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Abstract

Traditional portfolio management methods can incorporate specific in-
vestor preferences but rely on accurate forecasts of asset returns and co-
variances. Reinforcement learning (RL) methods do not rely on these ex-
plicit forecasts and are better suited for multi-stage decision processes.
To address limitations of the evaluated research, experiments were con-
ducted on three markets in different economies with different overall
trends. By incorporating specific investor preferences into the proposed
RL models’ reward functions, a more comprehensive comparison could
be made to traditional methods in risk-return space. Transaction costs
were also modelled more realistically by including non-linear changes
introduced by market volatility and trading volume. The results of this
study suggest that there can be an advantage to using RL methods com-
pared to traditional convex mean-variance optimisation methods under
certain market conditions. The proposed RL models could significantly
outperform traditional single-period optimisation (SPO) and multi-period
optimisation (MPO) models in upward trending markets, but only up to
specific risk limits. In sideways trending markets, the performance of
SPO and MPO models could be closely matched by the proposed RL
models for the majority of the excess risk range tested. The specific mar-
ket conditions under which these models could outperform each other
highlight the importance of a more comprehensive comparison of Pareto
optimal frontiers in risk-return space. These frontiers give investors a
more granular view of which models might provide better performance
for their specific risk tolerance or return targets.
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Chapter 1

Introduction

This introductory chapter provides the definitions and descriptions of core concepts
necessary to frame and motivate this study. This chapter also includes the problem
statement, research question, scope, and limitations of this study.

1.1 Background

1.1.1 Portfolio Management

The term portfolio management (also called portfolio optimisation or asset allocation)
refers to the process of allocating portions of some total amount of wealth to dif-
ferent assets in an asset universe. Modern portfolio theory and the concept of port-
folio management was first introduced by Harry Markowitz in the 1950s [1], [2].
There are typically more than one time-step considered within an investment pe-
riod where the allocation of assets can be adjusted or rebalanced as more recent in-
formation becomes available. This rebalancing is done in order to keep the portfolio
performance in line with the investor’s preferences in terms of expected returns or
risk [3].

The main reason for an investor to distribute their wealth between a variety of
assets in a portfolio, as opposed to investing only in a single asset, is to mitigate
risk through diversification [1], [2]. Zivot (2017) has proven that the volatility (risk)
of a long-only portfolio of assets is always lower than that of a single asset, given
the assets in the portfolio are not perfectly correlated. Here, a long-only portfolio
means that no assets are borrowed, i.e, there are only positive positions in assets [4].
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The most common assets considered in portfolio management are stocks, for-
eign exchange, cryptocurrencies, or exchange traded funds (ETFs) [5], [6], [7], [8].
In this study, the only assets considered were stocks and cash.

1.1.2 Traditional Methods of Portfolio Management

Harry Markowitz’s framework of mean-variance portfolio optimisation is widely
used in industry and academia. It allows an investor to optimally allocate their
wealth between assets in order to balance the risk-reward trade-off according to
their risk appetite. For example, an investor might decide on a maximum amount
of risk that they are willing to tolerate. Markowitz’s mean-variance method allows
them to choose the optimal weighting of assets in a portfolio to maximise their ex-
pected returns without that level of risk being exceeded. When these optimal port-
folios are computed for a range of different risk values and plotted in risk-return
space, they form a curve called the efficient frontier. This efficient frontier can be
used to select the optimal portfolio with maximum expected returns for a given
risk value [2], [4].

One of the main limitations of Markowitz’s mean-variance method is that it only
considers one time-step into the future [3]. In other words, the allocation of assets
is done in a way that only takes a single portfolio rebalancing period into account.
Ideally, the impact on future decisions should also be taken into account.

Another limitation of traditional mean-variance methods is that they rely on
accurate forecasts of returns and covariances between the assets that make up the
portfolio. Unrealistic assumptions of normally distributed returns are also some-
times made which can lead to large drawdowns (losses) that often cannot be toler-
ated by investors [8].

In 2017, a study by Boyd et al. showed how this single-period optimisation
(SPO) approach can be extended to a multi-period optimisation (MPO) implemen-
tation [9]. Both the SPO and MPO versions of Boyd et al. (2017) are used as tra-
ditional mean-variance benchmark methods in this study. These methods are con-
vex optimisation problems that aim to maximise expected returns in the presence
of transaction costs and risk. These methods are explained in more detail in sec-
tion 2.2.2.
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1.1.3 Reinforcement Learning

Sutton and Barto (2018) [10] gave the following description of reinforcement learn-
ing (RL). It describes both a type of problem and a class of solutions that work well
to solve that problem. It applies to problems and solutions that can be formulated
in terms of an agent that interacts with and receives feedback from its environment.
This interaction is often framed as a Markov decision process (MDP) which has
four essential components. These are sensations in the form of observable states
of the environment, actions that can be executed by the agent, a transition func-
tion that determines the next state based on the action taken in the current state,
and reward signals that guide the agent towards a goal related to an ideal state of
the environment. The agent is never given explicit instructions of which actions
to take but instead learns which actions are best to take in different circumstances
through exploration of its environment. Figure 1.1 shows a visual representation of
this agent-environment interaction.

Environment

Agent

actionrewardstate

FIGURE 1.1: Interaction between agent and environment formulated
as a Markov decision process.

By formulating sequential decision processes in terms of MDPs, future states, ac-
tions, and rewards depend on past ones. Therefore, the MDP formulation captures
the need for a trade-off between immediate and delayed rewards. RL methods are
able to solve these types of problems because the goal of the agent is to maximise
expected future rewards [10].

1.1.4 Reinforcement Learning for Portfolio Management

To emphasise the applicability of RL methods to the portfolio management task,
the relevant MDP components are identified here. The role of the agent is that
of a decision-maker that has to choose the optimal weighting between assets in a
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portfolio (action). The environment in this case is the market, which supplies the
observable states (such as historical prices) and reward signals (such as realised
returns after transaction costs) as feedback.

When transaction costs are considered, the portfolio management problem be-
comes a multi-stage decision-making process where future states and decisions are
impacted by past decisions [11]. In this setting, immediate rewards are not the only
important aspect to consider, but also the possible negative impact of current deci-
sions on the ability to receive rewards in the future. RL methods are particularly
well suited for this type of problem since they aim to maximise the accumulation of
rewards in the long term even if it means acting sub-optimally in the short term [10].
This capacity to make long-term decisions is the main reason for choosing RL meth-
ods as the subject of investigation in the portfolio management task.

1.2 Literature Review

This section contains a summary of the methods and main results of related pre-
vious research on RL methods for portfolio management. This review is given to
highlight the four main limitations identified in previous research. Note that some
portfolio performance measures like returns, volatility, drawdowns, and Sharpe ra-
tio are mentioned in this section. These terms are defined later in section 2.2.1.

1.2.1 Reinforcement Learning Methods for Portfolio Management

Meng and Khushi (2019) conducted a survey of 29 studies on RL used for stock and
forex trading [12]. This survey included studies where many different methods of
RL were used, including on-policy and off-policy methods. Most of the studies
from this survey used historical prices and returns exclusively as the observable
sates. As for the reward signal, most studies either used the Sharpe ratio or returns
based on historical data. One of the major limitations pointed out in this survey,
was that the majority of studies did not include transaction costs [12].

