
A Comparative Study Of The
Wasserstein Distance Generative

Adversarial Network And SMOTE
Density-based Over-sampling

Approaches In Addressing Class
Imbalance

Kwanda Sydwell Ngwenduna

Supervisor:
Mr. Rendani Mbuvha

A research report submitted in partial fulfillment of the requirements for the
degree of Master of Science in the field of e-Science

in the

School of Computer Science and Applied Mathematics

University of the Witwatersrand, Johannesburg

29 May 2020

i

Declaration

I, Kwanda Sydwell Ngwenduna, declare that this research report is my own, un-
aided work. It is being submitted for the degree of Master of Science in the field
of e-Science at the University of the Witwatersrand, Johannesburg. It has not been
submitted for any degree or examination at any other university. Where the discus-
sion has been informed by previously-submitted work, this has been indicated as
such. All material from external sources has been appropriately referenced.

Kwanda Sydwell Ngwenduna

29 May 2020

ii

“. . . in the process of training generative models, we will endow the computer with the un-
derstanding of the world and what is made up of.”

OpenAI

iii

Abstract

In binary classification problems, class imbalance occurs if one of the classes has
overwhelmingly more instances than others. This causes a significant bias in the
accuracy of Machine Learning (ML) classifiers. A pioneering and popular approach
to alleviate class imbalance is the Synthetic Minority Over-sampling TEchnique
(SMOTE). However, SMOTE is less reliant on the true underlying probability dis-
tribution of the minority class data. Probability density estimation approaches have
recently been adopted, but most of these postulate the unknown probability distri-
bution of the minority class, which can be subjective and inappropriate. Generative
Adversarial Networks (GANs) can sample from the true underlying probability
distribution without explicitly specifying its form. GANs have been used to create
realistic samples and outperforms other deep generative models. However, there
has been limited theoretical and empirical reviews comparing generative models
such as GANs and other SMOTE density-based approaches for alleviating class im-
balance, especially for tabular data sets akin to most financial institutions.

This report compares Wasserstein Conditional GAN with gradient penalty
(WCGAN-GP) to density-based SMOTE approaches for synthetic minority sample
generation on a number of imbalanced data sets. A Logistic Regression (LR) model
is trained to detect minority cases on the imbalanced and over-sampled data sets,
compared using Precision, Recall, F1-Score and the Receiver Operating Characteris-
tic (ROC) curve on a testing data set. On average, WCGAN-GP yields better results,
followed by SMOTE, with RWO and PDFOS having the worst performance than
the Baseline. WCGAN-GP shows a statistically superior predictive performance
over SMOTE density estimation techniques on 4 of the 5 data sets used. These re-
sults show a significant potential for GANs as an alternative to SMOTE density
techniques, useful for new sample creation, data augmentation and boosting clas-
sification models.

Keywords: Class imbalance, GAN, PDFOS, RWO, SMOTE, WCGAN-GP.

iv

Acknowledgements

I sincerely express my heart-felt gratitude to Mr. Rendani Mbuvha for his supervi-
sion, invaluable experience and assisting me in this work. It was marvelous to have
such a high calibre individual with vested interest and willingness to see this work
throughout. Mr. Rendani Mbuvha continues to be my inspiration and significantly
motivates me in pursuing research and my interests.

This work would not have been possible without the financial support and guid-
ance of DST-CSIR National e-Science Postgraduate Teaching and Training Platform.
In the same wavelength, I remain forever grateful to God’s bountiful mercies and
to my beloved parents for inspiring and believing in me in all my pursuits and
successes.

v

Contents

Declaration i

Abstract iii

Acknowledgements iv

Contents v

List of Figures x

List of Tables xi

List of Abbreviations xii

List of Symbols xv

1 Introduction 1
1.1 Background . 1
1.2 Research Aims and Objectives . 2
1.3 Research Questions . 3
1.4 Outline . 3

2 Literature Review 4
2.1 Class Imbalance . 4

2.1.1 Definition . 4
2.1.2 Solutions . 4

2.2 Random Over-sampling . 5
2.3 Synthetic Over-sampling . 6

2.3.1 SMOTE . 6
2.3.2 Borderline methods . 6

vi

2.3.3 Clustering methods . 7
2.3.4 Feature extraction . 7
2.3.5 Probability distribution methods 8

2.3.5.1 Random Walk Sampling 8
2.3.5.2 Kernel functions . 8
2.3.5.3 RACOG . 9
2.3.5.4 DEAGO . 9
2.3.5.5 Other Methods . 9

2.3.6 Ensembles . 10
2.4 Hybrid Methods . 10
2.5 Deep Generative Models . 10

2.5.1 Definition . 10
2.5.2 Explicit models . 11

2.5.2.1 FVBNs . 12
2.5.2.2 Non-linear ICA . 12
2.5.2.3 Variational Autoencoders 12
2.5.2.4 Boltzmann Machines 13

2.5.3 Implicit models . 13
2.5.3.1 GANs . 14
2.5.3.2 GMMNs . 17

2.5.4 Summary . 17
2.6 Other Solutions . 18
2.7 Synthesis of Literature Reviews . 18

3 Neural Networks 19
3.1 Definition . 19
3.2 Layers . 19
3.3 Activation Functions . 20
3.4 Gradient Descent . 21

3.4.1 Gradient Descent Variants . 22
3.4.2 Learning Rate Scheme . 22

3.4.2.1 Momentum . 23
3.4.2.2 RMSprop . 23
3.4.2.3 Adam . 24

vii

3.5 Weight Initialisation . 24
3.6 Regularisation . 25

3.6.1 Batch normalisation . 25
3.6.2 Drop-out . 25
3.6.3 Early Stop . 25
3.6.4 L1 and L2 regularisation . 25

3.7 Summary . 26

4 GAN Methodology 27
4.1 Vanilla GAN . 27

4.1.1 The Discriminator . 27
4.1.2 The Generator . 27
4.1.3 GAN Loss . 28
4.1.4 Non-Saturating GAN . 28
4.1.5 Optimal Solution . 30

4.2 Challenges with GANs . 31
4.2.1 Mode collapse . 31
4.2.2 Vanishing gradient . 31

4.3 Improved GAN Training . 31
4.3.1 Conditional GANs . 31
4.3.2 Loss Variants . 32

4.4 WGAN . 32
4.4.1 Wasserstein distance . 32
4.4.2 The Critic . 33

4.5 Improved WGAN Training . 33

5 SMOTE Methodologies 35
5.1 SMOTE . 35
5.2 PDFOS . 35

5.2.1 Kernel Function . 36
5.2.2 Bandwidth . 36
5.2.3 Generating Synthetic samples 37

5.3 RWO Sampling . 37
5.3.1 Central Limit Theorem . 38
5.3.2 Generating Synthetic samples 39

viii

6 Experiments 40
6.1 Data . 40

6.1.1 Data Sets . 40
6.1.1.1 Credit Card Fraud . 40
6.1.1.2 Pima Indians Diabetes 41
6.1.1.3 Glass Identification 41
6.1.1.4 German Credit Scoring 41
6.1.1.5 Breast Cancer Wisconsin 41

6.1.2 Data Pre-processing . 42
6.1.2.1 Continuous Variables 42
6.1.2.2 Categorical Encoding 42

6.1.3 Train-Test Split . 42
6.2 SMOTE Implementations . 43

6.2.1 SMOTE . 43
6.2.2 PDFOS . 43
6.2.3 RWO . 44

6.3 GAN Implementation . 44
6.3.1 Software . 44
6.3.2 The Generator . 44

6.3.2.1 Latent Noise . 44
6.3.2.2 Activation Function 44
6.3.2.3 Layers . 45

6.3.3 The Critic . 45
6.3.4 Labels . 45
6.3.5 Training WGAN-GP . 46
6.3.6 Generating Synthetic samples 47

6.4 Logistic Regression . 48
6.5 Evaluation . 48

6.5.1 Confusion Matrix . 48
6.5.2 Precision-Recall and ROC curve 49

6.6 Statistical Hypothesis Testing . 50
6.6.1 Friedman test . 50
6.6.2 Post-hoc Nemenyi test . 50
6.6.3 Implementation . 50

ix

7 Results and Discussion 51
7.1 Comparisons . 51

7.1.1 Performance between over-sampling techniques 53
7.1.1.1 SMOTE . 53
7.1.1.2 PDFOS . 53
7.1.1.3 RWO . 54
7.1.1.4 WCGAN-GP . 54

