thank iThemba LABS for the financial support which enabled me to visit CERN

and attend workshops.

iii

Contents

Abstract i

Declaration ii

Acknowledgement iii

List of Figures vi

List of Abbreviations vii

1 Introduction 1

1.1 Problem statement . 5

1.2 Aim . 5

1.3 Objectives . 5

2 Previous work 7

2.1 Autoencoder . 7

2.2 Autoencoder in searching for new physics 9

3 Methodology 12

3.1 Simulating data . 12

3.1.1 Pre-processing method . 13

3.2 Anomaly detection with convolutional autoencoder 14

3.2.1 Convolutional autoencoder 15

3.2.2 Non-linear activation functions 17

3.2.3 Max-Pooling and Un-pooling/up-sampling 19

iv

CONTENTS v

3.2.4 Softmax activation function 20

3.2.5 Cost function . 20

3.2.6 Stochastic gradient optimiser (Adam) 20

3.2.7 Weight initialisation . 22

3.2.8 Regularisation . 23

3.2.9 Hyperparameter tuning . 23

3.2.10 Early stopping . 24

4 Results and Discussions 26

4.1 Data . 26

4.2 Algorithm . 28

4.3 Results . 29

4.3.1 Robustness . 29

4.3.2 Reconstruction benchmarking 31

4.4 Discussion . 33

5 Conclusion and Recommendations 37

5.1 Conclusion . 37

5.2 Limitations . 37

5.3 Recommendations . 38

Appendix 40

v

List of Figures

1.1 Distribution of mcomb and semi-leptonic events from ref. [1]. 4

3.1 Visual representaion of the pre-processing method. 14

3.2 A visual example of a convolutional autoencoder. Image source ref. [2] 17

4.1 Average of QCD jet images. 27

4.2 Average of Top jet images. 27

4.3 Distribution of QCD jet mass. 30

4.4 Distribution of QCD jet pT . 30

4.5 Distribution of m/pT . 30

4.6 Loss function (reconstruction error) of CAE trained on low m/pT . 31

4.7 Reconstruction error of signal and background by CAE 32

4.8 ROC curve of CAE . 33

4.9 Reconstruction error of signal and background by AE. 35

4.10 ROC curve of AE and CAE. 36

5.1 Results showing how poorly algorithm with dropout perform. 40

vi

List of Abbreviations

AE Autoencoder

CAE Convolutional Autoencoder

LHC Large Hadron Collider

MC Monte Carlo

PCA Principal Component analysis

QCD Quantum Chromodynamics

ROC Receiver Operating Characteristic

vii

Chapter 1

Introduction

It is crucial to develop methods that would help physicists find new physics. These

findings may be useful in solving some of the mysteries the Standard Model does

not account for. For example, the standard model does not include gravity, which

is a force evident in our daily lives, and why is there more matter than antimatter

in the universe. Another puzzling phenomenon is dark energy, which explains the

expansion of the universe and movement of galaxies and dark matter. These two

are believed to make up 68% and 27% of the known universe respectively. However,

their constituent particles have not yet been detected. A number of methods, both

physics and machine learning-based, have been explored, studied and extensively

tested to try and find hypothetical new physics beyond the standard model, but

they have not yet found any new particles.

Particle accelerators like the 27 km circumference Large Hadron Collider (LHC)

are used to perform proton-proton collision experiments at center of mass (
√
s) of

13 TeV to search for new physics. As mentioned in ref. [3], protons are extracted

from hydrogen atoms and accelerated to near the speed of light in opposite direc-

tions. The protons travel in beams made of around 2808 bunches containing 1×1011

protons. These beams are directed by super conducting magnets to a collision point

at the centre of all of the four detectors surrounding the collision points. Protons

collide but interaction occurs among their constituent particles partons (collective

term for quark and gluons that make the protons). Depending on the type of col-

lision and energy transferred, new particles are formed following E = mc2. As

quarks and gluons cannot be observed in nature, they decay hadronically to form

colour neutral hadrons (collective term for colour neutral particles made up of 2

or 3 quarks held together by gluons, e.g neutrons and protons), but also unstable

hadrons decay to form stable ones which we can detect.

1

2

Colour neutral hadrons are used to approximate the energy flow of coloured partons

which they originate from by the construction of jets. A jet is basically a collection

of a collimated bunch of handrons, where each bunch is assumed to have originated

from a single particle. Jets can be taken as proxies for partons. Jets are not fun-

damental objects, but are constructed to capture products originating from some

particle.

New physics, if it exists is expected to be found in high mass particles resulting from

high pT (which is the transverse momentum of a particle defined as pT =
√
p2x + p2y

where px and py are momentum measured in the x and y plane of the detector)

collisions. Heavy hadronically decaying particles with high pT result in a boosted

system where all the decay products of those particles collimate together and from

this a large radius jet is constructed containing all of its decay product information1.

Large-radius jets do not only originate from resonance decaying particles but can

be a result of background2 particles like light-quarks, top quark and gluons. This

makes discrimination based on subjet combinations difficult, but correlation of jet

observables can show the difference in radiation patterns for jets produced through

resonance and non-resonant decays.

Physics methods like the cut based tagger studied in ref. [5, 6] are taggers that

discriminate signal and background based on a set of event selections on jet mo-

menta that would give the same signal efficiency across a large pT range. Another

example of a physics based jet tagger is the shower reconstruction in ref. [8] which

classifies jets according to the compatibility of radiation pattern of a jet with a

predefined set of pattern shower hypotheses. HEPTopTagger in ref. [9] relies on

reconstructing jets using a large radius jet of R = 1.5 to allow the tagging of fully

contained boosted top quarks to be effective at lower values of (pT > 200 GeV) and

to take advantage of the clustering sequence which attempts to reverse the decay

structure of the top-quark decay. Machine learning algorithms like deep neural net-

works and boosted decision trees have also been used. They are mainly trained on

high level multivariate observables discussed extensively in ref. [7]. Ref. [1] goes

1For example, a hadronically decaying top quark forms a large-radius jets of ∆R = 1 at
pT > 350 GeV. This can be calculated using the equation ∆R = 2m

pT
where m is the mass (this

is the mass of the particle that decays to form a jet.) The invariant mass as it is called is the
mass at the inertial or resting frame of the decay system obtained from energy and momenta of
the initial particle decay products and pT is the transverse momentum of the particle.

2Signal are events of interest and background are events with somewhat similar properties to
events of interest but are not of interest.

2

3

on to assess and optimise performance of these algorithms, to determine which jet

momenta combination gives the best signal efficiency and background rejection for

both boosted decision trees and deep neural networks.

While these taggers work relatively well, we have not found any new particles. This

may be due to a number of shortcomings brought by supervised learning methods.

The most notable drawback is the reliance on Monte Carlo simulations as data from

the detector are not labelled and supervised machine learning performs well when

trained on controlled data. Monte Carlo simulations are not yet perfect. Ref. [1]

mentions that the primary limiting factor in the description of the tagging efficiency

by the Monte Carlo prediction derives from the theoretical modelling of the Monte

Carlo processes studied. Machine learning models learn these flaws in Monte Carlo

simulated data, thus inevitably making the tagger less effective on real data.

Bottom-up orientated taggers have recently gained traction as viable anti-QCD(Quantum

Chromodynamics) taggers since they provide a set of advantages not found in pre-

viously mentioned taggers. Anti-QCD taggers look for variations from standard

model in data as anomalies, meaning that one does not need to define a signal.

This means that they can be trained and implemented directly on data. This

project utilises an autoencoder neural network as an anti-QCD tagger. An au-

toencoder does dimensional reduction on the input data and reconstructs the input

as output with minimum error. This way the algorithm learns to reconstruct the

predominant data class, in this case light non-top quarks and gluon jets, very well

that any event giving a large reconstruction error can be considers as an anomaly.

Anti-QCD tagger like bump hunting were being used before autoencoders gained

popularity. Bump hunting searches for deviation in the distribution at high m/pT

phase space where QCD-jets have a constantly falling distribution. A peak will

be seen near the respective signal mass. However this does not conclude that any

anomaly is new physics, because certain tests like checking for detector effects and

many others have to be carried out in a concrete study.

Ref. [10] describes the drawbacks that follow with the reliance of correlation when

using machine learning based taggers. They mention that machine learning algo-

rithms learn the non-linear correlation of jet mass with other jet momenta as jet

mass is a powerful discriminating feature. This can be seen in Figure 1.1 which

shows top quark mass peak with large-R jets obtained from dedicated semi-leptonic

top selection. Fixed threshold event selection on jet tagging observables distorts the

3

4

shape of the distribution of non-resonant particle jet, making it similar to the dis-

tribution of resonance particle jet. This effect mentioned before along with others

make the machine learning algorithm less useful in identifying hadronically decay-

ing particles contained within a large radius jet where the jet mass is not known

prior, but has limited effect on the tagging of hadronically decaying top quark, W

and Z boson, of which the mass is known.

Figure 1.1: Distribution of mcomb and semi-leptonic events from ref. [1].