Jiang et al. (2017) conducted a study on using deep RL for portfolio management
on a 12-asset cryptocurrency portfolio [13]. They considered a rebalancing period
of 30 minutes and included transaction costs with a commission rate of 0.25% (pro-
portional to the portfolio weight changes). The states of their models included the
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current portfolio weighting and the open, high, low, and close prices of each 30-
minute trading window for the past 50 windows (one day and one hour). The
actions of their models were continuous portfolio weights between zero and one
(long-only). Reward signals were chosen to be the natural logarithm of the realised
returns (after transaction cost) between rebalancing periods. These rewards were
averaged between all time-steps in an episode before updating the policy. This up-
date method equates to having a discount factor of one. All models in this study
were model-free policy gradient methods, where the policy was approximated by
using three different neural network architectures. These architectures included
a convolutional neural network (CNN), a basic recurrent neural network (RNN),
and a long short-term memory (LSTM) neural network. Even though the task was
framed in an episodic manner, online learning was achieved through a proposed
online stochastic batch learning (OSBL) scheme. This involved selecting a time-
window starting from some starting time in the test set. The starting time was ran-
domly selected from historical values with a geometric distribution so that more
recent events were more likely to be selected. Whenever a new data point became
available, it was added to the training set, making it an online learning method.
Three backtests were conducted between 2016 and 2017 by training the models on
approximately two years of data and testing their performance on approximately
two months of data. The best model was the CNN which produced a Sharpe ratio
of 0.087, a maximum drawdown of 22%, and 400% returns in a 50-day period [13].

Another study, conducted by Filos (2019), looked at RL for portfolio manage-
ment [14]. They used different types of model-free RL methods on a 12-asset port-
folio consisting of cash and stocks from the S&P 500 universe. The states of their
models also included the current portfolio weights and the natural logarithm of re-
alised returns (after transaction costs) for varying time-window sizes. Transaction
costs in the form of broker commission and spreads were considered together as
0.2% of the change in portfolio weights. Similar to the study of Jiang et al. (2017),
the model actions were long-only portfolio weights bounded between zero and one,
and the reward signal was either the logarithm of the realised returns or the Sharpe
ratio. In this study, the models were trained on a data set spanning five years be-
tween 2000 and 2005. Thereafter, testing was done on a data set spanning a 13-year
period from 2005 to 2018. Since the models were configured to use online learn-
ing, they were able to still update their policies during the testing phase. However,
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these policy updates were dependent on the model architecture. Their temporal
difference (TD) method called Deep Soft Recurrent Q-network (DSRQN) was an
adaption of both the Deep Q-network (DQN) of Mnih et al. (2015) [15] and the
deep recurrent Q-network (DRQN) of Hausknecht and Stone (2015) [16], which
were only able to handle discrete action spaces. DSRQN used a combination of
a CNN and RNN to approximate the action-value function and was extended to be
able to handle pseudo-continuous action spaces by introducing a softmax output
layer. Since this was a TD-method, its policy was updated after every time-step.
This DSRQN method was able to produce 256% returns with a Sharpe ratio of 2.4
and a maximum drawdown of 85% over the 13-year test period [14].

Another method used in the study by Filos (2019), was a Monte Carlo policy
gradient method called REINFORCE [14]. It used the same states, actions, and
reward signals as the DSRQN method, but only updated its policy at the end of
each episode by averaging the rewards over the time-steps, using different discount
factors between zero and one. In this method, the policy was approximated directly
using a combination of both a CNN and a RNN, similar to the DSRQN method.
The REINFORCE method was able to produce returns of 325% with a Sharpe ratio
of 3.02 and a maximum drawdown of 63.5% over the 13-year test period [14].

A recent study by Yang et al. (2020) looked at an ensemble of three different
model-free deep reinforcement actor-critic methods for portfolio management [17].
The three methods considered were Proximal Policy Optimisation (PPO), Advan-
tage Actor Critic (A2C), and Deep Deterministic Policy Gradient (DDPG). The port-
folio consisted of the 30 stocks of the Dow Jones Industrial Average (DJIA) index.
The action-space for these models was slightly different to that of the studies men-
tioned before. In this case, actions were integer amounts of shares to buy or sell
for each stock. The state-space of these models was also slightly different, consist-
ing of the latest close prices, the amount of stocks owned, the current balance, and
some technical indicators based on a window of historical stock prices. The tech-
nical indicators included the Moving Average Convergence Divergence (MACD),
Relative Strength Index (RSI), Commodity Channel Index (CCI), and Average Di-
rectional Index (ADX). During the training phase, each model was trained on daily
data of nearly seven years between 2009 and 2015. The last three months of the
data from 2015 was used as a validation set to determine model hyperparameter
values. The testing phase was done in an online fashion on four and a half years of
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data between 2016 and mid-2020. During this period, the Sharpe ratio was recorded
for each model based on a trailing window of three months. The top performing
model was then selected for execution of trades. This way, the active model was dy-
namically selected based on recent performance. This ensemble method was able
to produce 13% annual returns with an annual volatility of 9.7%, an annual Sharpe
ratio of 1.3, and a maximum drawdown of 9.7% over a period of four and a half
years [17].

Skeepers et al. (2021) developed a novel model-free RL model for portfolio man-
agement called Multi-Asset Fuzzy Deep Recurrent Neural Network (MA-FDRNN) [18].
Their implementation used historical prices passed through a fuzzy layer where
each asset was mapped to a fuzzy representation cluster. The output of the fuzzy
layer was then passed to a RNN layer that performed feature learning. Finally, the
output of the RNN layer represented the allocation changes to the assets in the port-
folio. The state space of MA-FDRNN was continuous and included historical stock
prices and the amount of cash in the portfolio. The reward function was set up to be
the portfolio log-returns. The action space was also continuous and consisted of the
changes in the amount of wealth allocated to each asset of the portfolio. Contrary
to the other studies mentioned thus far, MA-FDRNN had three major differences.
Firstly, it did not incorporate any transaction costs. Secondly, it allowed negative
positions in assets that represented short trades. Thirdly, it was tested on five differ-
ent markets that included upward, sideways, and downward trending conditions.
Because of its ability to perform short trades, MA-FDRNN was able to outperform
other RL methods (including DDPG and PPO) in downward and sideways trend-
ing markets. However, it was not able to outperform the other RL models in up-
ward trending markets. The average daily log-returns achieved by MA-FDRNN
was between 5.51% and 7.84% for upward trending markets; 4.91% for the side-
ways trending market; and 0.65% for the downward trending market [18].

1.2.2 Current Limitations

The preceding literature demonstrates that researchers have previously investigated
numerous approaches to portfolio management with RL methods. These previous
studies include different combinations of on-policy and off-policy learning with
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TD methods and Monte Carlo methods for value-function estimation, policy esti-
mation, and actor-critic methods. However, this study identified the following four
limitations in the evaluated research.

Firstly, most of the RL methods were not risk-aware due to the reward signal
being related exclusively to returns (except for those methods that used the Sharpe
ratio as a reward function). The large drawdowns during test periods confirm the
risk-ignorant nature of some of these models. Most of the evaluated research aimed
to outperform the market or traditional methods only in terms of returns. This
maximum return aim does not cater to the needs of different investors with different
risk tolerances and return targets. For example, more risk-averse investors that are
not necessarily aiming for maximising returns irrespective of risk might want to
incorporate some limit to the risk they are willing to assume by investing in these
risky assets.

The second and closely related limitation of the evaluated research was that
they only compared single portfolio outcomes. Apart from only being of interest
to investors with particular risk and return goals, this gives a limited view of the
model’s performance in the risk-return space. In other words, the evaluated studies
produced only a single performance point in the risk-return space instead of an
entire efficient frontier like traditional mean-variance optimisation methods do.

Thirdly, in the aforementioned research, the transaction cost was limited in that
it was a linear function of bid-ask spreads and broker commission. This limitation
neglects the inclusion of a second, non-linear term that changes as a function of
market volatility and trading volume, which is a more realistic characterisation of
transaction costs [9].

Finally, most of the above research only assessed the performance of models on
a single market. Therefore, they were limited in that their results might not apply to
markets in different economies or markets with different characteristics and condi-
tions as far as overall market behaviour is concerned. For example, if experiments
were only conducted on markets with an overall upward trend in value, models
that invested heavily in risky assets would have performed very well. However,
these same models could have performed very poorly in markets with an overall
downward trend in value where investing more in a risk-free asset would yield
better performance.
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1.3 Problem Statement

Many different methods have been used in the past for portfolio management. Tra-
ditional mean-variance optimisation methods are able to incorporate specific in-
vestor preferences and can produce an efficient frontier in risk-returns space. How-
ever, they can under-perform due to their reliance on accurate forecasts of asset
returns and covariances.