7.1.2 AUC . 55
7.1.3 AUPRC . 56

7.2 Statistical Hypothesis Testing . 56
7.3 Discussion . 58

8 Conclusions and Future Research 60
8.1 Conclusions . 60
8.2 Limitations . 61
8.3 Future Research . 61

Bibliography 62

x

List of Figures

2.1 Taxonomy of techniques to alleviate class imbalance 5
2.2 Taxonomy of generative models . 11
2.3 GAN operation . 14
2.4 Taxonomy of GAN variants . 15

3.1 A fully connected MLP example with three layers 19

6.1 Difference between generated and real data critic loss 46
6.2 Comparison of GAN experiments ran on fraud data cases 47

7.1 Average performance across all data sets 51

xi

List of Tables

3.1 Taxonomy of activation functions for ANNs 20
3.2 Gradient descent optimisation variants 23

6.1 Imbalanced data sets used in the experiments 40
6.2 Optimal parameter values for K-NN for each data set 43
6.3 The confusion matrix . 48
6.4 Evaluation metrics for binary classification problems 49
6.5 Interpretation of AUC/AUPRC performance 50

7.1 Evaluation metrics based on a default threshold of 50% 52
7.2 Results for Friedman’s test . 56
7.3 Results for the Post-hoc Nemenyi test 57

xii

List of Abbreviations

Adadelta Adaptive delta
AdaGrad Adaptive gradient
Adam Adaptive Moment estimation
ADASYN ADAptive SYNthetic sampling
AE Autoencoder
AHC Agglomerative Hierarchical Clustering
ANN Artificial Neural Network
AUC Area Under the ROC Curve
AUPRC Area Under the Precision-Recall Curve
BAGAN Balanced Generative Adversarial Network
Bagging Bootstrapped Aggregating
BE Best Estimate
BEGAN Boundary Equilibrium Generative Adversarial Network
BGD Batch Gradient Descent
BN Bayesian Network
cGAN Conditional Generative Adversarial Network
CLT Central Limit Theorem
CV Cross Validation
D Discriminator
DAE Denoising Autoencoder
DEAGO Denoising Autoencoder Generative Over-sampling
DBN Deep Belief Network
DBSCAN Density-Based Spatial Clustering of Applications Noise
DBSMOTE Density-Based SMOTE
DCGAN Deep Convolutional GAN
DRAGAN Deep Regret Analytic GAN
DT Decision Tree
EM Earth mover
FN False Negative
FP False Positive
FVBN Fully Visible Belief Network
G Generator
GD Gradient Descent
GAMO Generative Adversarial Minority Over-sampling
GAN Generative Adversarial Network

xiii

GBM Gradient Boosting Machine
GMMN Generative Moment Matching Network
GP Gradient Penalty
GSN Generative Stochastic Network
ICA Independent Component Analysis
InfoGAN Informative GAN
IPM Integral Probability Metric
IR Imbalanced Ratio
ISOMAP Isometric Mapping
JS Jensen-Shannon
KDE Kernel Density Estimate
K-NN K-Nearest Neighbor
KL Kullback-Leibler
LLE Locally Linear Embedding
LR Logistic Regression
LS-GAN Least-Squares GAN
LSGAN Loss Sensitive GAN
MCC Mattthew’s correlation coefficient
medGAN Medical GAN
MCMC Markov chain Monte Carlo
MISE Mean Integrated Squared Error
ML Machine Learning
MLE Maximum Likelihood Estimator
MLP Multi-Layer Perceptron
MMD Maximum Mean Discrepancy
MM-GAN MiniMax GAN
MWMOTE Majority Weighted Minority Over-sampling Technique
NAdam Nesterov Adaptive moment estimation
NAG Nesterov Adaptive Gradient
NN Nearest Neighbor
NS-GAN Non-Saturating GAN
PAUC Partial Area under the Curve
PReLU Parametric Rectified Linear Unit
PCA Principal Component Analysis
PMCM Pairwise Multiple Comparison of Mean Ranks Package
PDF Probability Density Function
PDFOS Probability Density Function estimation based Over-Sampling
PROGAN Progressive Growing GAN
PW Parzian-window
RACOG Rapidly Converging Gibbs
RBM Restricted Boltzmann Machine
ReLU Rectified Linear Unit

xiv

RGAN Relativistic GAN
RMSprop Root Mean Square propagation
ROC Receiver Operating Characteristic
ROS Random Over-Sampling
RWO Random Walk Over-sampling
SGD Stochastic Gradient Descent
SMOTE Synthetic Minority Over-sampling TEchnique
SNE Stochastic Neighbor Embedding
SOMO Self Organizing Map Over-sampling
tanh Hyperbolic tangent function
TN True Negative
TP True Positive
t-SNE t-distributed Stochastic Neighbor Embedding
VAE Variational Autoencoder
WGAN Wasserstein GAN
WGAN-GP Wasserstein GAN with Gradient Penalty
WCGAN Wasserstein Conditional GAN

xv

List of Symbols

α Random number extracted from the Uniform distribution [0, 1]
ε A small value which avoids division by zero in a GD optimiser
σ Standard deviation of an attribute in the training data
µ Mean of the minority class data
γ Momentum term in a GD optimiser
η Learning rate
λ Regularization parameter
θi Weight of an ANN for feature i
ψ Standard Normal distribution with zero mean and unit variance
c Clipping range done in WGAN
d Number of features in the original data set
D Discriminator with parameter θd
E(x) Energy function for a Boltzmann machine
f A Lipschits function
g(.) Activation function
G Generator with parameter θg
h Smoothing parameter (bandwidth)
hθ(x(i)) Predicted target for sample i
J (θ) Value function to be optimised in the GAN architecture
∂J(θt,i)

∂θt,i
Gradient of J(θ) with respect to θ in an ANN at time step t

k Number of nearest neighbors in SMOTE
K Non-negative differentiable kernel function
m Number of minority class cases

m̂t Bias-corrected estimates of the first moment mt of
∂J(θ)t,i

∂θt,i

N Number of examples in the data set
Nd(0, 1) multivariate d-Gaussian distribution with mean 0 and variance 1
p Probability distribution
pg The generator’s data distribution over x
pdata(x) Unknown PDF generating the feature vector X
pz(z) A prior PDF generating latent representations z
r Random number extracted from the standard Gaussian distribution N(0, 1)
R An upper-triangular matrix of U i.e. Cholesky decomposition
s Synthetic data instance generated using SMOTE

xvi

T Number of synthetic fraud cases to over-sample
U A positive-definite unbiased co-variance matrix of the minority class

v̂t Bias-corrected estimates of the second moment vt of
∂J(θt,i)

∂θt,i

ŵi(j) Minority class instance generated using RWO
Wi An instance representing a minority class for attribute i
x Data point
X Original feature vector
Y Actual target value
z Latent noise i.e. random noise
Z Latent noise space

1

1 Introduction

This chapter introduces the problem of class imbalance, gives the research aims and
objectives of the research, research questions and an outline of the research report.

1.1 Background

Whilst Machine Learning (ML) has gained wide applications, class imbalance re-
mains an ubiquitous problem [72]. In binary classification problems, this occurs
when one of the classes has overwhelmingly more instances than others. ML clas-
sifiers tend to have skewed accuracy towards the majority class when the data is
imbalanced [104]. This results in giving a false sense of performance, thereby under-
estimating the most important class of interest (usually the minority class contain-
ing far fewer instances) [58]. This is problematic as misclassifying a minority class
can result in significant misclassification costs than for the majority case [104].

Techniques exist to alleviate class imbalance and these techniques include re-
sampling, algorithmic-level, cost-sensitive learning, ensembles and generative mod-
elling [41, 49, 58, 72]. Re-sampling techniques modify the training data such that the
distribution of the classes is evenly balanced where the majority or minority class
is either under-sampled or over-sampled. Over-sampling has been the most fre-
quently used technique than under-sampling since under-sampling eliminates im-
portant information in the majority class [72]. A pioneering and popular method to
alleviate class imbalance has been the Synthetic Minority Over-sampling TEchnique
(SMOTE) method [27]. However, SMOTE suffers from over-fitting, over-lapping
classes, noisy examples, is less reliant on the true probability distribution, alters the
original distribution of the minority classes and this may not be desirable [38, 49,
73, 179].