The autoencoder also learns the jet mass correlation in data as in the signal is

only expected at a specific mass value. This was shown in ref. [4]. To mitigate

this occurrence, we implement a mass de-correlation pre-processing method pre-

sented in ref. [11]. Basically the pre-processing method re-scales the jet mass to

a pre-determined value, and then performs a Lorentz boost to the jet frame with

respect to pre-determined mass and energy value. By removing the dependency on

jet mass, we hope that the autoencoder will be more sensitive to other m/pT phase

space where data is scarce.

4

1.1. PROBLEM STATEMENT 5

1.1 Problem statement

Machine learning algorithms require controlled data to be able to give satisfactory

results in identifying jets and the particles they originate from. This makes particle

physicists reliant on Monte Carlo (MC) simulation as data from the detectors are

not labelled. Although MC simulations are precise, they are not yet perfect at re-

sembling the actual particle interaction process. Also, the performance of machine

learning algorithms in most cases learn the correlation of jet mass with other ob-

servables as it is a powerful discriminant. This limits the sensitivity for detecting

new particle of unknown mass. Another issue is that, while new physics is expected

to be found at high m/pT phase space, there is not enough data to train machine

learning algorithms in those regions.

1.2 Aim

The aim of this study is to explore an unsupervised learning approach for tagging

jet events by implementing a robust anti-QCD tagger trained on jet image data

that is de-correlated of jet mass using the pre-processing method introduced in ref.

[11] where the anti-QCD tagger is a convolutional autoencoder. For the aim to be

achieved and deemed successful, the convolutional autoencoder should have a lower

reconstruction error for background QCD jets and a higher reconstruction error for

signal top jets with respect to the QCD reconstruction error.

1.3 Objectives

The first objective of this project is to develop an advanced convolutional au-

toencoder (CAE) that according to previous literature would tag a signal from

a background more effectively. This is then followed by testing robustness of the

pre-processing method by determining whether indeed QCD events from different

m/pT phase space result in a somewhat similar reconstruction error showing that

the reconstruction error is not affected by jet mass.

The third step is to train the model on QCD jet event and test them on top jet

events in order to see if it can give a larger reconstruction error for top-jets. This

will show us if the anti-QCD is ready to be tested further by comparing its results

with those obtained in ref. [11, 4].

5

1.3. OBJECTIVES 6

Outline

The outline of this report is as follows. Chapter 2 gives literature review on ar-

chitectures of convolutional autoencoder, their application in anomaly detection in

other fields and in high energy physics, as well as some uses of convolutional neural

networks in top tagging. Chapter 3 explains how the data is simulated and pre-

processed. The description of the CAE’s architecture is also extensively discussed in

this chapter. Chapter 4 describes the data after being simulated and pre-processed,

the architecture of the CAE with features mentioned in chapter 3, the results and

discussion of the results. Chapter 5 concludes the project report, mentions the

limitations experienced throughout the study and also gives recommendations for

future studies.

6

Chapter 2

Previous work

This chapter reviews previous literature on the best architecture for CAE, appli-

cation of CAE in anomaly detection and use of autoencoders in searching for new

physics. Also, literature of convolutional neural network in top jet tagging is ex-

plored.

2.1 Autoencoder

An autoencoder is a neural network trained to copy its input as the output as men-

tioned in ref. [27]. The aim of the autoencoder is to transform input data into output

with the least possible amount of distortion. Autoencoder is a symmetrically struc-

tured algorithm that consist of an encoder and decoder part. The encoder learns

and describes a code that represent the input data and decoder reconstructs the

input from that code. Autoencoders were first introduced by Geoffrey Hinton and

the PDP (Parallel Distributed Processing) group in ref. [17] with efforts to address

back-propagation (method that allows cost function information to flow backwards

through the neural network during training in order to compute the gradient) with-

out explicitly defining an input-output pair, now commonly known as unsupervised

learning.

The use of autoencoders gained interest once again when Hinton et. al. (2006) in

ref. [34] showed how it can outperform algorithms like Principal Component Anal-

ysis (PCA) in dimenstionality reduction. Convolutional neural networks, which

contribute a significant part to this project, where introduced in ref. [18] as neu-

ral networks that use the linear mathematical operation convolution to force the

extraction pf local features in commonly n-dimensional dataset by restricting the

7

2.1. AUTOENCODER 8

receptive fields of hidden units to be local. Ref. [35] is one of the first studies to use

convolutional layers in autoencoder for unsupervised learning problem. The model

had convolutional and max-pooling layers on the encoder and convolutional and

up-sampling layers at the decoder. They learned that the model produces trivial

solutions if trained as an identity function, and introduction of sparsity and con-

straint in the network would better the results.

Masci et. al. in ref. [36] studied CAE with and without max-pooling layer in the en-

coder part for shallow and deep AE1. They realised that the model performs better

with the use of max-pooling layer as it introduces sparsity2 in the neural network,

removing the need for regularisers (which are methods used to punish larger or

small weights in an algorithm, making it more generalised). They also realised that

CAE performs better when the convolutional layers are pre-trained instead of being

trained conventionally, where the weights are random values. Zhao et. al in ref.

[37] introduced a CAE architecture similar to that used in this project. The CAE

architecture consists of several convolutional and max-pooling layers followed by

a fully connected neural network on the encoder part. The decoder part consists

of fully connected neural network followed by up-pooling de-convolutional layers.

They also added a dropout layer to the fully connected neural network section.

They realised that the up-pooling layer in the decoder provides better reconstruc-

tion image quality than up-sampling.

AE and CAE have been applied in multiple anomaly detection studies before. Ke

et. al. in ref. [2] used CAE for anomaly detection of logo images on mobile phones.

They reached 97.4% accuracy for detecting anomalous logos. Park in ref. [38] used

CAE to detect hypertext transfer protocol (HTTP) intrusions in network commu-

nication. Ribeiro et. al. in ref. [39] used CAE to detect anomalous behaviour in

automated video surveillance.

1The word ’deep’ in neural networks which normally represents the structure of the algorithm
in the sense of number of layers, does not have a universally agreed upon value or threshold. In
most cases a deep neural network is that with more than two hidden layers as mentioned in ref.
[19].

2Sparsity, in a literal sense means that most weights in the neural network are 0. This results
in a more generalised algorithm that is both space and time efficient.

8

2.2. AUTOENCODER IN SEARCHING FOR NEW PHYSICS 9

2.2 Autoencoder in searching for new physics

To this point, there have been three main studies that have explored the use of AE

and CAE as anomaly detection tools in high energy physics.

Farina et. al. in ref. [4] studied the use of PCA, AE and CAE to distinguish large

radius QCD jets from other types of heavier, boosted resonance decaying hadron-

ically, in their case all hadronic top jets and 400 GeV gluinos decaying to 3 jets.

They performed two neural network training, one semi-supervised (where train-

ing is on background data only) and the other was unsupervised learning (where

training is on background that contains contamination of signal data). For semi-

supervised learning, the convolutional autoencoder reached a reconstruction error

range of ≈ ×10−7 to ≈ ×10−4 where the reconstruction error was calculated using

the mean squared error. The reconstruction error for signal (top jet and gluino)

ranged from ≈ ×10−6 to ≈ ×10−4. The reconstruction error distribution of QCD

is skewed to the right while that of signal data is skewed to left. A cut in the

reconstruction loss can be taken as a threshold for anomalies. The convolutional

autoencoder gives a higher reconstruction error for top jet but performs badly for

gluino while the principal component analysis does substantially better. The high

performance of the principal component analysis is according to the authors, a re-

sult of the jet mass correlation.

Performance for unsupervised learning was relatively similar to that of weakly su-

pervised learning. There is no major visible difference in reconstruction error for

both weak supervised and unsupervised learning. The reconstruction error range

and distribution for both QCD background and top jet signal is similar to that of

the weak supervised learning. Performance was stable for signal contamination of

1% up to 10%, which shows that the model is not affected by the presence of signal

events during training. It was also noted that CAE is least affected by jet-mass

correlation compared to the other two algorithms.

On the other hand, Heimel et. al. in ref. [12] had a different approach for dealing

with jet mass correlation when using autoencoder for anomaly detection. The archi-

tecture of their algorithm was similar where the optimiser used and cost functions

but PRelU (Parametric Rectified Linear Unit) was used as an activation function

instead of RelU (Rectified Linear Unit). They also tested performance of autoen-

coders with different bottlenecks ranging from six neurons to 34 to see which gives

9

2.2. AUTOENCODER IN SEARCHING FOR NEW PHYSICS 10

the lowest reconstruction error for training. They found that bottleneck between

20 and 34 gave the best performance, with an area under curve of 0.89 and loss of

×10−5. The convolutional autoencoder was trained on 100000 images, of which 3%

is signal contamination and tested on 10 sets of 40000 (half being background and

the other half signal) to have statistical independence.

Unlike the paper discussed before, the latter used an adversarial autoencoder to

de-correlate jet events of jet mass. The additional adversary was trained to extract,

in their case the jet mass from the autoencoder output. An adversarial loss function

used in this case can be written as

Ladv(M) =
[
M̃
(
|kadvT,i − kautoT,i | −M

)]2
(2.1)

where M̃ is the trained proxy jet mass, M is the jet mass, kadv is the input and

kauto is the output. The combined loss function that replaced the mean squared

error was in terms of Lagrangian multiplier as

L = Lauto − λLadv(M) (2.2)

where λ is the Lagrangian value. This method, while giving a good performance,

is a complex neural network which would require high computational power, espe-

cially when implemented on large scale data. It is also not robust as it can not be

used on AE based on Lorentz layers.