Other approaches to portfolio management like RL methods do not rely on ac-
curate forecasts or assumptions on return distributions. Moreover, they are suited
for multi-stage decision processes by considering the implications of their actions
on their ability to produce future rewards.

RL methods have been successfully applied to portfolio management in previ-
ous research. However, these studies were limited in four ways. Firstly, they aimed
at outperforming the market or traditional methods only in terms of returns with-
out taking specific investor preferences into account. Secondly, model performance
was described by single points in risk-return space, not by many points forming
an efficient frontier. Thirdly, transaction costs were modelled in a limited way, ne-
glecting non-linear changes introduced by market volatility and trading volume.
Finally, mostly single markets were used to assess model performance, leading to
limited applicability to other markets and market conditions.

1.4 Research Question

The research question of this study is as follows. To what extent can traditional
mean-variance optimisation methods of portfolio management be out-performed
by using RL methods that take specific investor preferences into account in different
market conditions?

The portfolio management task was framed as a multi-stage decision making
process by incorporating non-linear transaction costs and allowing multiple rebal-
ancing opportunities during a given investment period. Investor preferences were
considered by introducing risk-aversion and trade-aversion parameters to the RL
methods’ reward functions in order to suit the preferences and risk appetite of a
range of different investors. The portfolio management performance of all methods
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in this study was assessed on three markets with different overall market trends
using commonly used metrics such as returns, volatility, and Sharpe ratio.

1.5 Research Aims and Objectives

1.5.1 Research Aims

The main aim of this study was to assess the extent to which traditional mean-
variance optimisation methods of portfolio management can be out-performed by
using RL methods that take specific investor preferences into account in different
market conditions. This was done by addressing the four limitations identified in
previous research so that a more comprehensive comparison could be made be-
tween traditional mean-variance optimisation methods and RL methods in risk-
return space and to assess the extent to which performance is affected by different
market conditions.

1.5.2 Objectives

To answer the research question, the following objectives were considered:

1. Identify three markets where the overall price has an upward, downward,
and sideways trend. For each of these markets, select a set of stocks to be
included in the portfolio.

2. Build the SPO and MPO versions of traditional mean-variance optimisation
models for a baseline comparison.

3. Build the proposed RL models with reward functions that allow for incorpo-
ration of different investor preferences.

4. Build state-of-the-art RL models (PPO, DDPG, and A2C) to benchmark the
performance of the proposed RL models against.

5. Train and backtest (simulate) all models with non-linear transaction costs on
the three different markets which will produce efficient frontiers in risk-return
space.

6. Assess the portfolio management performance of all models in terms of re-
turns, volatility (risk), and Sharpe ratio.
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1.6 Assumptions and Limitations

One limitation of this study is that the portfolio management performance of dif-
ferent methods was assessed by conducting backtests (simulations) only, i.e., no
live-trading was executed. This limitation involves three necessary assumptions as
in the studies by Filos (2019) [14] and Jiang et al. (2017) [13]. These assumptions are
sufficient liquidity, no market impact, and no slippage. These assumptions are all valid
if the volume of the assets traded in the portfolio is high enough [19].

The sufficient liquidity assumption means it is assumed that every stock can be
converted into cash almost instantly with no loss in value. The assumption of no
market impact assumes that when stocks are traded, it does not impact their value.
Finally, the no slippage assumption assumes that trades are executed immediately,
allowing no time for their value to change between the time a trade is requested
and executed [14], [13].

Although the experiments of this study will be repeated on three markets with
different overall price trends, it does not mean that the results will hold for all such
markets with similar trends. In other words, this study contributes a step towards
generality but might not be fully general yet.

1.7 Overview

The rest of this document is structured as follows. Chapter 2 describes the method-
ology that was followed in order to gather evidence used to support answers to the
research question. Chapter 3 contains an exposition of the results obtained as well
as a critical discussion of them. Finally, Chapter 4 concludes with a summary of
this study and proposed future work.
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Chapter 2

Research Methodology

2.1 Research Design

This study made use of experimental and statistical methods to assess the extent to
which traditional mean-variance optimisation methods of portfolio management
can be out-performed using RL methods. The proposed RL models took specific
investor preferences into account and were assessed in different market conditions.
The simulated portfolio management performance of all models was measured us-
ing common metrics such as returns, volatility, and Sharpe ratio.

2.2 Methods

2.2.1 Portfolio Performance Measures

Portfolios are composed of a collection of assets whose prices change over time.
Therefore, the portfolio’s value also changes over time. The changes in returns and
risk exposure can be quantified and depend on the prices of the underlying assets
in the portfolio as well as the weighting assigned to each one. In order to under-
stand and appreciate the methods and results of this study, this section presents an
overview of portfolio performance measures to provide context.

The portfolio performance measures used in this study were returns, volatility,
and Sharpe ratio. These measures are commonly found in literature and are de-
scribed here using notation similar to that of Boyd et al. (2017) [9].

For a portfolio of n assets (stocks) and cash, the price vector at any time-step t
is denoted pt ∈ Rn+1

+ (the subscript indicates non-negative values). From this price
vector, a vector of returns rt ∈ Rn+1 can be constructed. The return of asset i is the
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percentage price change between two successive time-steps:

(rt)i =
(pt)i − (pt−1)i

(pt−1)i
, i = 1, . . . , n + 1 (2.1)

Alternatively, the log-return is also sometimes used and is calculated as follows:

log
(

(pt)i

(pt−1)i

)
= log (1 + (rt)i) , i = 1, . . . , n + 1 (2.2)

At any time-step t, the proportion of the total portfolio assigned to each asset
is captured by the portfolio weight vector wt ∈ Rn+1. It is useful to also define
the change in weight zt ∈ Rn+1 between successive time-steps for each asset i as
follows:

(zt)i = (wt)i − (wt−1)i, i = 1, . . . , n + 1 (2.3)

In this study, as in Boyd et al. (2017) [9], transaction costs were modelled as a
unit-less, non-linear function of bid-ask spread, broker commissions, trading vol-
ume and market volatility. The total transaction cost ϕtrade

t at time t is the sum of
transaction costs resulting from trading n individual assets:

ϕtrade
t =

n

∑
i=1

[
a|zt,i|+ bσt,i

|zt,i|3/2√
Vt,i/vt

+ czt,i

]
(2.4)

where a double subscript is used to indicate time-step and asset (e.g. zt,i = (zt)i).
Here, a ∈ R is used to capture half of the bid-ask spread expressed as a fraction of
asset price. Any broker commission can also be incorporated in a. Here, b ∈ R has
units of inverse-dollars and is used to scale the second term. The recent volatility
(standard deviation of returns) of asset i at time t is captured by σt,i ∈ R in dollars.
Vt,i ∈ R is the volume traded in dollars of asset i at time t, which is scaled by the
total portfolio value vt in order to keep the denominator unit-less. Finally, c ∈ R

can be used to create asymmetry in the transaction cost when buying and selling
do not cost the same.

The realised return Rp
t (after transaction costs) of the entire portfolio of n + 1

assets at time t can then be calculated as follows:

Rp
t = rT

t wt + rT
t zt − ϕtrade

t (2.5)
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When considering some investment period from t = 1, . . . , T, it is common to
calculate the average realised returns Rp for that period as follows:

Rp =
1
T

T

∑
t=1

Rp
t (2.6)

The risk associated with holding a portfolio can be quantified by the standard
deviation of portfolio returns σp. This value is commonly referred to as volatility
and can be calculated using the following equation:

σp =

[
1
T

T

∑
t=1

(
Rp

t − Rp
)2
]1/2

(2.7)

It is often useful to compare the portfolio risk and return to some benchmark.
This benchmark can either be another portfolio or a single asset. The terms excess
return and excess risk are used to refer to the risk and return obtained in excess of a
risk-free asset like cash. The excess return Re

t of a portfolio is defined as:

Re
t = Rp

t − (rt)n+1 (2.8)

where (rt)n+1 refers to the return of the (n + 1)th asset of the portfolio (the risk-free
or cash asset). The excess risk σe can be calculated as the standard deviation of
excess returns.