Techniques exist to overcome these issues, however, there is no consensus on
which technique is superior and which one is appropriate in a given domain setting

2

[49]. There have also been few empirical studies which compare, evaluate and syn-
thesize SMOTE and its variants. There have been few approaches which sample ex-
plicitly from the minority class distribution using density-based approaches, with-
out postulating a probability distribution of the minority class. Current density-
based approaches may be subjective as they need to specify in advance the format
and structure of the minority class distribution. Generative models offer a signifi-
cant alternative yet these models have not been thoroughly explored in imbalanced
learning.

Implicit generative models can approximate the true underlying minority class
distribution and we can sample from this probability distribution without know-
ing its form in advance. The idea is to not explicitly model density but instead just
sample to generate new instances. We want to sample from a complex probability
distribution but we cannot do this directly. However, we can sample from some-
thing simple (noise) and then learn a transformation to the training distribution
using Generative Adversarial Network (GAN) [68]. GAN provides an alternative
model-based approach to create synthetic examples in a single pass. A GAN is
a combination of neural networks [149] that generate synthetic data given certain
input data [66].

GANs have been highly successful in anime character creation [88], video gen-
eration [168], images [21, 90, 184], celebrity faces [6], super resolutions [180], text
to images [145], music generation [173], learning joint distributions and imputing
missing data [176]. This technique can generate seemingly natural and new data
samples using the true probability distribution of the data [50]. GANs are notable
better than other generative models due to the quality of samples they generate
[67, 79]. A popular GAN, called the Wasserstein GAN (WGAN) [7] is evaluated
against recent SMOTE density-based approaches, for over-sampling the minority
cases observed in a number of imbalanced data sets.

1.2 Research Aims and Objectives

The aim of this work is to accurately over-sample the minority class of interest in
a number of public available data sets using an implicit generative modelling ap-
proach and then boost a Logistic Regression (LR) model for binary classification
[116]. This work covers the following objectives:

3

• Review over-sampling approaches for alleviating class imbalance and catego-
rize the approaches according to their taxonomies, including generative mod-
elling;

• Train a LR on 5 imbalanced data sets from the Machine Learning Repository;
• Use SMOTE [27], Random Walk Over-sampling (RWO) [179] and PDF estima-

tion based Over-Sampling (PDFOS) [59] to over-sample the minority cases in
each data set; and

• Through the Precision, Recall, F1-Score, Area under the Receiver Operating
Characteristic (ROC) curve (AUC) [71] and Area under the Precision-Recall
curve (AUPRC), compare these techniques against the Conditional WGAN
with gradient penalty (WCGAN-GP) [7, 69, 118].

1.3 Research Questions

This work addresses these research questions:
1. Can we improve the model yielded by LR to detect each minority case and

address class imbalance using SMOTE?
2. Do SMOTE density estimation variants outperform traditional SMOTE in im-

proving LR applied on the various experimental data sets?
3. Can GANs outperform the best performing SMOTE density estimation vari-

ant in improving LR applied on the various data sets?
4. Does the GAN provide a statistically significant performance over SMOTE,

RWO and PDFOS?

1.4 Outline

The rest of the report is organised as follows. Chapter 2 reviews the literature on
class imbalance. Chapter 3 describes how neural networks work, while Chapter 4
describes GANs. Then Chapter 5 describes SMOTE density estimation approaches.
Chapter 6 outlines the experiments conducted. Chapter 7 presents the results and
discusses them, while Chapter 8 gives conclusions, limitations and possible future
work.

4

2 Literature Review

This chapter reviews the literature on imbalance learning, paying attention on syn-
thetic over-sampling solutions and generative models.

2.1 Class Imbalance

2.1.1 Definition

Whilst ML has gained significant prevalence in the past few decades, class imbal-
ance remains a pervasive problem [72]. Class imbalance occurs in a supervised
classification problem when there is an unequal distribution observed in the target
class of interest by a large margin [27, 49, 72]. Class imbalance occurs due to nature
of the data space, data collection costs and limitations and absolute rarity [58, 72].
This research is concerned with binary classification problems as these have been
the most studied.

Imbalanced data sets typically have accuracy bias towards the majority class
when ML classifiers are trained and tested on them [27, 26, 72, 85]. This arises
because ML classifiers are designed to improve the accuracy by reducing the mis-
classification error. Thus they do not necessarily take into account unequal class
distributions. This problem causes a significant and an unexpected performance
behaviour for most classifiers [104], creating the class imbalance issue.

2.1.2 Solutions

A number of solutions shown in Figure 2.1 [41, 48, 58, 72] exist dealing with this
problem, the most common and influential being sampling approaches. Most stud-
ies have shown that ML classifiers show good accuracy for data sets that are bal-
anced compared to those with class imbalance [12, 27]. This chapter reviews sam-
pling approaches in detail, more especially synthetic over-sampling, as this is the

5

most influential and popular solution to alleviate class imbalance.

FIGURE 2.1: Taxonomy of techniques to alleviate class imbalance

Under-Sampling approaches discard useful information, reduce the amount of data
set available for training and increase the variance of a classifier [12, 49, 72, 85, 86].
Essentially, generative modelling is argued to offer a possible different alternative
to synthetic over-sampling techniques based on density estimation.

2.2 Random Over-sampling

Random Over-Sampling (ROS) randomly replicates minority class instances until
the data set is balanced. ROS creates extra information so that no information is
lost from the original data set [27]. However, this does not add any new informa-
tion. This process induces over-fitting, thereby creating longer training and model
complexity [72].

Fernández et al. [49] argue that ROS induces a higher weight and cost to the ma-
jority class instances, causing possible further model bias. Thus it might still be hard
to classify and model correctly the clusters of minority cases using a classifier, es-
pecially in the case of over-lapping or even small disjuncts [12]. An informed over-
sampling approach called synthetic over-sampling, improves ROS and has been the
most studied and popular approach.

6

2.3 Synthetic Over-sampling

Chawla et al. [27] introduce a pioneering method in class imbalance popularised as
SMOTE. This section reviews SMOTE and its variants.

2.3.1 SMOTE

SMOTE creates new minority cases by linearly interpolating between two nearest
neighbour (NN) instances of the minority class [27]. Chawla et al. [27] demon-
strate that SMOTE significantly improves the effectiveness of ML binary classifiers
compared to ROS and Under-Sampling approaches. Over time, this technique has
proved to be popular with researchers, becoming a pioneer in imbalanced learning.

However, SMOTE treats all minority class instances equally and does not con-
sider the entire data space as a whole [41]. Moreover, this technique may also get
confused between minority and majority instances if there are over-laps, creating
noisy examples and further possible model bias. This technique also neglects the
probability density function (PDF) of the overall minority class [38] whilst altering
the original PDF [179]. As a result, SMOTE is notable known to over-generalise and
over-fit.

Over the past decades, SMOTE variants have been proposed to alleviate some
of these problems. These techniques can be divided into those that focus on syn-
thetic data generation using clustering techniques, density estimation, feature ex-
traction, ensembles, filtering approaches, kernel functions and more recently gen-
erative modelling [41, 49, 50, 58, 72]. This research is not able to list all of these
techniques, however we review the most popular ones.

2.3.2 Borderline methods

Usually, the best candidates to be over-sampled are determined before generating
synthetic examples using some heuristic.

Borderline-SMOTE [70] focuses on instances near the decision boundary and
these are deemed more important. ADAptive SYNthetic sampling (ADASYN) [73]
infers which points are more difficult to pick up and attempts to place a higher ratio
of synthetic data close to these points. Safe-level-SMOTE [23] generates a safe level
for each data point before over-sampling synthetic examples.

7

The above three techniques are some of the most popular and common SMOTE
variants and baseline approaches to compare against newer alternatives. However,
these approaches do not sample from the true underlying minority class distribu-
tion when generating new synthetic cases and they may alter the original distri-
bution of the minority class. Density-based approaches account for the true global
structure of the minority classes and may solve some of the issues above [38, 59,
179].

2.3.3 Clustering methods

These approaches adopt clustering in the minority class and over-sample following
the centroids of the clusters, based on the notion that SMOTE does not take the
cluster structure into account [10, 11, 42, 61, 126]. There are a number of these
approaches which have been shown to be better than SMOTE.