This project is mostly based on the study by Roy et. al. in ref. [11]. As mentioned

earlier, they developed a physics-based pre-processing method to de-correlate the

AE reconstruction error from jet-mass. They tested the robustness of this pre-

processing method by training and testing on QCD events from different m/pT bins

to see if they result in the same reconstruction error. They also tested the perfor-

mance of the autoencoder where anomalous events are top-jets and W boson jets.

Then another test was done where the anomalous events are new physics particles

decaying into di-W boson jets. The reconstruction error for QCD events at different

m/pT bins were fairly similar, showing the robustness of the method. They were

able to obtain up to 60% signal selection efficiency for W and top jets. A signal

selection efficiency of di-W boson jets achieved a signal selection efficiency of 70%.

One should note that these signal selection efficiencies where achieved when the

reconstruction error was combined with jet mass mJ and N -subjettiness variables.

10

2.2. AUTOENCODER IN SEARCHING FOR NEW PHYSICS 11

Even though Roy et. al. have not used convolutional layers in their autoencoder,

there has been some application of convolutional neural networks (CNN) for top

tagging which gave promising results. Kasieczka et. al. in ref. [16] developed a

convolutional neural network based top tagger called DeepTop trained on jet image

data. They realised that it gives comparable results to a QCD-based top tagger

made of BDT (boosted decision tree) trained on high-level multivariate inputs. The

results gave confidence that CNN will give better performance if better optimised.

Macaluso et. al. in ref. [47] explored a number of improvements to DeepTop tagger

mentioned above. Some of the improvements explored were increasing the number

of filters and using deeper layers, using coloured3 jet images instead of conventional

greyscale jet image and exploring other optimisers among others. These features

improved performance of DeepTop by a factor of 3-10 factors for the CMS sample

and 1.5-2.5 factors on the DeepTop sample. They also obtained better performance

compared to high level multivariate-based taggers currently in use.

3Coloured means additional information such as calorimeter pT , track pT , etc. to the jet image
making it 3 dimensional.

11

Chapter 3

Methodology

This chapter gives a brief description of how the data were simulated, how it were

pre-processed and the convolutional autoencoder. All features of the CAE used in

this project are explained in this chapter.

3.1 Simulating data

This section gives a short description of the simulated data, how it was simu-

lated and a description of the pre-processing method used to produce jet-mass

de-correlated simulation data. Even though the aim is to reduce the decency sim-

ulated data, it is used for this project. The reason being that ATLAS (A Toroidal

LHC Apparatus) experimental data requires one to have ATLAS affiliation to use

it, also this project is a proof of concept project to test if this method does actually

work. The background events, which are gluons and non-top light flavour quarks are

simulated by a dijet production. They are generated using Pythia8, ref. [13], which

uses LO1 calculations. The signal events for this study are high-pT top quark, which

can be obtained from the hadronical decay of W ′ or Z ′ boson, which are physics

phenomenons beyond the standard model. Top-quarks used are of semi-leptonic

decay. Top quarks are also simulated using Pythia8. The simulation is pre-detector

simulation, meaning only the particle is looked at.

From the simulated results, this jets, which are a construction of captured hadrons

originating from a single parton,2 are formed. The clustering algorithm anti-kt will

be used to reconstruct jets. This algorithm clusters jets by starting with the highest

pT input object, then takes all the softer input within a radius R = 1 (in the case

1LO(Leading order) corresponds to the tree level of the Feynman diagram.
2Parton refers to a class of fundamental particles which mainly consist of quarks and gluons.

12

3.1. SIMULATING DATA 13

of this study) to form a roughly circular shaped jet.

This project only focuses on a parton level study. The authors in ref. [11] of the

pre-processing method to be explained below are confident that traditional trim-

ming methods will be able to handle this contamination at a detector level study

without deteriorating the performance of the tagger. The next sub-section explains

the decorrelation method.

3.1.1 Pre-processing method

Four basic momentum variables and energy of jets are pre-processed to form jet

image data to be used to train the anti-QCD tagger. A summary of the pre-

processing method is presented below. The process is divided into three stages. For

a detailed explanation and understanding, refer to ref. [11].

• The initial step is to re-scale the constituent momentum vector of the jet so

that mass of the jet is m0.

• The second step is performing a Lorentz boost to a frame where the energy of

the jet is E0, the direction of the boost is either parallel to the jet momentum

if E ′J > E0 or anti-parallel to the jet momentum if E ′J < E0 where E ′J is the

rescaled jet energy. The boost factor is shown in Figure 3.1.

• The third step forms a jet image using dimensionless ratios between the mo-

mentum components and energies of jet constituents. Jet images are two

dimensional histograms of energy (or pT) of its constituents with respect to

the transverse plane to jet axis. The Gram-Schmidt method is used to de-

termine the optimal set of basis vectors in the transverse plane while also

removing the residual rotation symmetry still present for the constituents.

13

3.2. ANOMALY DETECTION WITH CONVOLUTIONAL AUTOENCODER14

Figure 3.1: Visual representaion of the pre-processing method.

Figure 3.1 shows a visual of how the pre-processing method would be carried out.

The jet-images formed are a η vs φ plot of jets.

The next section will give a description of the convolutional autoencoder and why

it is the preferred algorithm to tackle the task at hand.

3.2 Anomaly detection with convolutional autoen-

coder

As mentioned before, an autoencoder is used as a mechanism for anomaly detection

for physics beyond the standard model in ATLAS. The need for anomaly detection

arises when we have one class that is well characterised by instances in the training

data, but the other class or classes have very few to no instances or do not form a

statistical representation of the class. In the case of this research project, there is a

high quantity of jets originating from low m/pT particles which is usually QCD jets

and small high m/pT particles which is where new physics is expected to be found.

An autoencoder is an unsupervised learning neural network that applies backprop-

agation to the network, setting the target value (output) to be equal to the input.

Backpropagation3, which is short for ”backward propagation of errors” is a method

for calculating the gradient of the error function with respect to the neural network’s

weights. By minimising the cost function, the algorithm is able to reproduce the

background data which is plentiful in the training data but fails to reconstruct the

3The phrase ’back’ is used to reference how this method operates where the last neural network
layer’s neurons are the first used to calculate the gradient and the first layer is last.

14

3.2. ANOMALY DETECTION WITH CONVOLUTIONAL AUTOENCODER15

signal or anomaly. A threshold in the reconstruction error can be used to determine

whether a particle is categorised as an anomaly or not.

At first glance, the autoencoder may seem like an identity function and a bit triv-

ial to learn but by placing constraints on the hidden layer we are able4 to learn

interesting structures and non-linear correlations about the data. An autoencoder

structure consists of two section, an encoder and a decoder. For an input x ∈ Rd,

encoder can be defined as

h = fW,b(x) = σ
(m∑

j=1

W
(l)
i,j xj + b

(l)
i

)
, (3.1)

where Wi,j is neuron i from input j, bi is the bias value in hidden layer l, xj is the

input value j and σ is the activation function. The decoder can then be defined as

x̂ = gW,b(h) = σ
(d∑

j=1

W
(l)
i,j hj + b

(l)
i

)
, (3.2)

where x̂ is the output of the decoder, x = x̂ and m < d. This equation is for a

fully connected autoencoder, the convolutional part will be explained in the next

section. This architecture learns low-dimensions of the data in a manner similar

to the Principal Component Analysis (PCA). The following sections will give a

detailed explanation of a convolutional autoencoder and why it has the structure it

has. A detailed explanation of a convolutional autoencoder will also follow as it is

a suitable algorithm for anomaly detection on image data.

3.2.1 Convolutional autoencoder

The architecture proposed for anomaly detection on image data consists of con-

volutional layers and max pooling layers for the encoder, fully connected neural

network in the middle and then de-convolutional layers along with un-pooling or

up-sampling for the decoder depart. Convolutional layers have demonstrated supe-

riority in image recognition compared to conventional fully-connected neural net-

works which makes convolutional layers an obvious tool to achieve the research goal.

Fully-connected neural network structures tend to ignore the topology of input data.

A convolution operation of two matrices is a method that produce a third matrix

4By doing this, the input data xi ∈ Rd is compressed to m(m < d) number of neurons in the
hidden layer as mentioned in ref. [20].

15

3.2. ANOMALY DETECTION WITH CONVOLUTIONAL AUTOENCODER16

which expresses how the one matrix is affected by the other. Due to the high spatial

or temporal correlation of pixels in images, convolutional neural networks are best

suited for this as they can extract and combine abstract features to recognise spatial

and temporal objects. This way, spatial locality is preserved because convolutional

neural network weights are shared among all locations in the input data.