The Sharpe ratio SR is used to quantify the risk-adjusted excess returns of a
portfolio as follows:

SR =
Re

σe (2.9)

With these portfolio performance metrics established, some traditional methods
of portfolio management can be considered.

2.2.2 Traditional Mean-Variance Optimisation Baselines

As mentioned in the introduction, SPO and MPO extensions of Markowitz’s mean-
variance optimisation, developed by Boyd et al. (2017) [9], were used as baseline
portfolio management methods in this study. These methods are convex optimisa-
tion problems formulated to enable single and multi-period optimisation.
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The SPO version arrives at the optimal portfolio weight vector wt+1 = wt + zt

for the next time-step by solving for zt in the optimisation problem:

max r̂T
t (wt + zt)− γtradeϕ̂trade

t (zt)− γriskψt(wt + zt) (2.10)

s.t. zt ∈ Zt, wt + zt ∈ Wt, 1Tzt = 0

where ψt(wt + zt) describes the risk function which is an estimate of the variance
of portfolio returns. In this study, the constraints Zt ∈ R and Wt ∈ [0, 1] are
set to ensure long-only trades are made. A caret is placed over some variables to
emphasise that they are estimates (since they are not known at time t). Here, γtrade

and γrisk scale the trading and risk aversion respectively and can be changed to
capture the preferences of different investors. As the trading aversion increases,
trading will be discouraged and transaction costs will decrease. The risk aversion
parameter is used to discourage holding portfolios with high volatility. In this study
the quadratic risk function is used and is described as follows:

ψt(wt + zt) = (wt + zt)
TΣ̂t(wt + zt) (2.11)

where Σ̂t ∈ R(n+1)×(n+1) is an estimate of the return covariance matrix of all assets
in the portfolio.

Similarly, the objective of the MPO version is to choose the change in portfolio
vector that maximises expected realised returns while minimising risk and transac-
tion costs. However, the MPO version extends the SPO framework to take multiple
time-steps into account. This MPO constitutes a trading plan for H time-steps into
the future, producing a sequence of portfolio vector changes, zt, zt+1, . . . , zt+H−1 by
solving:

max
t+H−1

∑
τ=t

[
r̂T

τ|t(wτ + zτ)− γtradeϕ̂trade
τ (zτ)

− γriskψτ(wτ + zτ)
]

(2.12)

s.t. zt ∈ Zt, wt + zt ∈ Wt, 1Tzt = 0,

wτ+1 = wτ + zτ, τ = t, . . . , t + H − 1

where r̂τ|t is used to denote the return forecast of rτ made at time t, using only
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information available at time t. In both the SPO and MPO versions, wt is known
since it is the current portfolio weight vector.

Following the method of Boyd et al. (2017), the MPO version used in this study
was a two-period optimisation where H = 2. The same values were also used for
γrisk and γtrade (with some extension on both extreme ends) so that all 504 pairwise
combinations of the following sets were tested to capture a wide range of investor
preferences:

γrisk ∈ {0.1, 0.178, 0.316, 0.562, 1, 2, 3, 6, 10, 18, 32, 56,

100, 178, 316, 562, 1000, 2000, 5000, 10000, 20000}
γtrade ∈ {0.1, 0.5, 1, 2, 3, 4, 5, 5.5, 6, 6.5, 7, 7.5, 8, 9, 10, 11,

12, 15, 20, 30, 45, 60, 100, 200}

As in Boyd et al. (2017), the asset returns covariance matrix Σ̂ was estimated
using a factor model [9]. This involved, firstly, calculating the actual returns covari-
ance matrix of the trailing two-year period Σpast. Secondly, an eigendecomposition
of this covariance matrix of past returns was performed as follows:

Σpast =
n

∑
i=1

λiqiqT
i (2.13)

where the eigenvalues λi were in descending order. Thirdly, these were used to
construct the covariance matrix of factor returns Σ f = diag(λ1, . . . , λ1), the factor
loading matrix F = [q1, . . . , qk], and the idiosyncratic risk matrix:

D =
n

∑
i=k+1

λidiag(qi)diag(qi) (2.14)

Finally, these components were used to construct a factor model to estimate the
asset returns covariance matrix as follows:

Σ̂ = FΣ f FT + D (2.15)

where Σ̂ ∈ R(n+1)×(n+1), F ∈ R(n+1)×k, Σ f ∈ Rk×k, and D ∈ R(n+1)×(n+1). In this
study, k = 15 factors were used. Using this factor model enabled faster simulation
times on the order of O(nk2) as opposed to O(n3) when not using a factor model [9].
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Another model used in this study as a benchmark was the equally weighted model.
This model did not rely on any return forecasts or other estimations of the under-
lying assets in the portfolio but instead applied a single, simple rule to make allo-
cation decisions. The equally weighted model started off fully invested in non-cash
assets, where each asset was assigned an equal weight, i.e., wt = [1/n, 1/n, . . . , 0].
At the end of each day, the equally weighted model rebalanced its holdings to re-
establish this equal weighting.

2.2.3 State-of-the-art RL Models for Comparison

This study used three existing state-of-the-art actor-critic RL models as a base-
line comparison for the proposed RL models. These were Advantage Actor-Critic
(A2C), Proximal Policy Optimisation (PPO), and Deep Deterministic Policy Gradi-
ent (DDPG). These are the same three models implemented in the study by Yang
et al. (2020) [17] in their ensemble model. The only modification made to these
models were to change the linear transaction cost function so that it captures the
non-linear dynamics described in Equation (2.4). This modification was made to
allow for a valid comparison between all the models in this study. Apart from this
modification, all other aspects of the original models remained unchanged. This
replication of the research ensured that these models were as close to their original
forms as possible.

The critic network in A2C approximates what is called an advantage function
in addition to the usual value function. This advantage function enables A2C to
assess both the quality of actions and how good they can be, which leads to a more
robust policy with lower variance. The experiments of Yang et al. (2020) suggest
that A2C performs better in down-trending markets with high volatility compared
to both PPO and DDPG [17].

DDPG combines Q-learning and policy gradient methods and has a policy net-
work that deterministically maps states to actions. DDPG has a replay buffer that
stores the state transitions and their corresponding actions and rewards during
training. Based on batches of these transitions drawn from the replay buffer, the
model parameters are updated [17].

Finally, PPO introduces a clipping term to its loss function that discourages large
policy changes when model parameters are updated, leading to more stable policy
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learning. According to the experimental results of Yang et al. (2020), both DDPG
and PPO perform better in sideways and upward-trending market conditions com-
pared to A2C, with PPO slightly outperforming DDPG [17].

The continuous state space for DDPG, PPO, and A2C included technical indi-
cators containing the historical price, trend, volume information, and the current
portfolio holdings to allow them to account for transaction costs. The action space
was also continuous for all three models, consisting of a normalised vector that
specifies the number of shares to buy or sell for each asset in the portfolio. As in the
original study, the reward function of these models was set to maximise realised
portfolio returns [17]. All hyperparameter values for these models were set to the
default values used in the code library accompanying the original study [20].