Agglomerative Hierarchical Clustering (AHC) [63] was the first attempt adopt-
ing clustering where AHC is used to over-sample minority cases inside clusters.
Other clustering-based approaches are reported such as Majority Weighted Minor-
ity Over-sampling Technique (MWMOTE) [11] and Density-Based SMOTE (DB-
SMOTE) [22], among many others. Clustering techniques also make assumptions
around the number of centroids, density, distribution and connectivity. These add
further assumptions and these models may fail to generate enough clusters espe-
cially with too few minority instances.

2.3.4 Feature extraction

Other algorithms adopt feature extraction before applying over-sampling in the re-
duced dimension. These approaches are based on the preservation of global dis-
tances or neighborhood relations between samples in the higher and lower dimen-
sion, where SMOTE is performed in the reduced space. These algorithms are partic-
ularly useful for inseparable and over-lapping classes and complex data sets [172].
The most common algorithm is t-distributed Stochastic Neighbor Embedding (t-
SNE) [108, 172] although Principal Component Analysis (PCA) [83], Autoencoder
(AE) [15] and Self-Organising Maps Over-sampling (SOMO) [61] also accomplish
this.

8

t-SNE reveals the underlying probability distribution structure at different scales
and preserving the global data structure better than other methods [108, 109, 172].
However, for data sets with too few variables or fewer samples, t-SNE and other
clustering techniques may not be inappropriate [49, 178]. These techniques may
also be time-consuming and complex and often are based on distance or neighbor-
hood assumptions.

2.3.5 Probability distribution methods

There are some methods adopting a density-based approach for the minority class
and then over-sample from the estimated probability distribution. This section re-
views these methods.

2.3.5.1 Random Walk Sampling

Zhang and Li [179] present Random Walk Over-sampling (RWO) which generates
synthetic minority examples by trying to preserve the variance and mean of the
minority class. Zhang and Li [179] compare RWO, SMOTE and ROS and note that
RWO was statistically better. However, RWO assumes the mean and variance of
each attribute, which exists only for continuous variables and thus this technique
may be arbitrary for non-continuous variables, despite its simplicity and ease of
use.

2.3.5.2 Kernel functions

Gao et al. [59] estimate the probability density function (PDF) of the minority class
using the Parzian-window (PW) kernel function, termed PDF estimation based
Over-sampling (PDFOS). PDFOS uses Normal kernel functions to locally approxi-
mate the PDF of the minority class. PDFOS has good theoretical components, en-
abling its practical and good results [35].

However, this approach is notable complex on its mathematical properties and
the Gaussian assumption may not always hold for some data sets. Mathew et al.
[114] consider a similar PDFOS algorithm which incorporate ADASYN, called Ker-
nel ADASYN. This approach focuses on the most important and difficult to classify
points by using a PDFOS around these points.

9

2.3.5.3 RACOG

Das, Krishnan, and Cook [38] generate synthetic minority examples through a Gibbs
sampler using the RApidly COnverging Gibbs algorithm (RACOG). Gibbs sam-
pling obtains samples from a multivariate PDF when sampling is impossible through
Markov chain Monte Carlo (MCMC) [62, 117]. Unlike Monte Carlo sampling meth-
ods that are able to draw independent samples from a PDF, MCMC methods draw
samples where the next sample is highly dependent on the existing sample, called
a Markov Chain [62, 117]. RACOG uses the Gibbs sampler to sample from a spec-
ified PDF. Chow-Liu’s Algorithm [32] approximates the multivariate PDF of the
data through second-order product approximations. Then the Gibbs sampler finds
a stationary PDF for a sequence of sampled observations.

RACOG depends on two important parameters to find this stationary distribu-
tion: burn-in rate and the lag, computed using a convergence diagnostic test called
the Raftery-Lewis test [141]. Thus RACOG has slow convergence and dependence
between previous values, due to the requirement to build a Markov chain for each
minority example.

2.3.5.4 DEAGO

Bellinger, Japkowicz, and Drummond [16] use a Denoising Autoencoder (DAE)
[166, 167] for modeling a joint multivariate PDF of the minority class and then syn-
thetically creating samples from the learned distribution. This algorithm is called
DEnoising Autoencoder-based Generative Oversampling (DEAGO) and it can ap-
proximate the global structure of the minority distribution. Bellinger, Japkowicz,
and Drummond [16] show that DEAGO outperforms SMOTE and SMOTE boost-
ing techniques. However, this was not contrasted with other density estimation
approaches.

2.3.5.5 Other Methods

There are other methods capable for estimating a PDF and sampling from it. Bayesian
Networks (BNs) [9, 56, 150], copulas [162, 134] and generative models [67] may also
be adopted. Copulas can be used to find a multivariate PDF for uncorrelated vari-
ables and then sample from that PDF. However, BNs and copulas are limited by

10

the PDF type, computational issues and strict assumptions, limiting their sample
generation capacity.

Generative models have received a lot of interest in the last few years [67]. Gen-
erative models use training observations px to learn the model pmodel that accurately
mimics the observations produced by the model. Given the vast literature on gen-
erative models, we review them Section 2.5.

2.3.6 Ensembles

Another approach is the use of ensembles where a classifier’s accuracy is increased
by the use of training on different over-sampled data sets or different algorithms
and combining outputs to a single outcome [105]. SMOTE has also been extended
to include boosting and boostrapped aggregating (bagging). These approaches tend
to improve the results of SMOTE. However, they can take a long time to compute
and still do not solve the true data distribution issue.

2.4 Hybrid Methods

Other techniques include combining SMOTE with data cleaning techniques, in-
formed under-sampling techniques [12] or greedy-filtering approaches [4, 87, 143].
These hybrid approaches can also eliminate redundant and noisy instances, thereby
further improve accuracy.

2.5 Deep Generative Models

Generative models have received lots of interests from researchers for creating new
samples. This section covers a taxonomy of these techniques, with a particular focus
on GANs.

2.5.1 Definition

Given a data set with observations X, we assume that X has been generated from
an unknown PDF pdata. A generative model pmodel mimics pdata as close as possible.
If this is achieved, then we can sample from pmodel to generate realistic samples that

11

appear to have been drawn from pdata. We are satisfied if our model can also gen-
erate diverse samples that are suitable different from X. In some cases, the model
can be estimated explicitly and sometimes it can generate samples implicitly. Other
models are capable of doing both. GANs provide no estimate of the model but are
capable of generating new data without knowing it. Goodfellow [66] provides a
taxonomy of common deep generative models show in Figure 2.2, divided into im-
plicit and explicit models. GANs are designed to remedy most of the disadvantages
that come with explicit models and other Markov chain models.

FIGURE 2.2: Taxonomy of generative models

2.5.2 Explicit models

Explicit models specify or approximate a parameterised log-likelihood represen-
tation of the data [68]. Parameters are then estimated and learned from the data
and this requires a maximum likelihood estimation which integrates over the entire
data space and this may be intractable [98]. These approximation techniques may
not always yield the best results as some of them rely on Markov chains which are
time-consuming [68].

Two popular tractable models are fully visible belief networks (FVBNs) [53] and
nonlinear independent component analysis (ICA). Approximate methods improve
on the design of tractable models which can be computational intensive and lim-
ited [68, 110, 146]. Approximate methods use either deterministic i.e. variational

12

inference or stochastic approximations i.e. MCMC approaches. Variational infer-
ence involves the use of Variational Autoencoders (VAEs) [92, 146] to approximate
pmodel(x) using lower bounds.

2.5.2.1 FVBNs

FVBN estimates the PDF of the training data pmodel(x) into a decomposed product
of one-dimensional probability distributions. This model outputs a probability for
each possible value if x is discrete and outputs a network of parameters of a simple
distribution if x is continuous. Using the generated model, sampling is done one
step at a time, conditioned on all previous steps [68].

The problem with these models is their computational complexities as they need
to generate one point at a time. Other problems include poor learning representa-
tions, over-emphasizing details over global data and not closely reflecting the true
generation process [66]. Moreover, these models have been more useful for image
synthesis than structured data sets such as tabular data [131]. GANs are known to
provide new samples in parallel, thus yielding greater speed of generation [66, 98].

2.5.2.2 Non-linear ICA

Non-linear ICA involves defining some continuous non-linear transformations of
data between high dimensions and lower dimensional spaces. The distribution of
the data pmodel is transformed into a distribution of a latent space z defined by pz(g)
where g is some tractable transformed version of pz. The challenge in ICA is find-
ing tractable distributions in the latent space and these are limited [67]. GANs are
known to have fewer restrictions than these models [17, 66, 68].