A convolutional layer is composed of two parts, a feature map which is the input

image and a kernel of filters. A kernel or filter is a two dimensional matrix, whose

weights are multiplied with the feature map to extract or enhance valuable descrip-

tive characteristics from the feature map. A kernel of size n× n convolve over the

feature map of size m×m, and the dot product of the kernel and a certain position

on the feature map is what will be used to form a new feature map, which is smaller

than the previous feature map in size. The convolving steps over a feature map by

a kernel matrix is taken in steps called strides. One stride means a kernel matrix

moves one pixel to the right of a feature map and so on. The convolution operation

can be represented mathematically, as shown in refs. [37, 40], by

h = fW,b(x) = σ
(J∑

j=1

W
(l)
i ~ xj + b

(l)
i

)
, (3.3)

where Wi is a n× n kernel or filter matrix, bi is the bias value for the i filter, xj is

the j− th m×m input feature map in a group of J feature maps from the previous

layer, ~ is a 2D convolution operation and σ is the activation function.

A new feature map has a size of (m−n+1)×(m−n+1), after a convolution opera-

tion which follows the architecture of an autoencoder. In the case of this project, the

convolution step does not reduce the dimensionality of a feature map, max-pooling

which will be explained in the next section is responsible for that operation. A

convolutional neural network learns the best filter matrix values to minimise the

cost function. A convolutional layer needs a non-linear activation function before

another convolutional step is done.

A de-convolution neural network is basically an inverse convolution step used in

the decoder part of the autoencoder. According to ref. [41], after a feature map

is enlarged by using un-pooling or up-sampling, they are usually sparse. The de-

convolution operation the density of the sparse feature map. This action also sup-

presses the noise in feature maps while learning the best filters to get a good recon-

structed image. This can be represented mathematically as,

16

3.2. ANOMALY DETECTION WITH CONVOLUTIONAL AUTOENCODER17

x̂ = gW,b(h) = σ
(d∑

k=1

W̃
(l)
i ~ hj + b

(l)
i

)
(3.4)

where W̃ is an inverse filter.

Figure 3.2 gives an example of such an architecture. It shows how the convolutional

and pooling layers are followed by and connected to a fully connected neural network

in the encoder part. Symmetrically, a fully-connected neural network followed by

de-convolutional and pooling layers are used to reconstruct the image to its original

dimension.

Figure 3.2: A visual example of a convolutional autoencoder. Image source ref. [2]

3.2.2 Non-linear activation functions

The convolutional neural network, like other neural networks, learns the relationship

between input and output and stores the learned parameters as filter values. Convo-

lutional layers require a non-linear activation function for better performance. This

activation function breaks up the linearity imposed when an image goes through

a convolutional neural network. One can further read on why convolutional layers

use non-linear activation function in Ref. [21]. The three most popular non-linear

activation functions are the sigmoid function, the rectified linear unit (ReLU), and

the parameterized ReLu (PRelu), but this project only explores the latter two.

ReLu

Rectified non-linearity layers in convolutional recognition systems were explored in

ref. [22] and it was realised that they offer best performance compared to other

activation functions. The author also learned that polarity is not an important

factor in image recognition. This fact is explained in detail and mathematically in

ref. [21]. The ReLU, introduced in ref. [23] is given by

17

3.2. ANOMALY DETECTION WITH CONVOLUTIONAL AUTOENCODER18

σ(x) =

x if x > 0

0 if x ≤ 0,
(3.5)

where σ is the activation function and x is the input to the activation function.

ReLU has some incredible benefits5 that made it a default activation function for

convolutional neural networks. For example, ReLU does not require a lot of compu-

tation power, which means that it takes less time to train. This also means that the

neural network algorithm converges faster without saturation as the input variables

increase. Arguably the most important trait of ReLU is that it introduces sparsity

to the neural network. If different and less neurons are activated for a specific input

during training, then the algorithm would give better predictive power and a lower

case of overfitting.

As great as the ReLU sounds, it does have some shortcomings, the most common

being dying neurons. This happens when a neuron keeps outputting a negative

value which the ReLU would always takes to 0 i.e would not activate the neuron.

This makes it difficult to update the neuron as a gradient descent algorithm does

not update a weight that is not initially activated. This issue can sometimes be

solved by a smaller learning rate. Alternatively, the activation function used in the

next sub-subsection can be used.

PReLU

PReLU was introduced in ref. [24] as a solution to the shortcomings of the conven-

tional ReLU. This activation function helps with dying neuron problem by allowing

the neurons to be activated on negative values but with a very small margin. PReLU

is defined by,

σ(xi) =

xi if xi > 0

aixi if xi ≤ 0,
(3.6)

where ai is a learn-able parameter and the i shows that each i − th channel will

learn a different a with respect to the cost function error value E .

The authors mentioned that the value ai is updated with the momentum method

given as,

∆ai = µ∆ai + α
∂E
∂ai

, (3.7)

5https://medium.com/tinymind/a-practical-guide-to-relu-b83ca804f1f7

18

https://medium.com/tinymind/a-practical-guide-to-relu-b83ca804f1f7

3.2. ANOMALY DETECTION WITH CONVOLUTIONAL AUTOENCODER19

where µ is the momentum and α is the learning rate. The decay of weights in the

neural network normally pushes ai close to zero.

3.2.3 Max-Pooling and Un-pooling/up-sampling

Pooling layer in a convolutional autoencoder reduces the dimension of each feature

map while retaining the important information about the feature map. The effects

of pooling layers in convolutional neural networks were studied in ref. [26]. This

project will use the max-pooling method. It is defined by,

x = max
N×N

(xn×nu(n× n)), (3.8)

where xn×n are the values in a pooling region u(n×n) and x are the maximum val-

ues in the pooling region. The feature map created by values from max-pooling has

the same size as the pooling region to prevent overlapping. Ref. [26] mentions that

max-pooling helps to improve the sensitivity of filters. It also introduces sparsity

by removing non-maximum values in the overlapping sub-regions, which makes the

algorithm more broadly applicable. It is also mentioned that max-pooling defeats

the obvious need of weights regularisation, which is often done using L1 and L2

regularisers6.

Interpolation is a process for increasing the dimension of small image by increasing

the number of pixels to a bigger image using features from the smaller image. Un-

pooling and ups-ampling are commonly used methods in CAE. Ref. [42] states that

in the convolutional neural networks, the max pooling operation is non-invertible,

obtain an approximate inverse by recording the locations of the maxima within

each pooling region in a set of switch variables. In the deconvnet, the un-pooling

operation uses these switches to place the reconstructions from the layer above into

appropriate locations, preserving the structure of the stimulus.

Up-sampling mentioned in ref. [43] is a method used to increase the dimension of

an image by sampling from a smaller image. There are three types of up-sampling

methods, namely nearest neighbour, bi-linear and bi-cubic. Only the first method

will be used in this project. Nearest neighbour determines the values in the enlarged

image by the nearest cell from the input (smaller) image. This means that the

influence of any given pixel is limited to the nearest pixel.

6Defined in section 3.2.8

19

3.2. ANOMALY DETECTION WITH CONVOLUTIONAL AUTOENCODER20

3.2.4 Softmax activation function

For multi-class output at the final layer (non-binary classification), we use the soft-

max activation function mentioned in ref. [27, 28]. It is used when the output of

the neural network can be understood as a probability distribution. It is defined

by,

σ(xi) =
exi∑K
k=1 e

x
k

, (3.9)

where xi is the input variable. It is a continuous and differentiable function which

allows for gradient optimisation with respect to the loss function.

3.2.5 Cost function

The cost function (also called loss function when working with a single data point)

is a method used to quantify the performance of an algorithm in terms of its ability

to estimate the relationship between the input image and the reconstructed im-

age. This is often expressed as the distance or difference between the actual value

and predicted value. The cost function can be reduced with the help of gradient

optimisers by updating the weights or filter values in a way that would give the

lowest cost function, in turn increasing the performance of the algorithm. The cost

function for convolutional autoencoder is the mean squared error mathematically

defined as

E =
1

n

n∑
i=1

(xi − x̂i)2 (3.10)

Where x is the input image and x̂ is the output image. It calculates the differ-

ence, the square root eliminates any negative values and gives more weight to large

difference. The means is an average of a set of errors.

3.2.6 Stochastic gradient optimiser (Adam)

Gradient descent is an optimising method used in machine learning to find values

of weights for a neural network which give the minimum cost function. Gradient

descents conduct an iterative search to find weights that give the local minimum.

This method is not ideal for machine learning as it utilises the whole dataset to

compute an iteration which is computationally expensive and time consuming for

training on big data. Stochastic gradient descent was adapted as a solution for a

faster, less time consuming optimiser.

20

3.2. ANOMALY DETECTION WITH CONVOLUTIONAL AUTOENCODER21

Instead of using the whole dataset, stochastic gradient optimiser uses a batch7 of the

dataset to optimise per iteration (normally referred to as epoch in machine learn-

ing context). This gives a noisy looking path to optimisation (which is common

in most stochastic processes) since a different sample of the training data is used

to find the local minimum at each iteration. Stochastic optimisers also required a

larger number of iterations to converge to a local minimum because of all the noises

introduced by the small batch size.