2.2.4 Proposed RL Model (FRONTIER)

The proposed RL model was named FRONTIER (reinForcement leaRning pOrtfolio
maNager wiTh InvEstor pReferences) due to its capacity to take different investor
preferences into account and its output creating a Pareto optimal frontier in risk-
return space (explained below). FRONTIER is a Monte Carlo policy gradient method
based on the REINFORCE algorithm [10]. The policy of this model was represented
with a neural network (policy network). Three different policy networks were ex-
amined in this study in order to determine the limitations and advantages of each
one. For all policy networks, the observable state input variables or features were
supplied as an input at the beginning of each time step. Although different interme-
diate layers were used for the different policy networks, they all had an output layer
with a softmax activation function and one neuron for each asset in the portfolio.
This final output layer thus produced the portfolio weight vector wt+1 to be used
in the next time step. Therefore, FRONTIER had a continuous action space in Rn+1

+

(the subscript indicates non-negative values, which implies long-only policies).
The first variation of the policy network, seen in Figure 2.1, was called the log-

returns policy. For this policy network, a window of historical log-returns was
passed as input along with some additional features. The log-returns window
was made up of the daily log-returns for each asset in the portfolio, spanning a
length of L time-steps, calculated using Equation (2.2). A convolutional filter of
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size (n + 1) × τ was then passed over this log-returns window to produce k fea-
ture maps. This convolutional neural network (CNN) block automatically detects
patterns in individual assets and between assets (such as covariance).

Log-returns
Feature maps

Additional features

Flattened dense

[ReLU]

Dense

[ReLU]

Output

[Softmax]

Filter

FIGURE 2.1: The log-returns policy network of the FRONTIER model
with only historical log-returns and additional features as state inputs.
A convolutional filter was passed over the log-returns window to pro-
duce several feature maps. The additional feature vectors gave the
model the capacity to take transaction costs into account. The feature
maps and additional features were flattened and connected with fully-
connected layers to produce the next portfolio weight vector as an out-

put.

In addition to the log-returns, three additional feature vectors were also given
as state inputs to give the model the capacity to take transaction costs into account
(note these features correspond to factors and terms in the transaction cost Equa-
tion (2.4)). These three features were the current portfolio weight vector wt ∈ Rn+1

+ ,
the estimated volume traded for each non-cash asset V̂t ∈ Rn

+, and the estimated
volatility for each non-cash asset σ̂t ∈ Rn

+. Therefore, the state space of FRONTIER
was also continuous.

As seen in the policy network diagrams, the feature maps from the CNN block
were flattened along with the additional three feature vectors to produce the next
fully connected layer consisting of k(L − τ + 1) + 3n + 1 neurons. This layer was
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followed by another fully connected layer consisting of 3(n + 1) neurons. These
fully connected layers had the rectified linear unit (ReLU) activation function and
led to the final fully connected output layer as described earlier.

The hyperparameters of the policy network were selected somewhat arbitrarily
with L = 20 to represent 20 working days or one month and τ = 5 to represent a
single working week. The amount of feature maps produced by the CNN block was
chosen to be k = (n + 1). These and other policy network hyperparameters were
not fine-tuned or optimised further in any way, partially due to time/computation
constraints and partially to avoid over-fitting to any specific markets or asset port-
folios. As part of future work, these hyperparameters can be fine-tuned to deter-
mine the effect they have on overall performance. The values given here can be
considered as a starting point or baseline.

Additional features

Dense

[ReLU]

Dense

[ReLU]

Output

[Softmax]

Return forecasts

FIGURE 2.2: The forecast-only policy network of the FRONTIER model
with only return forecasts and additional features as state inputs. The
forecasts were explicit returns forecasts for all assets in the portfolio
for H steps into the future. The additional feature vectors gave the
model the capacity to take transaction costs into account. The return
forecasts and additional features were flattened and connected with
fully-connected layers to produce the next portfolio weight vector as

an output.

The second policy network version was called the forecast-only policy network
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(see diagram in Figure 2.2). This network had the same inputs as the log-returns
policy network, with the log-returns window replaced by explicit returns fore-
casts of all assets in the portfolio. These forecasts took the form of H vectors of
r̂τ|t ∈ Rn+1, where each vector represented the returns forecast of a separate time-
step. In this study, whenever return forecasts were given as state inputs to the
FRONTIER model, a value of H = 2 was used to ensure a valid comparison to the
MPO could be made (MPO also used H = 2). The forecast-only policy network
was introduced to isolate the part of the policy network that produced forecasts.
This way, the performance of the forecast-only policy could be compared to the log-
returns policy to assess the efficacy of the CNN block in producing implicit returns
forecasts.

The third and final version, called the all-inputs policy network (see diagram in
Figure 2.3), was a combination of the previous two policy networks such that it had
access to all available state inputs. This version was introduced as a final check to
see if any relative performance differences between the log-returns policy and the
forecast-only policy were due to independent factors or if extra performance gains
could be achieved by allowing access to all state input variables.

The FRONTIER model was trained in an episodic fashion where an episode of
fixed length (30 days) was drawn from the training data according to a uniform
distribution. The episode length was arbitrarily selected and can be fine-tuned as
part of future work. The policy network parameters were then updated based on
that episode’s expected discounted future rewards. The discounted future rewards
Gt for each time step t of the episode were calculated as follows [10]:

Gt =
T

∑
k=t+1

γk−t−1Rk (2.16)

where γ = 0.99 is the future reward discount rate and Rt is the immediate reward
given at time t. This immediate reward was chosen to take the same form as the
quantity maximised by the SPO and MPO mean-variance optimisation algorithms
of Boyd et al. (2017) [9] and is given in Equation (2.17). This expression was in-
cluded and given the same form for two main reasons. Firstly, because no other
existing RL methods take investor preferences into account and secondly, so that
a valid comparison of FRONTIER could be made to SPO and MPO models for a
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Log-returns
Feature maps

Additional features

Flattened dense

[ReLU]

Dense

[ReLU]

Output

[Softmax]

Filter

Return forecasts

FIGURE 2.3: The all-inputs policy network of the FRONTIER model
with all state inputs (historical log-returns, explicit return forecasts,
and additional features). A convolutional filter was passed over the
log-returns window to produce several feature maps. Explicit returns
forecasts were also given for all assets in the portfolio for H steps into
the future. The additional feature vectors gave the model the capacity
to take transaction costs into account. The feature maps, explicit return
forecasts, and additional features were flattened and connected with
fully-connected layers to produce the next portfolio weight vector as

an output.

range of investor preferences.

Rt = rT
t wt+1 − γtradeϕtrade

t (wt+1 − wt)− γriskψt(wt+1) (2.17)

Finally, to get the expected discounted future rewards (from which the model
parameters are updated during training), the average discounted future rewards
were taken for each episode.
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2.3 Data

2.3.1 Data Collection

All data used in this study came from Yahoo Finance [21] and Qunadl [22]. Data
downloaded from Yahoo Finance included the daily open, high, low, and close
prices of all assets, including their daily volume traded. Quandl was used to obtain
the returns of what was considered the cash or risk-free asset in all portfolios. The
US Federal three-month treasury bill rate was selected to be the risk-free asset.

The above-mentioned data were obtained for three different markets so that all
models could be tested on different market conditions. The main goal was to se-
lect three markets: one where the overall market trend was upward; one where the
overall trend was downward; and one where the overall trend was stable or side-
ways. A secondary goal was to select markets where these trend conditions were
present for sufficiently long periods so that they could span both training and test-
ing periods. A summary of the three selected markets is given in Table 2.1. The
price change and overall trends of these markets can also be seen in Figure 3.1.

TABLE 2.1: Description of data for each market, including the overall
trend, training period, testing period, and number of assets used.

Market Trend Training Testing Assetsa

Dow 30 Upward 2010-01-01 –
2018-01-01

2018-01-01 –
2020-01-01 30

Nikkei 225 Sideways 2013-05-01 –
2018-01-01

2018-01-01 –
2020-01-01 24

Latin America 40 Downward 2010-03-01 –
2014-12-01

2014-12-01 –
2016-01-01 24

aFinal number of assets selected after filtering and processing.

2.3.2 Data Processing

For consistency and valid comparison, whenever models relied on estimates in this
study, the same method was used in estimating values. This section describes these
estimation methods and other data processing methods used in this study.