2.5.2.3 Variational Autoencoders

VAEs, along with FVBNs and GANs, are three of the most popular approaches for
sample generation. VAEs are an extension to AEs [15, 95, 146]. AE learns useful rep-
resentations of the data by encoding X into a compressed latent space z using q(z|x)
and then decoding z back into X using p(x|z) by minimising the reconstruction er-
ror between the original data and the deconstructed data [15]. VAE maximizes the

13

following function :

log p(x) ≥ Ez∼q(z|x)
[
log p(x|z) + log p(z)− log q(z)

]
(2.1)

Unlike auto-regressive models, VAEs are normally easy to run in parallel during
training and inference [67, 95, 146]. Conversely, they are normally harder to opti-
mize than auto-regressive models [67, 110]. The encoder converts the input to latent
space representations through the mean and variance and samples can be created
from the learned representation. VAEs have been criticised to be generating blurry
samples and are intractable [67, 153].

2.5.2.4 Boltzmann Machines

Boltzmann machines rely on the use of Markov chains to model pmodel(x) and to
sample from it [1, 75, 152]. A Markov chain is a process that is used to generate
samples by repeatedly drawing a sample from a transition operator [62]. A Boltz-
mann machine is an energy-based function defined as:

pmodel(x) = exp
(
−E(x)

)
/Z (2.2)

where E(x) is an energy function and Z is a normalizing factor to ensure that
pmodel(x) sums to one [1, 67].

These methods include Restricted Boltzmann machine (RBM) [1] and Deep Be-
lief Networks (DBNs) [76, 77]. DBNs and RBMs are generative stochastic neural
networks that can estimate a PDF [1]. Samples are obtained through MCMC runs
to convergence and this can be very expensive to run [98]. These models were pio-
neers in early 2006 for deep generative models but they have been rarely used be-
cause of poor scale-ability for higher dimension problems and high computational
costs [67].

2.5.3 Implicit models

Implicit models learn to model the true distribution and define a stochastic proce-
dure to directly generate new data from a latent space. These models can be trained
indirectly without needing an explicit density function to be learned or defined.

14

Some of these models such as the Generative Stochastic Network (GSN) [17] in-
volve MCMC methods which impose greater computational cost and often fail to
scale to higher dimensional spaces [67]. Generative Adversarial Networks (GANs)
[68] and Generative Moment Matching Networks (GMMNs) [98] are one of the few
implicit probabilistic models capable of sampling in parallel and in a single step.

2.5.3.1 GANs

GANs were originally invented in a landmark paper by Ian Goodfellow in 2014
[68]. The setup of the framework uses an adversarial process to estimate the pa-
rameters of two artificial neural network (ANN) [149] models by iteratively and
concomitantly training a discriminator (D) and a generator (G), as shown in Figure
2.3.

FIGURE 2.3: GAN operation

Through multiple cycles of generation and discrimination, both networks train
each other, while simultaneously trying to outwit each other [68, 113, 130, 184].
GANs have two adversarial ANNs:

• G picks z from the prior latent space Z and then generates samples from this
distribution using ANN;

• D receives generated samples from G and the true data examples, and must
distinguish between the two for authenticity.

15

Both D and G are ANNs which play a zero-sum game, where G learns to pro-
duce realistic-looking samples and D learns to get better at discriminating between
the generated samples and the true data. Once G is trained to optimality, it can
create new samples and augment the training data set. GANs can sample in par-
allel better than other generative models, have fewer restrictions on the generator
function, assume no use of Markov Chains, no variational bounds unlike VAE and
produce subjectively better quality samples than other generative models [7, 66, 67,
68, 140, 153].

Whilst GANs are gaining popularity in many applications, they have notable
issues. GANs are notoriously difficult to train properly, difficult to evaluate, the
likelihood cannot be easily be computed, suffer from the vanishing gradient prob-
lem, mode collapse, boundary distortion and over-fitting [7, 67, 153].

Mode collapse is when many latent noise values z are mapped to the same data
point x, leading to a lack of diversity in the samples that are created i.e. under-
fitting. The vanishing gradient problem occurs when D becomes perfect in its
training without giving G the chance to improve. As a result, GANs may fail to
converge and thereby leading to poor generated samples [7]. Figure 2.4 provides a
non-exhaustive taxonomy of GAN variants and improved training, including com-
mon examples [36, 79, 82, 170].

FIGURE 2.4: Taxonomy of GAN variants

Salimans et al. [153] look at ways to improve GANs (called hacks) while other
authors propose variants to the vanilla GAN by changing the cost function, adding

16

gradient penalties (GPs), adding labels, avoiding over-fitting and finding better
ways of optimising GANs. The first extension of GAN was the Conditional GAN
(cGAN) which gave the generator the label in the latent space, making them class
conditional [118]. Until the introduction of Deep Convolutional GAN (DCGAN)
[140], training GANs was very unstable. DCGANs provide some further tricks
using convolutional and deconvolutional layers. Since then, more variants and
heuristics were proposed.

Wasserstein GAN (WGAN) [7] proposes a different loss function, becoming the
most studied and widely used GAN architecture ever since [82]. WGAN has been
shown to give better quality of generated synthetic data than the vanilla GAN and
alleviating most of the GAN issues [7]. Gulrajani et al. [69] further amends WGAN
through an addition of a GP to the cost function, coming with WGAN-GP.

In recent years, other loss functions which unify the GAN loss framework in-
cluding f-divergence [129], Integral Probability Metrics (IPMs) [82] and Relativistic
GANs (RGANs) [89], were proposed. The f-divergence measures the difference be-
tween pdata and pg with a specific convex function f [129]. f-divergence GAN, IPMs
and RGAN are considered unified frameworks suitable for stronger generalization
to other loss-variants [111]. WGAN is a special class of IPMs and the most stud-
ied GAN. Other popular GAN loss variants include Least Squares GAN (LSGAN)
[112], Boundary Equilibrium GAN (BEGAN) [19], Loss Sensitive GAN (LS-GAN)
[138] and Energy-Based GAN (EBGAN) [182].

Other advanced GANs include the revolutionary Progressive Growing GAN
(PROGAN) [90] which proposes a progressive growing and steps towards GAN
performance. Other variants include Self-attention GAN [180] and BigGAN [21]
which achieved tremendous performances on Imagenet data sets. There have been
hybrids of GANs and VAEs where VAEs are used to encode the latent space to come
up with VAE-GAN [95]. For further GAN reviews, Creswell et al. [36], Hitawala
[79] and Hong et al. [82] provide a comparative overview. Lucic et al. [106] conduct
an in-depth study on GANs and note no significant performance differences on the
GANs studied.

Fiore et al. [50] compare GAN and ordinary SMOTE on a credit card fraud detec-
tion problem. Douzas and Bacao [41] apply cGAN [118] to improve the classifica-
tion effectiveness on 12 data sets. Zheng et al. [183] compare GANs and deep learn-
ing methods for fraud detection in two large banks in China. Mariani et al. [113]

17

propose Balanced GAN (BAGAN) to restore imbalance on image data sets. Mul-
lick, Datta, and Das [124] propose Generative Adversarial Minority Over-sampling
(GAMO) for imbalanced image data sets, compared against SMOTE and common
GAN architectures. GAMO outperformed the other methods on image data sets.

Armanious et al. [8] propose the learning of multi-label discrete variables for
electronic health records using medical GAN (medGAN). This study compared
medGAN, VAE, stacked RBMs and vanilla GANs and noted a significant improve-
ment on samples generated. Mottini, Lheritier, and Acuna-Agost [122] generate
new airline passenger name records using GANs. Aviñó, Ruffini, and Gavaldà [9],
Camino, Hammerschmidt, and State [25] and Che et al. [28] generate multi-label
discrete data for healthcare records in various settings.

However, these studies were not compared with other SMOTE density estima-
tion algorithms nor with other common ML classifiers. Even though there is im-
provement over SMOTE in these studies, it is not clear if GAN can outperform
SMOTE architectures which focus on density estimation. Whilst there is promising
work for GANs in handling class imbalance in other domains, this work has not
been thoroughly explored with other SMOTE density-based approaches nor with
other generative models. This research determines whether GANs may provide a
superior alternative compared to SMOTE density-based approaches.