The optimiser used in this project is another more advanced form of stochastic

gradient optimisers which is called the adaptive moment optimiser (or Adam for

short). It was introduced in ref. [29]. Adam computes individual learning rates

for different parameters from the estimate of the first moment (mean) and second

moment (uncentered variance) of the gradient. It uses the exponential moving

average of gradients to scale the learning rate. The Adam8 stochastic optimiser can

be expressed mathematically, as shown in ref. [44], by

wt+1 = wt −
α√
V̂t + ε

Ŝt, (3.11)

where

Ŝt =
St

1− βt
1

, (3.12)

V̂t =
Vt

1− βt
2

(3.13)

are the bias corrected estimate for first and second moment, and

St = β1St−1 + (1− β1)
∂E
∂wt

, (3.14)

Vt = β2Vt−1 + (1− β2)
[
∂E
∂wt

]2
, (3.15)

where S0 = 0 and V0 = 0. The recommended default values for unvarying parame-

ters as mentioned in ref. [29] are

• 0.001 for α,

• 0.9 for β1,

7This is a number of samples from the dataset that is used for calculating gradient for each
iteration. The dataset is well shuffled before the sample is extracted, and sampling is done ran-
domly.

8https://towardsdatascience.com/10-gradient-descent-optimisation-algorithms-86989510b5e9

21

https://towardsdatascience.com/10-gradient-descent-optimisation-algorithms-86989510b5e9

3.2. ANOMALY DETECTION WITH CONVOLUTIONAL AUTOENCODER22

• 0.999 for β2,

• ×10−8 for ε,

where β1 and β2 are used for decaying the running average and the running over

of the square of gradient (they help correct the bias). α is the learning rate and ε

is used to prevent division of zero. ∂
∂wt
E(w, b;x, x̂) is the partial differentiation of

the loss function with respect to a certain weight parameter. This reason, among

others favourable, make the use of Adam a standard optimiser because of high

computational efficiency, low memory requirement and little hyper-parameter tun-

ing required.

3.2.7 Weight initialisation

Weight initialisation is a crucial factor for the development of any good perform-

ing neural network. Bad weight initialisation practice may lead to one of the two

common problems caused by bad initial weights; which are the vanishing gradi-

ent problem and the exploding gradient problem, as mentioned in ref. [30]. The

vanishing gradient problem happens when gradient gets smaller as the algorithm

progresses down to the lower layers. This effect leaves the lower layer weights

unchanged, which leads to the algorithm never learning to converge to the local

minimum. The exploding gradient problem happens when the gradient gets large,

which results in huge weight updates and the algorithm diverging away from the

local minimum.

A solution to these problems was introduced in ref. [31], called the Xavier initiali-

sation. What the authors suggested was to initiate weights by randomly sampling

from a distribution with a mean of zero and ensuring that the variance of the input

must be similar to the variance of the output. Sampling randomly ensures that the

model will learn different functions about the data. This initialisation also requires

the gradient to have equal variants when going in a layer and when going out in

the reverse direction. That means layers are required to have the same size. This

would be hard to achieve for an autoencoder as the algorithm architecture is heavily

reliant on layers with different sizes with a constraint in the middle mandatory.

A solution to this limitation is called He initialisation introduced in ref. [24]. It cal-

culates the range of the distribution depending on the number the previous layer’s

neurons and layer of focus, where the range is given as [−r, r]. The range is math-

ematically obtained by,

22

3.2. ANOMALY DETECTION WITH CONVOLUTIONAL AUTOENCODER23

r =
√

2

√
6

nin + nout

(3.16)

and the variance by,

var =
√

2

√
2

nin + nout

, (3.17)

where nin and nout are input connections and output connections of the layer that

weights are being initiated for, respectfully.

3.2.8 Regularisation

The common problem experienced in neural networks is overfitting. This is where

the algorithm learns the training data well but performs less desirably on test/validation

data. The solution for addressing this obstacle would be getting more data, which

is not always possible. Alternatively regularisation can be used. The three common

regularisation methods are L1/L2 regularisation, early stopping and dropout.

L1/L2 regularisation works by constraining large weights of a neural network by

decaying those certain large weights that lead to overfitting. Early stopping works

by stopping training of a neural network as soon as validation error reaches the

minimum and starts diverging. Also, the model can be trained for all iterations

and save the model that gives the minimum validation error during training.

Dropout as mentioned in refs. [27, 33] works by randomly dropping nodes and their

entire connection in a neural network during training. This action prevents the

network from being overly co-adapted to a certain set of data. The probability of

a node being removed is set randomly but the threshold at which a node is kept or

not is set manually. It was found in ref. [33] that dropout regularisation improved

the performance of a neural network in a variety of application domains. It also

gave better performance while being less computationally expensive compared to

L1/L2 regularisation.

3.2.9 Hyperparameter tuning

Hyperparameters are the parameters that define the architecture of a machine learn-

ing algorithm. Hyperparameters are configured in the building of an algorithm and

cannot be learned from training on data. A good selection of hyperparameters

can make an algorithm perform efficiently and achieve maximum performance for a

23

3.2. ANOMALY DETECTION WITH CONVOLUTIONAL AUTOENCODER24

given dataset and minimising the validation error as much as possible, i.e ensuring

that the model does not overfit. Examples of hyperparameters in this study would

be learning rate, number of epochs, number of filters, filter kernel size and the num-

ber of neurons at the bottleneck of the autoencoder, to name a few.

Hyperparameter tuning can be done manually and automatically as mentioned in

ref. [27]. Manual hyperparameter tuning requires a thorough understanding of the

machine learning algorithm used, the problem being addressed, the data being used

and the computational resources the researcher will be using. Automatic hyper-

parameter tuning is used in this study, with the focus being on the grid search

optimiser and the random search optimiser. The grid search optimiser performs

a brute force search for the best hyperparameters from a given small finite set of

variables. This method tends to be computationally expensive as training has to

be done for every combination of hyperparameters.

Random search optimisation is more applicable when dealing with large datasets

compared to the optimiser mentioned earlier. It is able to explore a larger set of hy-

perparameters by taking the marginal distribution of hyperparameters, then sample

from this distribution. A number of distributions like Gaussian or log-normal dis-

tributions can be used. An in-depth study of the comparison between grid search

and random search optimisers was done in ref. [32], and showed how well random

search performs over grid search. The authors concluded that the random search

optimiser is computationally less expensive, it is much faster and finds better hy-

perparameter values since it explores a larger set. The disadvantage of both these

optimisers is that they are not adaptive, which means that the previous outcome

during the search does not affect the next.

3.2.10 Early stopping

The goal in deep learning is to avoid underfitting (model parameters are not trained

well enough to give a satisfactory performance) by training the model long enough

to give a desirable performance but not long enough that it overfits (learns statis-

tical noise in the training data) on the training dataset making, it perform badly

on test dataset. A solution would be to train on the dataset until the model’s er-

ror measure with respect to an independent dataset (often called validation data)

begins to degrade.

24

3.2. ANOMALY DETECTION WITH CONVOLUTIONAL AUTOENCODER25

Early stopping is a common and more effective method to find this compromise.

It stops the model from training when overfitting starts to be evident, keeping the

generality of the model. There are three components to consider with early stop-

ping. These are monitoring the model performance, a trigger to stop training and

a choice of the model to use.

For this project, performance will be monitored using the loss function of both

training and validation loss. A trigger method has to be selected carefully as a

stochastic optimiser is used. This means that if the model performance is not

smoothly improving a trigger has to account for this or the model will underfit.

The best option as mention in ref. [45] is to us a delay or patience approach. This

means that a model will keep training for a certain number of epochs and terminate

if there has not been an improvement in all of them. For model choice ref. [27]

suggests the best procedure would be to save the best model of a certain epoch and

keep updating until the trigger is triggered. The model with parameters that gave

the best performance will be chosen.

25

Chapter 4

Results and Discussions

This chapter will give details on the data used for this study along with the results

obtained and the discussion. Most of the algorithm hyperparameters have been

described in the previous chapters and will be referenced from there. The section

is divided into two sections:

• The first part discusses testing robustness of the pre-processing method and

validating that the CAE gives similar reconstruction error for events in low

and high m/pT . This will show that CAE reconstruction error is indeed de-

correlated of mass. This step is crucial before full training the algorithm.

A detailed study of robustness is done in the ref. [11] where they train on

different low m/pT phase space and test on a number of high m/pT phase

space.

• The second step is to benchmark the reconstruction error of the CAE, aiming

to get a much better (in this case a reconstruction error which is the same or

lower that obtained using mass correlated data) compared to results obtained

using the AE in ref. [11]. Hyperparameter tuning will be used to determine

which hyperparameters are important and contribute the most in increasing

the performance of the algorithm with respect to the inputs used.

4.1 Data

The data used for this study were simulated using tools and method discussed in

section 3.1. For background data, 5×106 events were simulated and 2.7×106 passed

the selection process. For signal data, one million events were generated and only

35674 events passed the selection process of leading large radius jets and pT of 350

26

4.1. DATA 27

GeV.

Both signal and background data were de-correlated on mass using the method

mentioned in section 3.1.1. The parameters used for the pre-processing methods

are m0 = 0.5 GeV, e0 = 1 GeV and a jet reconstruction radius of R = 1. The

jet-images formed as in ref. [46] are viewed as η (rapidity) vs φ (azimuthal angles)

plane with calorimeter entries as a sparsely filled image, where the filled pixels

correspond to the calorimeter cells with non-zero energy deposits. The jet-images

are all normalised where the pixel values range from 0 to 1. Figure 4.1 and 4.2

show an average of 30000 40 × 40 pixel images of both the background and signal

respectively.