Whenever asset return forecasts were made, the method of Boyd et al. (2017) [9]
was followed. This forecasting method entailed perturbing realised future returns
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by adding noise with zero mean to simulate return forecasts. This forecasting
method was employed in an attempt to keep the focus of this study on what is
possible once return forecasts were already obtained. More specifically, the return
forecasts were obtained for all non-cash assets using:

r̂t = α (rt + ϵt) (2.18)

where ϵt ∼ N
(
0, σ2

ϵ

)
was zero-mean normally distributed noise and α was selected

to minimise the mean squared error between the the realised returns rt and the
noisy “forecast” r̂t, which equates to a scaling value of α = σ2

r /(σ2
r + σ2

ϵ ), where σ2
r

is the variance of rt. A noise value of σ2
ϵ = 0.02 was used along with a typical value

of σ2
r = 0.005. This noise addition relates to a standard deviation in the forecast of

10 times that of the returns, which in turn relates to a return forecast accuracy on
the higher end of what is expected in practice [9]. It is important to note that these
simulated forecasts were used only for SPO and MPO and did not affect the implicit
forecasts of FRONTIER from the log-returns state input. This allowed for a realistic
and hard benchmark for FRONTIER to be compared to.

In order to estimate the remaining values used in SPO and MPO for estimating
the transaction cost and risk, the following steps were followed, again using the
same method as Boyd et al. (2017) [9]. Estimates for return volatility σ̂t and volume
traded V̂t were calculated for each asset by taking a trailing 10-day moving average
using the following equations:

V̂t =
1
10

10

∑
τ=1

Vt−τ (2.19)

σ̂t =
1

10

10

∑
τ=1

σt−τ (2.20)

For the additional features used as state inputs to the RL models, the same meth-
ods were used to calculate estimates for volume traded V̂t and returns volatility σ̂t

as in Equation (2.19) and Equation (2.20), respectively. Before these additional state
inputs were passed to the policy network, they were normalised to be on the same
order of magnitude as wt (between 0.0 and 1.0). This normalisation was done for
each asset by dividing all V̂t and σ̂t values by their respective averages over the 30
days preceding the start of the training period specified in Table 2.1.
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In order to calculate the realised transaction costs, the realised volume traded
Vt was used along with the daily asset returns volatility σt. Since the collected data
was on a daily frequency, σt was approximated as in Boyd et al. (2017) [9] using:

σt =
∣∣∣log

(
popen

t

)
− log

(
pclose

t

)∣∣∣ (2.21)

where popen
t and pclose

t are the daily open and close prices of the asset in question,
respectively.

2.4 Analysis

In multi-objective optimisation problems with several conflicting objectives, a set
of viable solutions can be found where none of the solutions are dominated by
others. These non-dominated solutions are all optimal solutions with trade-offs
in at least one objective. Together, these non-dominated solutions form a multi-
dimensional Pareto optimal frontier [23]. In this study, the experimentally derived set
of optimal portfolios was referred to as the Pareto optimal frontier which is similar
to the efficient frontier described by Markowitz [1], [2].

To compare the performance of all models against each other, they were all back-
tested on the testing portion of the data set for each market as specified in Table 2.1.
This test portion of the data set was kept from all models during the training phase
to assess the out-of-sample performance of all models.

The FRONTIER models were trained and tested, along with the SPO and MPO
models for the entire investor preference spectrum spanned by the 504 combina-
tions of risk-aversion γrisk and trade-aversion γtrade parameters. In addition to this,
due to the stochastic nature of the RL model training process, all FRONTIER models
were trained and tested on the same data set 10 times using different seed values
for their pseudo-random number generating processes. This repetition was done
for two reasons. Firstly, to assess the average performance of each model and sec-
ondly, to quantify the variance of the experimental performances obtained.

Each model’s performance was assessed in terms of excess return Re and excess
risk σe for a specific investor preference parameterised by γrisk and γtrade. The ex-
cess risk and return were obtained using Equation (2.8) and Equation (2.9). This
computation was done for all 504 parameter combinations expressing a range of
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investor preferences. Once all these points in risk-return space were obtained, the
non-dominated set was determined by choosing all points for which the maximum
excess return was obtained without increasing excess risk. This non-dominated set
constituted the Pareto optimal frontier, which was a set of optimal portfolios to hold
during the test period.

Since the experiment was repeated 10 times for each FRONTIER model, the cal-
culation of the Pareto frontier was done 10 times as well. The mean Pareto frontier
was then calculated along with a t-test to determine the 95% confidence interval of
this mean Pareto frontier.

2.5 Procedure

The following procedure was followed in order to obtain the results of this study:

1. Compile data set (download, preprocess, split for training and testing) for
each market.

2. Build the SPO and MPO versions of traditional mean-variance optimisation
models for a baseline comparison.

3. Build proposed RL models with reward functions that allow for incorporation
of different investor preferences.

4. Build state-of-the-art RL models (PPO, DDPG, and A2C) to benchmark the
performance of proposed RL models against.

5. Train and backtest (simulate) all models with non-linear transaction costs on
the three different markets to produce Pareto optimal frontiers in risk-return
space.

6. Assess the portfolio management performance of all models in terms of re-
turns, volatility (risk), and Sharpe ratio.

2.6 Software, Libraries and Hardware

All models used in this study, including traditional mean-variance optimisation
models and RL models, were programmed in Python 3. These models were trained
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and tested on a computer with 64 CPU cores and 252GB of RAM using the Ubuntu
21.04 (x86-64) operating system.

The proposed RL (FRONTIER) models were programmed in Python 3.7, using
the Tensorflow 2.4 library [24] for creating the different policy networks.

The SPO and MPO models were created in Python 3.6 and used the cvxpy li-
brary [25] for convex optimisation. These models were implemented using the cvx-
portfolio library developed by Boyd et al. [26]. In particular, an updated version,
modified by Razvan Oprisor, was used [27]. The equally weighted model was also
implemented using this updated cvxportfolio library.

The state-of-the-art RL models (A2C, PPO, and DDPG) were implemented using
the FinRL library developed by Liu et al. [28]. Minor modifications were made to
simulate more realistic non-linear transaction costs. This library was created using
Python 3.6 and used RL algorithms from the Stable-Baselines3 package [29].

2.7 Ethical Considerations

No human or animal participants were used during the course of this study for the
purpose of gathering information. All necessary information was gathered through
literature survey, computer simulation, and quantitative databases of stock/index
price data that was in the public domain. All the collected data were stored on a
password protected computer for the duration of the study. For these reasons, no
ethical risk was posed to any person as a result of this study being conducted.
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Chapter 3

Results and Discussion

To fully appreciate the results obtained by all the models in this study, it is helpful
to consider the overall market trends during the training and testing periods of the
data sets used. Figure 3.1 shows the daily closing price of the market indices from
which the stocks were selected. Note that all prices were normalised and made
dimensionless for easy comparison; this was done through dividing by the initial
price. The shaded grey area on each chart indicates the testing period, whereas the
non-shaded area indicates the training period.

3.1 Market Conditions

The upward trending market (Dow 30) shows a strong upward trend during the
training and testing periods, with a price increase of just over 141% during the
training period and just over 15% during the testing period. The sideways trend-
ing market (Nikkei 225) shows a slight upward trend during the training period
with a price change of just over 58% with a minor increase of under 1% during the
testing period. Finally, the downward trending market (Latin America 40) shows a
strong downward trend with a change of just over 25% during the training period,
continuing downward with a price decrease of just over 43% during the test period.
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FIGURE 3.1: Dimensionless price of all three markets used in this
study. The shaded grey area indicates the test period of the data and
the non-shaded white area indicates the training period of the data.
The price changes are as follows for each period: Dow 30: +141.06%
(train) and +15.33% (test); Nikkei 225: +58.48% (train) and +0.49%

(test); Latin America 40: -25.36% (train) and -43.11% (test).
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3.2 Traditional Mean-Variance Optimisation Methods

Figure 3.2 shows the performance of SPO and MPO on each of the three markets
in isolation. These are the Pareto optimal frontiers obtained by simulating back-
tests over the test period for all 504 pairwise combinations of risk-aversion γrisk

and trade-aversion γtrade. This figure shows, as expected that MPO slightly outper-
forms SPO on average in all three markets. This outperformance is likely due to
the extra time-step taken into account by the MPO model during its multi-period
optimisation. This result is also found in the study of Boyd et al.(2017) on the S&P
500 market.