2.5.3.2 GMMNs

GMMNs minimize the maximum mean discrepancy (MMD) between the moments
of pdata and pmodel and are known to be simpler than other generative models [98].
Moment matching evaluates whether the moments of the true distribution ptrue(x)
match those of the data pdata(x) through MMD. This approach is similar to GANs
in terms of training except using a different loss function which leads to faster sam-
pling. However, GMMNs have received less attention than GANs and VAEs, limit-
ing their sample generative scheme [7, 67, 79].

2.5.4 Summary

There are a number of deep generative models for synthetic sample generation.
Some of the models are explicit with an intractable likelihood and inference. Some
models are only approximate and generate blurry samples. Other methods do

18

not sample in parallel, are complex and rely on Markov chains which are time-
consuming. GANs are attractive as they do not make any explicit density estima-
tion and they remedy most of these issues. GANs have generated extremely good
examples in many domains such as images [21, 90, 118, 184], videos [168], music
[40, 173], medicine [8], texts [145], anime creation [88] and imputation [97, 176].

2.6 Other Solutions

Cost-sensitive learning incorporates mis-classification costs in the evaluation metric
[72]. This approach is more computationally efficient than data-level solutions [58].
However, mis-classification costs are often unknown and difficult to set, making
this method less popular than sampling techniques [72]. A different perspective is
phrasing the problem as a one-class classifier and treating it as an anomaly detection
approach [58, 72, 105]. However, SMOTE and its variants remain the most studied
and widely used solutions [49].

2.7 Synthesis of Literature Reviews

Data-level solutions such as over-sampling are generally better than under-sampling
techniques. Specifically, SMOTE is the pioneering and popular method in imbal-
anced learning. However, this approach has its limitations such over-lapping classes.
SMOTE variants have been designed to address some of its issues. However, most
of these techniques still neglect the true probability distribution, could lead to infor-
mation loss and altering the probability distribution [38, 41, 179]. Other approaches
are also subjective such as distribution-based, clustering-based and kernel-based
functions. GANs may be useful in augmenting the minority class by implicitly gen-
erating new synthetic samples from the true underlying probability distribution,
unlike other SMOTE explicit density-based approaches.

Whilst each of the SMOTE variants have been shown to outperform the original
SMOTE algorithm, there is no consensus on which approach is optimal or best in a
given setting. Moreover, there have been few studies which systematically compare
SMOTE taxonomies, particularly those relying on the PDF approach [49]. This work
has also been less explored for tabular studies [41]. Since GANs are entirely based
on deep learning, a theoretical literature on ANNs is covered in Chapter 3.

19

3 Neural Networks

There are different types of ANNs for various tasks such as tabular data, sequences,
text and images. This section deals with fully connected layers, termed Multi-Layer
Perceptron (MLP), for tabular data. Both MLPs and ANNs can be used interchange-
ably. This chapter describes ANNs as it forms the foundation work for GANs.

3.1 Definition

From a statistical viewpoint, an ANN represents a nested combination of several
functions stacked sequentially to yield a desired output [67]. An example of an
ANN is shown in Figure 3.1. Below we describe each key operation in detail.

FIGURE 3.1: A fully connected MLP example with three layers

3.2 Layers

An ANN has input features, hidden layers and the target which gives the resulting
output [67]. Deep Learning is concerned with many complex layers of the ANN.

20

Each input feature is assigned a weight θ which represents its importance. Hidden
layers receive inputs from prior nodes beneath them and propagate the output to
other hidden layers above them [67, 120].

As an illustration, Figure 3.1 shows an ANN with three layers, with two-dimensional
input, two layers with three units and one output layer with one unit, where ul

i =

gl(Θl + bl), xi is the input, x0 is the bias term, Θl
l,i is a weight parameter for each

layer and hθ(xn) is the predicted target. This ANN can be a regression or a classifier,
depending on the activation function in the output.

3.3 Activation Functions

An input X is multiplied by a weight θ, results added together and the resulting
sum flows through an activation function. Activation functions introduce non-
linearities and transmit the resulting output into the target output [67, 120], re-
stricting the output to a certain finite value [54]. A key characteristic of activation
functions is that they must be continuously differentiable. Table 3.1 lists common
activation functions where z is the result of the weight matrix Θ multiplied by the
feature vector X and g(.) is the activation function.

Activation Function Formula

Linear g(z) = z
Sigmoid g(z) = 1

1+exp− z

Hyperbolic tangent (tanh) g(z) = expz − exp− z

expz + exp− z

Rectified Linear Unit (ReLU) [65] g(z) = max (0, z)
Leaky ReLU [107] g(z) = max (0.01z, z)
Parametric ReLU (PReLU) [74] g(z) = max (αz, z)
Softplus [125] g(z) = log

(
1 + expz)

Swish [142] g(z) = z.sigmoid
(

βz
)

TABLE 3.1: Taxonomy of activation functions for ANNs

The linear activation function is not as useful for complex and non-linear classifi-
cation problems. The sigmoid outputs a vector where each element is a probability,
bounded between 0 and 1 and is typically adopted in the final layer for binary clas-
sification problems. ReLU ranges between zero and infinity and is known for being
robust against vanishing gradients [34, 65, 107]. Leaky ReLU [107] solves the dying

21

ReLU problem. The tanh function is bounded between −1 and 1 and has been a
default activation function in the hidden layers until ReLU was proposed [65]. The
tanh function gives values of different signs which makes it easier to decide which
scores to consider in the next layer and which to ignore. However, it shares the
unfortunate weakness of vanishing gradients with the sigmoid activation function
[34, 65, 107].

Parametric ReLU (PReLU) [74] is of the same form as Leaky ReLU except that
it has a scalable and learnable parameter α. Softplus [125] is a smoother version
of ReLU [142]. Ramachandran, Zoph, and Le [142] show that the Swish activation
function behaves in a similar manner as the ReLUs and worked better on many
challenging data sets. It remains to be seen if recent activation functions such as
Swish [142] and Mish [119] will replace ReLU and Leaky ReLU in the future.

3.4 Gradient Descent

The weights Θ are optimised to minimise a loss function [67]. This means that
training an ANN means to show it many examples, make predictions through feed-
forward computations and then compare them with the actual labels to compute
the resulting loss. Finally, the ANN adjusts these weights from all nodes until it
gets a desired minimum loss value and thus optimal weights. Mathematically, for
a binary problem, the loss function J(θ) to be minimised is:

J (Θ) =
−1
N

[
N

∑
i=1

K

∑
k=1

y(i)
k log

(
hθ(x(i))k

)
+
(

1− y(i)
k

)
log
(

1− hθ(x(i))k

)]
(3.1)

where N is the size of the data set, hθ(x(i))k is the predicted target, θk’s are the
unknown coefficients, X is the feature vector and y(i)k is the actual target. Gradient
Descent (GD) optimises the above loss function [148]. GD finds the most optimal
weights Θ iteratively [75] using the following process:

• Initialise weights θ
(
k

0) randomly using He or Xavier initialisation;
• Loop until convergence i.e. until sufficient number of epochs t are reached:
• Compute the gradient ∂J(Θ)

∂θk
;

• Update weights θk using the learning rate η to move towards the minimum
loss, θ

(
k

t) = θ
(
k

t−1) - η
∂J(Θ)

∂θk
;

22

• Return weights Θ.
Other optimisation approaches can be used such as second order approxima-

tions i.e. Newton’s method. However, these methods tend to be infeasible for high
dimensions and large training data sets [148]. Thus GD is the most popular and
common approach for solving ANN weights.

3.4.1 Gradient Descent Variants

The above process is called Batch GD (BGD) as the weights are updated using the
entire data set [148]. This can be very slow, intractable and does not allow to update
weights online [44, 91, 177]. Stochastic GD (SGD) updates the weights one sample
at a time [148].

However, SGD usually performs frequent updates and this leads to volatility
as there might be fluctuations and over-shooting [101]. A compromise between
BGD and SGD is called mini-batch GD and this updates weights using a batch of m
training samples. Typically, mini-batch training samples can be anything from 50
to 256 but this could vary with different domains [148].

3.4.2 Learning Rate Scheme

However, even though mini-batch GD tends to be better than BGD or SGD, it may
still be slow in convergence due to η [44, 91]. The learning rate η specifies how
fast an ANN updates its weights. If η is too small, the model may not converge or
descend slowly and this can be computationally expensive [101]. If η is too large,
the model may take gigantic descents and miss the global minimum [43, 91, 128].
Adaptive learning rates have been proposed to improve η (shown in Table 3.2).