Figure 4.1: Average of QCD jet images. Figure 4.2: Average of Top jet images.

The colour bar on the right side of both images shows the intensity of the energy

deposits. Due to computational infrastructure limitations only 4.8× 105 jet-images

were used to train the algorithm for robustness test and 8.9 × 105 backgrounds

events where used to train the algorithm for the benchmarking test. 30000 sig-

nal and background images were used to test the algorithm. The need for a large

dataset is so we reduce the dependency on regularisers and mitigate overfitting as

much as possible since we training the algorithm with one class of data.

27

4.2. ALGORITHM 28

4.2 Algorithm

The structure of CAE used in this project comprises of hyperparameters and meth-

ods discussed in Section 3.2. As this is also a study to determine which parameters

give the best performance, most hyperparameters were not set as constants. The

initial structure of the CAE was taken from that used in ref. [4] and modified and

tuned according to literature, to more improve performance.

The encoder consists of convolutional layers followed by a ReLU or PReLU acti-

vation and a max-pooling layer. The convolutional layer consists of 100-128 filter

kernels, a 2×2 kernel size, and the kernel weights were initialised using He-uniform

initialisation. There is no dimensional reduction at the convolution layer; this task is

left to the max-pooling layer. Three sets of the above-mentioned layers are stacked

together, then a flatten layer follows to structure the data for the fully-connected

neural network layers. A fully-connected layer of 1000 neurons was used before the

bottleneck of 30 neurons.

The decoder, as mentioned in Section 3.2 is symmetrical to the encoder. The only

difference being the use of up-sampling in place of max-pooling, and de-convolution

layer in place of convolution layer. A softmax activation function is used at the

output layer so that it can restore the normalisation of the energy cluster in the

jet-image and remove negativity. Adam optimiser with a learning rate of 0.001 and

decay rate of 1 × 10−5 was used. A generator1 was used to feed the algorithm a

batch of data since the data was too large to be on the RAM (Random Access

Memory). Batch sizes varied from 100 − 512 and 6250 steps per epoch (epoch

indicates a complete pass or training over the whole dataset), where used for 40

epochs. Early stopping with minimisation of validation loss as a metric (this means

the algorithm will stop training when the validation loss stops decreasing), and a

patience of 3 epochs was used (meaning the model stops training if validation loss

doesn’t decrease for three consecutive epochs).

It will be implemented using the high level API (Application Programming Inter-

face) for deep learning called Keras2 with Tensorflow3 backend. Training was done

1Generators sample data from storage instead of loading to whole dataset to RAM. This insures
that only the required data at a time is on the ram and available for processing unit when needed.

2Keras is a high level open source neural network library written in python. For more infor-
mation please visit https://keras.io/

3Tensorflow is a free and open source software library for numerical computation and machine
learning programmng. It was developed by Google Brain team. For more information visit the

28

https://keras.io/

4.3. RESULTS 29

on a Nvidia GTX 1080 ti Graphic Processing Unit (GPU) with 8 GB GPU RAM.

The reason for using Keras with Tensorflow backend was mainly because keras,

as a high level API provides a platform which makes the construction of neural

networks fairly easy without the need of long codes which may results in errors.

Tensorflow is one of the best deep learning API because it is supported by google,

which means it is stable, frequently updated, large support platform, easy to debug

and it gives computational graphs. Tensorflow is also highly optimise for parallel

processing backend software, more especially for GPUs produced by Nvidia which

is the GPU that was available during this project. GPU have large number of cores

specifically designed to process data in tensor form, which allows for better compu-

tation of multiple parallel processes. Additionally, computations in deep learning

need to handle huge amounts of data, this makes a GPU’s memory bandwidth most

suitable.

4.3 Results

As mentioned before, a test of robustness and bench-marking of CAE performance

are conducted.

4.3.1 Robustness

The goal of this section is to show that the loss function of the CAE is unaffected

by difference in jet mass by using a controlled sample of data. QCD jets from

a certain phase space region is used to train the CAE and then test it on QCD

jets from another phase space region. Figures 4.3 and 4.4 show the jet mass and

transverse momentum distribution of the QCD jets from the Monte Carlo simula-

tion, respectively. From these figures, we can see that there is a mass peak at a

certain region, showing how jet mass is clearly a distinguishable feature of particles.

site https://www.tensorflow.org/

29

https://www.tensorflow.org/

4.3. RESULTS 30

Figure 4.3: Distribution of QCD jet mass. Figure 4.4: Distribution of QCD jet pT .

Figure 4.5 shows the m/pT distribution plot of the QCD jets and it can been seen

that there are indeed more data at low m/pT phase space compared to the high

m/pT phase space region.

Figure 4.5: Distribution of m/pT .

For the robustness test, a cut was made at m/pT = 0.1 and all events below that

value were used to train the CAE network while values above were used as a test

sample.

30

4.3. RESULTS 31

Figure 4.6: Loss function (reconstruction error) of CAE trained on low m/pT

Figure 4.6 shows a bin to bin comparison of the test data from m/pT < 0.1 which

is the background and m/pT > 0.1 which is signal in this case. One can clearly

observe that the loss function from different phase space regions. This shows that

the CAE loss function is not affected by the jet mass. Fairly similar results were

obtained from different CAE hyperparameter configurations.

4.3.2 Reconstruction benchmarking

This subsection gives a benchmark of the performance of CAE trained on back-

ground and tested on the signal. As mentioned earlier, the top jet was used as an

anomaly for the CAE. The QCD jets are expected to give a lower CAE loss value

compared to the anomaly which the algorithm was not trained on. The reason is

that QCD jets normally have 1-prong dipole emission structure. Top jets are with

respect to QCD jets more complex as they have a 3-prong structure, which is a re-

sult of the particle decaying into a bottom quark and W boson, which has 2-prongs.

The 3-prong structure is not clearly visible on figure 4.1 but the high density area

is the W boson while the washed out area to the left is the bottom jet.

A Receiver Operating Characteristic (ROC) curve is a plot used to determine the

diagnostic ability of a binary classifying system as the discrimination threshold is

varied. The ROC curve and a bin-to-bin histogram will be used to visualise the

results in order to quantify performance to be able to compare with results from

31

4.3. RESULTS 32

other studies. For ROC curve, the top efficiency which is the fraction of top events

for a certain threshold selection is represented on the x-axis while the y-axis rep-

resents the reciprocal of the background efficiency in log scale. Good ROC curve

performance is when the line plot is close to the top right corner and a clear sepa-

ration between distributions shows good performance on the histogram.

Figure 4.7 gives the reconstruction error distribution for signal and background

from CAE.

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Reconstruction error

0

500

1000

1500

2000

2500

3000

3500

4000

Ev
en

ts

Reconstruction error of background only trained convolutional autoencoder
Background
Signal

Figure 4.7: Reconstruction error of signal and background by CAE

Contrary to previous studies, one can clearly see that CAE performs very poorly.

There is no clear separation between the distributions. One can observe a few

background bins peaking more to the left and a few signal bins more to the right.

Either way, these are unsatisfactory results because the model has to be trained

unsupervised on ATLAS data which as mentioned, is not labelled.

Figure 4.8 visualises the ROC curve of reconstruction error values of CAE. By

observing this line plot, one can see that there is no discrimination of signal distri-

bution over background distribution. The area under the curve value is 4.878828,

which is another indication of the poor performance.

32

4.4. DISCUSSION 33

0.0 0.2 0.4 0.6 0.8 1.0
εTop

100

101

102

103

104

1/
ε Q

CD

Roc curve
CAE Loss Function. AUC 4.878828

Figure 4.8: ROC curve of CAE

The CAE performance did not change much even after months of hyperparameter

tuning. The reasons for the poor performance will be discussed in the following

section along with results to support the claim.

4.4 Discussion

As stated before, the CAE was expected to give better performance over fully-

connected neural networks or most other dimensional reduction method for image

data. Surprisingly, this was not the case, as shown in results from the previous

subsection. The performance was poor in comparison to results obtained in ref.

[11]. This poor performance can be associated with two main factors, which are:

• The data, and how the pre-processing methods de-correlate the jets of jets

mass was a major factor. This is supported by ref. [10] which mentions that jet

33

4.4. DISCUSSION 34

mass is a significant aspect used for distinguishing jets and tagging particles.

On top of this, jet image data are very sparse.

• The second factor would be how a convolutional neural network operates.

As mentioned in subsection 3.1.1, the de-correlation method works by re-scaling the

jet by setting the energy of all jet constituents to 1 GeV. Jet mass is calculated using

energies of the constituent particles along with opening angles of all constituents4.