It is important to note the difference in scale in Figure 3.2(c) of the plot for the
Latin America 40 market. Both SPO and MPO produced only negative excess re-
turns over a very small excess risk range. Upon closer inspection of the portfolio
weight vectors wt these models produced, it is clear that both SPO and MPO almost
exclusively invested in the risk-free asset, only to shift to small positions in riskier
stocks for very short periods as their risk-aversion decreased. This shift explains
the slight variation of excess risk and return that produced these Pareto frontiers.
However, both SPO and MPO behaved differently in the Dow 30 and Nikkei 225
markets. In these two markets, a more gradual portfolio weight change was made,
spanning the whole spectrum from fully invested in the risk-free asset to large po-
sitions in risky stocks as the risk-aversion parameter was lowered. Larger trades
(changes in wt) were also observed as the trade-aversion parameter was reduced.
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FIGURE 3.2: Pareto optimal frontiers in risk-return space of SPO and
MPO models on all three markets produced by parameter sweep of
all 504 pairwise combinations of risk and trade-aversion. MPO out-
performs SPO on average in all three markets. Note: significant scale

difference on (c) Latin America 40.
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3.3 Reinforcement Learning Methods

Figure 3.3 shows the mean Pareto frontiers (along with their 95% confidence inter-
vals) produced by FRONTIER when using different policy network architectures.
For the Dow 30 market, all three policy networks performed very similarly for the
entire excess risk and return ranges. On the Nikkei 225 market, the performance of
all three policy networks was also similar, with the mean frontiers of the log-return
and forecast-only networks slightly outperforming the all-inputs network for the
most part and the log-return network achieving the most excess returns towards
the high-risk end. On the Latin America 40 market, all three policy networks were
also very closely matched with the all-inputs version producing the highest excess
returns towards the low-risk end (see Figure 3.4 for closer inspection on the low-risk
end).

However, considering the overlapping confidence intervals for the vast major-
ity of the frontiers in all three markets, none of these policy networks could sig-
nificantly outperform any of the others consistently. This result suggests that the
all-inputs policy network did not have an added advantage even with all state in-
puts at its disposal. It also suggests that the log-returns policy network implicitly
produced asset return forecasts with the same degree of accuracy as the perturbed
realised return forecasts.

Looking at the state-of-the-art RL models’ performance in Figure 3.3, the same
qualitative performance of the study by Yang et al. (2020) is also found in the Dow
30 market in that PPO and DDPG both outperformed A2C for upward trending
market conditions. In the Nikkei 225 market, these three models performed more
similarly, with PPO and A2C having almost the same performance and DDPG pro-
ducing slightly less excess returns for a similar risk value. These RL methods do
not appear in the Latin America 40 market plot due to their large negative excess
returns that are off the chart area (-28.4% for DDPG; -29.4% for PPO; and -35.5% for
A2C).
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FIGURE 3.3: Pareto optimal frontiers (mean with 95% confidence in-
terval) in risk-return space of FRONTIER models with different policy
networks on all three markets. Frontiers were produced by parame-
ter sweep of all 504 pairwise combinations of risk and trade-aversion.
Also included are the performances of three state-of-the-art RL models
(A2C, PPO, and DDPG) along with the equally weighted (EW) portfo-
lio. Note: A2C, PPO, DDPG, and EW are not shown for (c) Latin Amer-

ica 40 since they produced large negative returns off the chart area.
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Figure 3.3 also shows the performance of FRONTIER relative to A2C, PPO,
and DDPG. In the Dow 30 market, FRONTIER could outperform both A2C and
DDPG, with PPO producing slightly more returns than the upper confidence in-
terval of FRONTIER fitted with a log-returns policy network. For the Nikkei 225
market, there is no significant performance difference between the proposed RL
model equipped with a log-returns policy network and A2C, PPO, or DDPG. This
result suggests that in markets with an upward trend, FRONTIER outperformed or
at least closely matched the performance of state-of-the-art RL models seeking high
returns. This result also suggests that in sideways trending markets, FRONTIER
(with a log-returns policy network) matched the performance of state-of-the-art RL
models seeking high returns.

3.4 Transaction Cost Models

In order to assess the effect that the non-linear transaction cost modification had
on portfolio management performance, the DDPG, PPO, and A2C models from
Yang et al. (2020) [17] were evaluated using the different transaction cost functions.
These models were selected because their original versions used linear transaction
cost functions. For this comparison, all three models were trained and tested on
the Dow 30 market for the same periods seen in Table 2.1. The original non-linear
transaction cost function for these models was equivalent to using Equation 2.4 with
values of a = 0.0005, b = 0, and c = 0. These original versions were compared to
the modified versions (seen in Figure 3.3(a)) with non-linear transaction cost func-
tions (a = 0.0005, b = 1, and c = 0). The excess returns, excess risk, and Sharpe
ratio produced by these models can be seen in Table 3.1. For all three models, the
excess risk achieved was similar when using the two different transaction cost func-
tions (0.5% average difference). However, there was a slight difference in the excess
returns (1.4% on average). PPO managed to produce slightly more excess returns
using the non-linear transaction cost function, whereas DDPG and A2C both pro-
duced higher excess returns with the linear transaction cost function. PPO also
achieved a slightly higher Sharpe ratio with the non-linear transaction cost func-
tion whereas DDPG and A2C produced higher values with the linear transaction
cost function. This result suggests that the linear transaction cost function might
overestimate risk-adjusted returns (Sharpe ratio) for some models like DDPG and
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A2C while slightly underestimating them for other models like PPO. Therefore, us-
ing the nonlinear transaction cost function (Equation 2.4) can give a more realistic
estimation of true performance in terms if transaction costs.

TABLE 3.1: Change in excess returns, excess risk, and Sharpe ratio ob-
tained by DDPG, PPO, and A2C model on the Dow 30 market when

using linear and non-linear transaction cost functions.

Model Transaction
cost

Excess
return (%)

Excess
risk (%)

Sharpe
ratio

DDPG Linear 10.801 14.908 0.724
Non-linear 9.328 14.194 0.657

PPO Linear 11.733 14.996 0.782
Non-linear 12.227 14.395 0.849

A2C Linear 10.819 14.600 0.741
Non-linear 8.516 14.442 0.590

3.5 Reinforcement Learning vs. Traditional Mean-Variance

Optimisation Methods

Thus far, the results address the four limitations identified in the evaluated previous
research looking at portfolio management using RL methods. These results provide
insight into the performance of RL methods when a wide variety of investor pref-
erences are considered in terms of risk and trade-aversion. These results produce
an entire Pareto optimal frontier from which investors can choose their risk and
trade-aversion parameters to suit their particular risk and return objectives. More-
over, these model performances are more realistic compared to the aforementioned
prior research from a transaction cost perspective. This improvement comes from
the inclusion of non-linear changes in the transaction cost introduced by market
volatility and trading volume which was taken into account in addition to the lin-
ear changes related to bid-ask spreads and broker commission. Finally, the limita-
tion of testing on a single market was also addressed by conducting tests on three
markets from different economies with different overall price trends. With these
limits addressed, a more comprehensive comparison of traditional mean-variance
optimisation methods could be made with RL methods and is considered next.
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The performance of FRONTIER models is directly compared to that of the tra-
ditional mean-variance optimisation methods in Figure 3.4 for all three markets. In
the Dow 30 market, FRONTIER could significantly outperform both SPO and MPO
for excess risk values between around 1% and 13%. When taking on excess risk
above around 13%, however, MPO produced significantly higher returns. In the
Nikkei 225 market, all FRONTIER models produced similar excess returns for the
majority of the risk range. In this market, MPO produced significantly higher ex-
cess returns compared to FRONTIER models for excess risk values between around
13% and 16%. A direct comparison could not be made in the Latin America 40 mar-
ket since there was no overlap in the FRONTIER models’ Pareto frontiers and those
of SPO or MPO. It might be possible to extend the Pareto frontiers of the SPO and
MPO models to produce an overlapping area by testing a wider range of risk and
trade-aversion parameters. In the parameter sweep tested, lower risk-aversion pa-
rameters did lead to points further to the right in this risk-return space. However,
they all produced very low (and often negative) returns and were not Pareto opti-
mal. These results suggest that FRONTIER is able to significantly outperform tradi-
tional mean-variance optimisation methods like SPO and MPO in upward trending
markets up to some excess risk limit (in the case of the Dow 30 market, this limit
was around 13%). The results also suggest that in sideways trending markets, the
performance of SPO and MPO can be closely matched by FRONTIER for the ma-
jority of the excess risk range tested. No conclusions could be drawn on the out-
performance of traditional mean-variance optimisation models and FRONTIER in
downward trending markets.