Basically, the algorithms incorporate a term to adapt η or use exponential mov-
ing average of current and/or past gradients [91, 119, 181]. Adaptive Moment es-
timation (Adam) [91] is the most popular and recommended algorithm for solving
weights of an ANN [101, 144, 148].

Table 3.2 shows a taxonomy of GD optimisers, differing on two ways on ei-
ther modifying η or modifying the gradient component or both. We describe three
popular GD optimisation variants as these are typically used in most deep ANNs:
Momentum [139], Root Mean Square propagation (RMSprop) [78] and Adam [91].

23

GD optimiser Year Learning rate Gradient

Momentum [139] 1964
√

Adaptive gradient (AdaGrad) [44] 2011
√

Root Mean Square propagation (RMSprop) [78] 2012
√

Adaptive delta (Adadelta) [177] 2012
√

Nesterov Accelerated Gradient (NAG) [128] 2013
√

Adaptive Moment estimation (Adam) [91] 2014
√ √

AdaMax [91] 2015
√ √

Nesterov Adam (NAdam) [43] 2015
√ √

AMSGrad [144] 2018
√ √

Rectified Adam (RAdam) [101] 2019
√ √

LookAhead, Ranger [181] 2019
√ √

TABLE 3.2: Gradient descent optimisation variants

3.4.2.1 Momentum

Momentum helps in accelerating SGD in the correct direction and dampening os-
cillations [139] using the following equation:

θt+1,i = θt,i −Vt,i

Vt,i = γVt−1,i + η
∂J (Θ)

∂θt,i

where Vt is the velocity representing the exponential moving average of past gra-
dients and γ is the momentum (typically 0.9) [148]. Values for Vt are typically ini-
tialised close to zero.

3.4.2.2 RMSprop

RMSprop [78] chooses a different η for each weight Θ, formulated as follows:

θt+1,i = θt,i −
η√

E
[

g2
t,i

]
+ ε

E[g2
t,i] = γE

[
g2

t−1,i

]
+ (1− γ) g2

t,i

gt,i =
∂J (Θ)

∂θt,i

24

where typically γ = 0.9, η = 0.001, ε avoids null division and E[g2]t,i represents
the running average of past gradients at time step t.

3.4.2.3 Adam

Adam is a combination of Momentum and RMSprop. Kingma and Ba [91] show a
superior performance of Adam over other optimisers. Adam is defined below:

θt+1,i = θt,i −
η√

v̂t + ε
m̂t

m̂t =
mt

1− βt
1

v̂t =
vt

1− βt
2

mt = β1mt−1 +
(
1− β1

)
gt

vt = β2vt−1 +
(
1− β2

)
g2

t

where m̂t and v̂t are bias-corrected first mt and second moment estimates vt of
the gradients respectively, typically initialised to 0’s. The parameters can be esti-
mated via cross-validation approach or using default values proposed by the au-
thors as per Keras documentation [52, 91, 148].

In general, Adam has been empirically shown to work well in practise and
compares fairly well with other optimisers [52, 91, 101, 140, 144, 148]. However,
it remains to be seen if recent optimisers such as Rectified Adam (RAdam) [101],
LookAhead and Ranger [181] will consistently outperform Adam in the future.

3.5 Weight Initialisation

To conduct GD, weights Θ needs to be initialised. The weights can affect how
quickly or if at all the local minimum is found by the network training algorithm
[66], known as the exploding gradient problem.

Two popular approaches are the He (if using ReLU/Leaky ReLU in the hid-
den layers) [74] and Xavier (if using tanh in the hidden layers) [64] initialisation.
He initialisation initialises weights from a standard Gaussian distribution and then
multiplied by the square root of (2/ni) where ni is number of input units for that
layer. Xavier initialisation works by replacing 2 with a 1 instead.

25

3.6 Regularisation

The specification of many of the hyper-parameters in ANNs could often cause over-
fitting or under-fitting [67]. Regularisation is a practice in ML that is used to curb
over-fitting. Typically, batch normalisation [84], drop-out [160], early stopping, L1
and L2 regularisation [54, 164] can be used.

3.6.1 Batch normalisation

Batch normalisation standardizes hidden layers such that they have a mean 0 and
unit standard deviation for each training mini-batch as units flow through each
layer [84]. In practise, this results in faster, more stable training and a regularization
effect [84, 140].

3.6.2 Drop-out

In drop-out, some units in the layer are temporarily excluded at random from the
training [160]. The drop-out parameter is typically in the range [0, 1] with 0.5 the
most popular value for retaining the output of each layer [66, 140, 160]. This can be
implemented per layer in the network. This forces the training process to be more
noisy, allowing each layer to take flexible responsibility for the inputs.

3.6.3 Early Stop

GD proceeds in epochs which consist of using the training set entirely to update
each parameter [148]. Initially, weights Θ are initialised. Then at each epoch, the
weights are updated using partial derivatives using any GD optimiser until the
process the weights do not change much i.e. until convergence [64, 74]. Typically,
we require many epochs until this convergence and then we stop. Early stop is a
practice where training is stopped when the cost starts increasing steadily instead
of decreasing. One can then stop training the model at that epoch.

3.6.4 L1 and L2 regularisation

Regularisation enforces the ANN to learn a less complex model by adding a penal-
ising term Equation 3.1 [164].

26

L1 regularisation performs sparse modelling by adding λ ∑d
k=1 θk to Equation

3.1 where λ is the importance parameter. This shrinks some coefficients to zero,
yielding to implicit variable selection. This method is preferred for model explain-
ability. L2 regularisation or ridge regression adds λ ∑d

k=1 θ2
k to Equation 3.1. This

is typically preferred for maximising model performance [54]. Elastic net combines
both L1 and L2 regularisations. Hyper-parameterisation can be done in order to
chose which approach is desirable.

3.7 Summary

There are a number of parameters to tune in ANNs. Typically, weight initialisation,
activation function, η, the number of layers, regularisation approach, the number
of neurons, GD optimiser and the number of epochs are required before training an
ANN. There is no best approach but some heuristics and best practise are typically
followed. In this work, ANNs provide theoretical foundations for GANs.

27

4 GAN Methodology

This chapter describes in detail the theoretical operation of GANs, their challenges
and tricks to improve their training. Throughout this paper, it is assumed that both
GAN networks are implemented with ANNs.

4.1 Vanilla GAN

This section describes the original GAN formulation, called MiniMax GAN (MM-
GAN). This is the baseline model over which all other variants are based.

4.1.1 The Discriminator

The discriminator (D) receives generated samples from a generator G and the true
data examples from pdata(x), and must distinguish between the two for authentic-
ity through a deep ANN [68]. The resulting output Dθd(x) for an input x is the
probability of x being sampled from pdata(x) instead of pg, where pg is the implicit
distribution defined by G. The vector Θd represents learned parameters from D.

The discriminator’s goal is to yield D(x) near 1 for x ∼ pdata and D(G(z)) closer
to 0 for pz(z) using the sigmoid function in the output layer. This is achieved by
maximising D’s loss over θd:

JMM−GAN
D = EX∼pdata(x)

[
log Dθd (x)

]
+ EZ∼pz(z)

[
log(1− Dθd(Gθ g(z))

]
(4.1)

4.1.2 The Generator

The generator (G) randomly picks a sample z from the prior latent space defined by
p(z) and then generates samples from this distribution using an ANN. This deep
ANN must learn the parameters Θg given an input z ∼ pz(z), that will give the
output Gθ g(z). G is trained to fool D i.e. to make D’s output for fake/generated

28

sample D(G(z)) closer to 1. The parameters of G are learned by minimising G’ loss
over Θg:

JMM−GAN
G = EZ∼pz(z)

[
log(1− Dθd(Gθ g(z))

]
(4.2)

4.1.3 GAN Loss

Combining the losses for D and G, GANs solve the following minimax game in
alternate steps through GD:

min
θg

max
θd

EX∼pdata(x)

[
log Dθd(x)

]
+ EZ∼pz(z)

[
log(1− Dθd(Gθ g(z))

]
(4.3)

The above losses for D and G are the original formulation proposed by Goodfellow
in 2014, called minimax GAN (MM-GAN). Since we are minimising over θg and
maximising over θd, training of GANs alternate between GD on G and gradient as-
cent on D [67]. Typically, for every training of G, D is trained k times although an
optimal choice is debatable among researchers. This is shown in Algorithm 1.