By re-scaling the jet constituents and setting the energy to a constant, the jet

images lose an important discriminating factor which, is jet mass correlation. As

shown in ref. [4], jet mass correlation affects the performance of the CAE greatly,

where a higher jet mass results in a higher reconstruction error. Since we eliminated

this correlation, CAE performance has significantly decreased. Another problem is

caused by small dynamic range of pixel values for both signal and background image

data. Figures 4.1 and 4.2 show a mostly uniform purple colour for the most part of

both images. This is problematic when used to train convolutional autoencoders, as

it becomes difficult for the algorithm to detect the difference in the structure of jets.

Also, as stated earlier, convolutional layers perform a convolution operation over an

input image using a certain number of kernels or filters to learn the best weight to

best express features in the input data. After that, the max-pooling layer is used

to reduce the dimensionality of an image, as mentioned in subsection 3.2.3. These

operations make convolutional networks superior in image recognition are rendered

useless by the small dynamic range in pixel values. Because of the initialisation

method used for kernels, the values are not so deviated from each other, meaning

that most of the filters identify similar features from the image in the convolution

operation.

Max-pooling is also rendered ineffective by the similarity of pixel values. Even

though top and QCD jets have different structures, max-pooling is unable to iden-

tify this feature because it would not matter whether there is 1 or 3 pixels for a given

kernel; the same value will still be passed to the next layer and so on. Up-sampling

and de-convolutional layer on the decoder part are also affected in the same manner.

The reason suggested above can be proved if a fully-connected autoencoder is

trained, validated and tested on the same data, but giving better reconstruction

4The momentum of particles is also used and obtained from curvature observed in the tracking
chamber.

34

4.4. DISCUSSION 35

performance. Results from a crude hyperparameter un-optimised fully connected

AE give better performance, as shown in Figure 4.9. One can see the QCD jets

were peaked to the left then their distribution falls rapidly while top jets are more

to the right of the distribution. This of course did not lead to better results than

those mentioned in previous literature but was used to support the reasoning stated

above.

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Reconstruction error

0

500

1000

1500

2000

2500

3000

Ev
en

ts

Reconstruction error of background only trained autoencoder
Background
Signal

Figure 4.9: Reconstruction error of signal and background by AE.

The ROC curve in figure 4.10 shows that fully connected AE does give better per-

formance compared to CAE. The area under the curve for AE is more than twice

that of CAE.

A couple of hyperparameters were observed to improve CAE performance when

used. For example batch size set at 128 inputs seemed to give a faster convergence

to the local minimum. The dropout decreased the performance of the network and

is not recommended for fairly shallow or medium architectures. PReLU gave better

results during training compared to the ReLU activation function but increased the

training time. This was because it accommodated negative values which reduced

35

4.4. DISCUSSION 36

the effects of vanishing gradient observed when training with ReLU. The vanishing

gradient happens because the pixel values used to train are very small numbers and

can lead to dying neurons in some cases when using ReLU. He initialisation was

used as a standard after giving constant decrease in loss function without being

stuck at a local minimum.

0.0 0.2 0.4 0.6 0.8 1.0
εTop

100

101

102

103

104

1/
ε Q

CD

Roc curve
CAE Loss Function. AUC 4.878828
AE Loss Function. AUC 11.228841

Figure 4.10: ROC curve of AE and CAE.

The following chapter gives a conclusion for the project. It also discusses limitations

experienced and recommendations that can be explored in future studies.

36

Chapter 5

Conclusion and Recommendations

5.1 Conclusion

This project explored the use of convolutional autoencoder as an anti-QCD tagger.

The tagger was trained on low m/pT region where data is abundant and tested

on high m/pT where data is scarce. Simulated mass de-correlated jet image data

pre-processed with the method introduced in ref. [11] were used. Light quarks and

gluon jets were used to train the algorithm while the top jets were used as anomalies

to test the CAE. Mass de-correlation allows for searching deviations from QCD jets

where training data is minimal and the unsupervised learning approach means the

tagger can be implemented directly on data. The CAE reconstruction error (loss

function) was used as a metric to indicate anomalous top jets from QCD back-

ground jets. QCD jets were expected to give lower reconstruction error while top

jets give a higher value.

The results obtained from the study were not what was expected as seen in the

previous section. The CAE performance was affected by the small dynamic range

in pixel values for both QCD and top jets images which made the convolution and

max-pooling/up-sampling operation less effective. This reason for poor performance

can be supported by results from fully-connected autoencoder, which performed

better with a crude un-optimised architecture. There were other limitations that

affected the performance of the algorithm. These are discussed in the next section.

5.2 Limitations

The major limiting factor was computational power. Access to GPU was limited to

one cluster node, which had a time limit of 120 hours. This limited the ability to run

37

5.3. RECOMMENDATIONS 38

full hyperparameter tuning optimisation as one run would normally take 100 hours.

Another problem was that dropout (mentioned in subsection 3.2.8) significantly

reduced the performance of the algorithm and was not idea in reducing overfitting.

This meant that a large dataset was needed to be used so the model doesn’t fit

which made the training time more than the allocated time per cluster node in

result stopping training before the algorithm converges. Up-sampling is not the

best interpolation method as it pixilated the whole image while the input image was

sparse. Interpolation method, which pairs well with max-pooling called unpooling,

was not available on the Keras deep learning packages used in this project. Building

a package efficiently would have taken more time and extended beyond the scope

of this project.

5.3 Recommendations

There are a number of methods that can be used to improve the design of a robust

anti-QCD tagger. The first recommendation would be the use of coloured jet im-

ages as done in ref. [48]. Coloured in this context means additional information to

the jet image instead of conventional energy deposits grey scale jet images. Colour

represents transverse momentum of neutral particles, transverse momentum from

tracking chamber and the number of tracks per pixel. The use of colour jet images

improved performance in other studies and should work for this case.

The use of detector-level simulated data is recommended in future studies as it

simulates a particle’s passage and interactions through different layers of the AT-

LAS detector. Detector simulations include pile-ups which are caused by additional

proton-proton collision of other protons from the bunch, and underlying events,

which are caused by other parton interacting in proton-proton collision either than

the main interacting partons. These often affect the performance of the tagging

algorithm and should be tested.

Another method to explore would be using Lund jet planes mentioned in ref. [49]

instead of conventional jet images. Lund plane serves as a phase space within jets

mapped to a triangle in a two dimensional plane that shows the logarithmic trans-

verse momentum and angels of any given emission with respect to its emitter. A

primary Lund plane only contains position of emissions as different colours should

be used.

38

5.3. RECOMMENDATIONS 39

The machine learning section of the study has multiple features that can be explored

given one has an advanced GPU at their disposal to train and perform hyperpa-

rameter optimisation. Un-pooling can be used instead of up-sampling as it stores

the position of results from max-pooling, restoring them to the exact position in the

decoder part of the autoencoder. Hyperparameters like larger batch size, learning

rate and different gradient optimisers can be explored at a wider range. Advanced

CNN architectures like AlexNet in ref. [50], Fast R-CNN in ref. [51], ResNet in ref.

[52] and GoogLeNet in ref. [53] can be explored and converted into autoencoders

(this means changing the architecture of a classification deep learning algorithm

to a unsupervised algorithm resembling the structure of an autoencoder) to see if

they may result in better output reconstruction of the input. Convolutional long

short-term memory recurrent neural network as mentioned in refs. [54, 55] can also

be explored since it has shown promising results when trained and implemented on

Lund jet plane inputs.

39

Appendix

More ROC curve results

0.0 0.2 0.4 0.6 0.8 1.0
εTop

100

101

102

103

104

1/
ε Q

CD

Roc curve
CAE Loss Function. AUC 4.878828
AE Loss Function. AUC 11.228841
AE Loss Function with dropout. AUC 6.828185

Figure 5.1: Results showing how poorly algorithm with dropout perform.

40

Bibliography

[1] Atlas Collaboration. Performance of top-quark and W-boson tagging with

ATLAS in Run 2 of the LHC. arXiv preprint arXiv:1808.07858, 2018.

[2] Muyuan Ke, Chunyi Lin, and Qinghua Huang. Anomaly detection of logo

images in the mobile phone using convolutional autoencoder. In 2017 4th

International Conference on Systems and Informatics (ICSAI), pages 1163–

1168. IEEE, 2017.

[3] Deepak Kar. Experimental Particle Physics. IOP Publishing Limited, 2019.

[4] Marco Farina, Yuichiro Nakai, and David Shih. Searching for new physics with

deep autoencoders. arXiv preprint arXiv:1808.08992, 2018.

[5] ATLAS Collaboration. Identification of boosted, hadronically-decaying W and

Z bosons in
√
s= 13 TeV Monte Carlo Simulations for ATLAS. Technical

report, ATL-PHYS-PUB-2015-033, 2015.

[6] ATLAS collaboration. Boosted hadronic top identification at ATLAS for early
√
s= 13 TeV data. Technical report, ATL-PHYS-PUB-2015-053, 2015.

[7] ATLAS Collaboration. Identification of boosted, hadronically decaying w

bosons and comparisons with atlas data taken at
√
s= 13 TeV. Eur. Phys.

J. C, 76:154, 2016.

[8] Davison E Soper and Michael Spannowsky. Finding physics signals with shower

deconstruction. Physical Review D, 84(7):074002, 2011.

[9] Tilman Plehn, Michael Spannowsky, Michihisa Takeuchi, and Dirk Zerwas.