Given that the FRONTIER model with forecast-only policy network had the
same state inputs as SPO and MPO, the main difference in these models were the
temporal aspects of their optimisation algorithms. FRONTIER optimised its reward
signal for expected future rewards over a period of 30 days (one episode length),
where SPO and MPO only optimised their rewards over a period of one or two
days. These results suggest that there is some advantage in using RL methods
for portfolio management because of the way they optimise for expected future
rewards over more extended periods of time (at least under certain market condi-
tions).
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FIGURE 3.4: Direct comparison of Pareto optimal frontiers in risk-
return space of FRONTIER models (mean with 95% confidence inter-
val) and convex mean-variance optimisation models (SPO and MPO).
All frontiers were produced by the same parameter sweep of all 504
pairwise combinations of risk and trade-aversion. Also included is the

equally weighted (EW) portfolio performance for reference.
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3.6 Equally Weighted Method

Figure 3.4 shows that in the Nikkei 225 market, SPO, MPO, and FRONTIER mod-
els produced very similar returns to the equally weighted strategy (abbreviated as
EW in plots) around the 18% excess risk mark. Indeed, after inspecting the port-
folio weight vectors of both SPO and MPO models, they seem to use a strategy
very close to that of the equally weighted model. In the case of FRONTIER models,
this seems to be more of a coincidence as they were still predominantly invested
in one to three risky assets and cash. For the Dow 30 market, all FRONTIER mod-
els and MPO could produce greater returns for a given amount of risk compared
to the equally weighted portfolio. Finally, in the Latin America 40 market, even
though SPO, MPO, and FRONTIER produced mostly negative excess returns, they
did learn to invest almost solely in the risk-free asset for high risk-aversion values.
Therefore, SPO, MPO, and FRONTIER arguably outperform the equally weighted
strategy, which produced extreme negative excess returns (-29.9%). These results
suggest that in upward or downward trending markets, the equally weighted strat-
egy can be outperformed using SPO, MPO, or FRONTIER in terms of returns. It
also suggests that it is not possible to significantly outperform the equally weighted
strategy in a sideways trending market using either traditional mean-variance op-
timisation or the RL models from this study.

3.7 Summary

The results of this study suggest that there can be an advantage to using RL meth-
ods compared to traditional mean-variance optimisation methods for portfolio man-
agement because they optimise for expected future rewards over more extended pe-
riods (at least under certain market conditions). The most benefit could be gained
from the proposed RL methods in upward trending markets as this is where they
had the potential to outperform the equally weighted and traditional mean-variance
optimisation methods. This result especially applies to a particular excess risk range
(in the Dow 30 market, this was between around 1% and 13%). The results also sug-
gest that in sideways trending markets, the performance of SPO and MPO can be
closely matched by the proposed RL models for the majority of the excess risk range
tested.
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Chapter 4

Conclusions and Future Work

4.1 Conclusions

This study compared the portfolio management performance of traditional mean-
variance optimisation models like SPO and MPO to that of RL methods (FRON-
TIER) in risk-return space. One of the main reasons for doing so was the capac-
ity of RL models to optimise their expected rewards over more extended periods
compared to the relative short-sighted optimisations of SPO and MPO. This long-
term optimisation is important when considering the portfolio management prob-
lem since immediate actions can affect an agent’s ability to produce optimal re-
wards in the future due to transaction costs. Before doing so, in order to achieve
the aims and objectives of this study, four limitations of the evaluated previous re-
search on portfolio management with RL methods were addressed. This process
entailed creating the proposed RL models that could take a wide range of investor
preferences into account in terms of trade-aversion and risk-aversion to suit their
particular risk and return objectives. The inclusion of these investor preference
parameters into the proposed RL models resulted in Pareto optimal frontiers in
risk-return space that could be compared to those of traditional mean-variance op-
timisation models (SPO and MPO). Tests were repeated on three different markets
that represented three different economies and overall market trends to assess the
applicability of the results to different market conditions. All models in this study
were created/modified to account for more realistic non-linear changes in transac-
tion cost introduced by market volatility and trading volume in addition to linear
changes related to bid-ask spreads and broker commission.

The results of this study were then compiled in order to answer the research
question. The results suggest that there can be an advantage to using RL methods
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compared to traditional mean-variance optimisation methods for portfolio man-
agement because they optimise for expected future rewards over more extended
periods (at least under certain market conditions). The proposed RL models were
able to significantly outperform traditional mean-variance optimisation methods
like SPO and MPO in upward trending markets up to some excess risk limit (in
the case of the Dow 30 market, this limit was around 13%). The results also sug-
gest that in sideways trending markets, the performance of SPO and MPO can be
closely matched by the proposed RL models for the majority of the excess risk range
tested. In downward trending markets, no conclusions could be drawn on the out-
performance of traditional mean-variance optimisation models and the proposed
RL models. The most benefit can be gained from the proposed RL methods in up-
ward trending markets as this is where they have the potential to outperform EW
and traditional mean-variance optimisation methods. This result especially applies
to a particular excess risk range (in the Dow 30 market, this was between around
1% and 13%). This range might change depending on the market or underlying
assets held in the portfolio.

It is important to note that in hindsight, evaluations can be made on markets
with different trends, enabling the selection of a top-performing model with ease.
However, knowing in advance what trend a market will have is not necessarily pos-
sible. Therefore, for practical applications, the top-performing model can’t neces-
sarily be selected with ease as its ranking might depend on market conditions. The
results of this study suggest that choosing the proposed RL model (FRONTIER)
might be a good option given this uncertainty since it provides potential for out-
performing traditional mean-variance optimisation models if the market trends up-
ward while matching their performance if it happens to trend sideways and heavily
investing in the risk-free asset in downward trending markets.

The caveats and specific market conditions under which these models can out-
perform each other highlight the importance of a more comprehensive comparison
in risk-return space for a range of risk values. These Pareto optimal frontiers give
investors a more granular view of which models might provide better performance
for their specific risk tolerance or return targets. It also gives insight to model de-
velopers to see where the possible limitations of specific methods are so that they
can be improved.
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4.2 Future Work

In future work, the methods of this study can be repeated on different markets with
similar overall price trends to see if the results hold for all markets with these char-
acteristics. Some of the policy network hyperparameters given in this study can
be fine-tuned to assess the effect they have on overall performance. The proposed
RL models can also be extended to allow short positions (negative positions) to
see how this affects the results. It would also be interesting to add more features
like market sentiment to the state input of RL models to see whether this improves
the implicit returns forecasting ability and subsequent portfolio management per-
formance. Perhaps the most interesting development from this study would be to
change the reward function of other/future state-of-the-art RL models to incorpo-
rate specific investor preferences so that they can also be compared more compre-
hensively in risk-return space to traditional mean-variance optimisation methods.
The caveats and specific market conditions under which these models can outper-
form each other highlight the importance of a more comprehensive comparison in
risk-return space for a range of risk values.
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