Stop reconstruction with tagged tops. Journal of High Energy Physics,

2010(10):78, 2010.

[10] ATLAS Collaboration. Performance of mass-decorrelated jet substructure ob-

servables for hadronic two-body decay tagging in ATLAS. Technical report,

Tech. Rep. ATL-PHYS-PUB-2018-014, CERN, Geneva, 2018.

41

BIBLIOGRAPHY 42

[11] Tuhin S Roy and Aravind H Vijay. A robust anomaly finder based on autoen-

coder. arXiv preprint arXiv:1903.02032, 2019.

[12] Theo Heimel, Gregor Kasieczka, Tilman Plehn, and Jennifer Thompson. QCD

or What? SciPost Physics, 6(3):030, 2019.

[13] Torbjörn Sjöstrand, Stefan Ask, Jesper R Christiansen, Richard Corke, Nishita

Desai, Philip Ilten, Stephen Mrenna, Stefan Prestel, Christine O Rasmussen,

and Peter Z Skands. An introduction to PYTHIA 8.2. Computer Physics

Communications, 191:159–177, 2015.

[14] Simone Alioli, Paolo Nason, Carlo Oleari, and Emanuele Re. A general frame-

work for implementing NLO calculations in shower Monte Carlo programs: the

POWHEG BOX. Journal of High Energy Physics, 2010(6):43, 2010.

[15] Johan Alwall, R Frederix, S Frixione, V Hirschi, Fabio Maltoni, Olivier Mat-

telaer, H-S Shao, T Stelzer, P Torrielli, and M Zaro. The automated com-

putation of tree-level and next-to-leading order differential cross sections, and

their matching to parton shower simulations. Journal of High Energy Physics,

2014(7):79, 2014.

[16] Gregor Kasieczka, Tilman Plehn, Michael Russell, and Torben Schell. Deep-

learning top taggers or the end of QCD? Journal of High Energy Physics,

2017(5):6, 2017.

[17] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning

internal representations by error propagation. Technical report, California Univ

San Diego La Jolla Inst for Cognitive Science, 1985.

[18] Yann LeCun, Bernhard Boser, John S Denker, Donnie Henderson, Richard E

Howard, Wayne Hubbard, and Lawrence D Jackel. Backpropagation applied

to handwritten zip code recognition. Neural Computation, 1(4):541–551, 1989.

[19] Jürgen Schmidhuber. Deep learning in neural networks: An overview. Neural

Networks, 61:85–117, 2015.

[20] Zhaomin Chen, Chai Kiat Yeo, Bu Sung Lee, and Chiew Tong Lau.

Autoencoder-based network anomaly detection. In 2018 Wireless Telecom-

munications Symposium (WTS), pages 1–5. IEEE, 2018.

[21] C-C Jay Kuo. Understanding convolutional neural networks with a mathe-

matical model. Journal of Visual Communication and Image Representation,

41:406–413, 2016.

42

BIBLIOGRAPHY 43

[22] Kevin Jarrett, Koray Kavukcuoglu, Yann LeCun, et al. What is the best multi-

stage architecture for object recognition? In 2009 IEEE 12th International

Conference On Computer Vision, pages 2146–2153. IEEE, 2009.

[23] Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted

boltzmann machines. In Proceedings of the 27th International Conference on

Machine Learning (ICML-10), pages 807–814, 2010.

[24] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into

rectifiers: Surpassing human-level performance on Image-Net classification. In

Proceedings of the IEEE International Conference on Computer Vision, pages

1026–1034, 2015.

[25] AL Maas, AY Hannun, and AY Ng. Rectify nonlinearities improve neural

network acoustic model. In ICML 2013 Workshop on Deep Learning for Audio,

Speech, and Language Processing, 2013.

[26] Dominik Scherer, Andreas Müller, and Sven Behnke. Evaluation of pooling op-

erations in convolutional architectures for object recognition. In International

Conference on Artificial Neural Networks, pages 92–101. Springer, 2010.

[27] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. Cam-

bridge Massachusetts, MIT press, 2016.

[28] Christopher M Bishop. Pattern recognition and machine learning. New York,

Springer, 2006.

[29] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimiza-

tion. arXiv preprint arXiv:1412.6980, 2014.

[30] Aurélien Géron. Hands-on machine learning with Scikit-Learn and Tensor-

Flow: concepts, tools, and techniques to build intelligent systems. O’Reilly

Media, Inc., 2017.

[31] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep

feedforward neural networks. In Proceedings of the Thirteenth International

Conference on Artificial Intelligence and Statistics, pages 249–256, 2010.

[32] James Bergstra and Yoshua Bengio. Random search for hyper-parameter op-

timization. Journal of Machine Learning Research, 13(Feb):281–305, 2012.

43

BIBLIOGRAPHY 44

[33] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Rus-

lan Salakhutdinov. Dropout: a simple way to prevent neural networks from

overfitting. The Journal of Machine Learning Research, 15(1):1929–1958, 2014.

[34] Geoffrey E Hinton and Ruslan R Salakhutdinov. Reducing the dimensionality

of data with neural networks. Science, 313(5786):504–507, 2006.

[35] Fu-Jie Huang MarcâAurelio Ranzato, Y-Lan Boureau, and Yann LeCun. Un-

supervised learning of invariant feature hierarchies with applications to object

recognition. In Proc. Computer Vision and Pattern Recognition Conference

(CVPRâ07). IEEE Press, volume 127, 2007.

[36] Jonathan Masci, Ueli Meier, Dan Cireşan, and Jürgen Schmidhuber. Stacked

convolutional auto-encoders for hierarchical feature extraction. In International

Conference on Artificial Neural Networks, pages 52–59. Springer, 2011.

[37] Junbo Zhao, Michael Mathieu, Ross Goroshin, and Yann Lecun. Stacked what-

where auto-encoders. arXiv preprint arXiv:1506.02351, 2015.

[38] Seungyoung Park, Myungjin Kim, and Seokwoo Lee. Anomaly detection for

HTTP using convolutional autoencoders. IEEE Access, 6:70884–70901, 2018.

[39] Manassés Ribeiro, André Eugênio Lazzaretti, and Heitor Silvério Lopes. A

study of deep convolutional auto-encoders for anomaly detection in videos.

Pattern Recognition Letters, 105:13–22, 2018.

[40] Volodymyr Turchenko, Eric Chalmers, and Artur Luczak. A deep convolu-

tional auto-encoder with pooling-unpooling layers in Caffe. arXiv preprint

arXiv:1701.04949, 2017.

[41] Hyeonwoo Noh, Seunghoon Hong, and Bohyung Han. Learning deconvolution

network for semantic segmentation. In Proceedings of the IEEE International

Conference on Computer Vision, pages 1520–1528, 2015.

[42] Matthew D Zeiler and Rob Fergus. Visualizing and understanding convolu-

tional networks. In European Conference on Computer Vision, pages 818–833.

Springer, 2014.

[43] Philippe Thévenaz, Thierry Blu, and Michael Unser. Image interpolation and

resampling. Handbook of Medical Imaging, Processing and Analysis, 1(1):393–

420, 2000.

44

BIBLIOGRAPHY 45

[44] Sebastian Ruder. An overview of gradient descent optimization algorithms.

arXiv preprint arXiv:1609.04747, 2016.

[45] Lutz Prechelt. Early stopping-but when? In Neural Networks: Tricks of the

Trade, pages 55–69. Springer, 1998.

[46] Josh Cogan, Michael Kagan, Emanuel Strauss, and Ariel Schwarztman. Jet-

images: computer vision inspired techniques for jet tagging. Journal of High

Energy Physics, 2015(2):118, 2015.

[47] Sebastian Macaluso and David Shih. Pulling out all the tops with computer

vision and deep learning. Journal of High Energy Physics, 2018(10):121, 2018.

[48] Patrick T Komiske, Eric M Metodiev, and Matthew D Schwartz. Deep learning

in color: towards automated quark/gluon jet discrimination. Journal of High

Energy Physics, 2017(1):110, 2017.

[49] Frédéric A Dreyer, Gavin P Salam, and Grégory Soyez. The lund jet plane.

Journal of High Energy Physics, 2018(12):64, 2018.

[50] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification

with deep convolutional neural networks. In Advances in Neural Information

Processing Systems, pages 1097–1105, 2012.

[51] Ross Girshick. Fast r-cnn. In Proceedings of the IEEE International Conference

on Computer Vision, pages 1440–1448, 2015.

[52] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual

learning for image recognition. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, pages 770–778, 2016.

[53] Jeffrey Dean. Large-scale deep learning for building intelligent computer sys-

tems. 2016.

[54] SHI Xingjian, Zhourong Chen, Hao Wang, Dit-Yan Yeung, Wai-Kin Wong, and

Wang-chun Woo. Convolutional LSTM network: A machine learning approach

for precipitation nowcasting. In Advances in Neural Information Processing

Systems, pages 802–810, 2015.

[55] Kazi Nazmul Haque, Mohammad Abu Yousuf, and Rajib Rana. Image denois-

ing and restoration with CNN-LSTM Encoder Decoder with direct attention.

arXiv preprint arXiv:1801.05141, 2018.

45