Remark 1. Gradient based updates on the ANN can be accomplished using any of the GD
optimisers reviewed in Chapter 3. Typically, SGD with Momentum for D, RMSProp or
Adam for G tend to work well in practise [68, 140].

4.1.4 Non-Saturating GAN

While the above loss function is useful for theoretical results, unfortunately it does
not work well in practise and there are challenges getting the GAN to convergence,
stabilise its training and getting diverse samples [7, 68, 118, 140, 153]. In practice,
rather than training the above loss function for G, to provide better gradients in
earlier training, Goodfellow et al. [68] suggest to maximise the following objective
function for G instead:

JLS−GAN
G = EZ∼pz(z) log

(
Dθd(Gθ g(z)

)
(4.4)

This version of GAN is called non-saturating GAN (NS-GAN) and is typically
used as the benchmark in most studies and in practise. This leads to the following

29

NS-GAN loss function:

max
θg

max
θd

EX∼pdata(x)

[
log Dθd(x)

]
+ EZ∼pz(z) log

(
Dθd(Gθ g(z)

)
(4.5)

With this new loss function, we alternate between gradient ascent on D and
gradient ascent on G. The algorithm presented below is based on the original MM-
GAN formulation, however, it can easily be tweaked to represent NS-GAN.

Algorithm 1 Mini-batch SG ascent of GANs with the original objective for MM-
GAN [68]. The number of steps to apply to D, k, is a hyper-parameter. For every
training of G, we train D k times. Goodfellow et al. [68] used k = 1.

1: for number of epochs do
2: update the discriminator
3: for k steps do
4: • Sample mini-batch of m noise samples {z(1), . . . , z(m)} from the noise

prior pg(z).
• Sample mini-batch of m true examples {x(1), . . . , x(m)} from the train-

ing data distribution pdata(x).
• Update the discriminator D by ascending its stochastic gradient on

these mini-batches:

∆θd

1
m

m

∑
i=1

[
log D

(
xi
)
+ log

(
1− D

(
G(zi)

))]
.

5: end for
6: update the generator
7: • Sample mini-batch of m noise samples {z(1), . . . , z(m)} from the noise

prior pg(z).
• Update the generator by descending its stochastic gradient computed

on this mini-batch:

∆θg

1
m

m

∑
i=1

log
(

1− D
(

G(zi)
))

.

8: end for

30

4.1.5 Optimal Solution

Theoretically, it can be shown that for pg = pdata, the GAN zero-sum game in Equa-
tion 4.3 has a global optima. Given enough capacity for both networks and D is
trained to optimality for a fixed G, convergence of the GAN algorithm is guaran-
teed [68, 111, 118, 129, 140]. The optimal discriminator D∗G(x) for a fixed G is:

D∗G(x) =
pdata(x)

pdata(x) + pg(x)
(4.6)

Assuming that D is perfectly trained and if we substitute D∗G(x) into Equation
4.3 for G’s loss, this gives rise to the Jensen-Shannon (JS) divergence [100]. The JS
divergence can be written as a function of the Kullback-Leibler (KL) divergence [93,
94].

Definition 1. The KL divergence between two probability distributions pdata and pg is
defined as

KL(pdata, pg) = DKL

(
pdata||pg) =

∫
pdata(x) log

(
pdata(x)
pg(x)

)
dx

Definition 2. The JS divergence between two probability distributions pdata and pg is
defined as

JS(pdata, pg) = DJS

(
pdata||pg) =

1
2

KL
(

pdata,
pdata + pg

2

)
+

1
2

KL
(

pg,
pdata + pg

2

)
If we substitute D∗G(x) into Equation 4.3, the minimum loss for G is reached if and

only if pg = pdata, thus one can show that:

JG = − log 4 + 2JS
(

pdata, pg

)
(4.7)

This equation tells us that when D has no capacity limitation and is optimal,
the GAN loss function measures the similarity between pdata and pg using JS di-
vergence. However, although the above results provide a nice theoretical result, in
practise, D is rarely ever fully optimal when optimising G [68]. Thus alternative

31

GAN architectures have been proposed to fix this issue and to get closer to opti-
mality. Below we describe what causes this failure to convergence and how to fix
it.

4.2 Challenges with GANs

GANs are notoriously difficult to train properly, difficult to evaluate, the likelihood
cannot be easily be computed, suffer from the vanishing gradient problem, mode
collapse, boundary distortion and over-fitting [7, 36, 67, 79, 82, 99, 153]. This section
describes key challenges on GAN training.

4.2.1 Mode collapse

Mode collapse is when many latent noise values z are mapped to the same data
point x, leading to a lack of diversity in the samples that are created i.e. under-
fitting. This is regarded as the most significant problem with GANs [99, 111]. Many
studies have spent lots of time in varied contexts to fix this.

4.2.2 Vanishing gradient

This occurs when D becomes perfect in its training without giving G the chance
to improve. As a result, GANs may fail to converge and thereby leading to poor
generated samples [7].

4.3 Improved GAN Training

There are many GAN architectures which avoid the problems that come with the
vanilla GAN. We briefly describe some of the most common and popular GAN
solutions. Given the vast number of taxonomies, we are not able to cover all of
them but only discuss the most popular and those subsequently used in this work.

4.3.1 Conditional GANs

The first extension of GAN was the Conditional GAN (cGAN) which gave the gen-
erator the label Y in the latent space, making them class conditional [30, 118, 130].

32

Most of the GAN variants can be modified to include cGAN. cGAN allows to cre-
ate diversified samples and forcing G to create specific samples and thereby fixing
mode collapse problem.

4.3.2 Loss Variants

There are a number of GAN architectures which change the loss function to im-
prove GAN training and stability. The loss function for GAN measures the similar-
ity between pdata and pg using JS. Unfortunately, JS tends not to be smooth enough
to ensure a stable training [82, 111]. Broadly, there are two loss function groups with
better properties i.e. f-divergence [129] and IPM [123]. Among these loss groups,
WGAN is arguably the most popular and well-studied [79, 82, 170]. WGAN is con-
sidered a general unified framework under the recently proposed Relativistic GAN
(RGAN) [89]. Thus we adopt WGAN in this work.

4.4 WGAN

This section describes WGAN and its improved training using WGAN-GP.

4.4.1 Wasserstein distance

IPM generalises a critic function f belonging to an arbitrary function class where
IPM measures the maximal distance between two distributions under some func-
tional frame f [79]. Among the IPMs, the Wasserstein distance is the most com-
mon and widely used metric [111]. Informally, the Earth mover (EM) [147] distance
W(pdata, pg) measures the minimal changes needed to transform pg into pdata. More
formally, EM between two probability distributions pdata and pg is:

W
(

pdata, pg

)
= inf

γ∼Π(pdata,pg)
E(x,y)∼γ

[
‖ x− y ‖

]
(4.8)

where Π(pdata,pg) represents a set of all joint probability distributions whose marginal
distributions are respectively pdata(x) and pg(x). Precisely, γ(x, y) is a transport
plan i.e. percentage of mass that should be moved from x to y to transform pg into
pdata. The infimum in Equation 4.8 is intractable as it is tricky to exhaust all the

33

elements of Π(pdata,pg) [7]. This is solved using the following functional format:

W
(

pdata, pg

)
= sup
‖ f ‖L≤1

Ex∼pdata
[

f (x)
]
−Ex∼pg

[
f (x)

]
(4.9)

where the supremum is taken over a 1-Lipschitz function f . A function f is 1-
Lipschitz if for all x1, x2 : | f (x1)− f (x2)| ≤ |x1 − x2|.

4.4.2 The Critic

In WGAN, D’s output is not a probability anymore but can instead be any number
and for this reason, D is typically called the critic. The WGAN critic tries to max-
imise the difference between its predictions for real samples and generated samples,
with real samples scoring higher. Arjovsky, Chintala, and Bottou [7] force the critic
to be 1-Lipschitz continuous for the loss function to work well:

JWGAN = max
w∈W

EX∼pdata(x)
[
D(x)

]
+ EZ∼pz(z)

[
1− D(G(z))

]
(4.10)

where W is the set of 1-Lipschitz continuous functions. Typically, to enforce the
Lipschitz constraint, the critic weights w are clipped to lie within a small range,
usually [−0.01, 0.01] after each training batch [7, 69].

The critic is trained to convergence so that the gradients of G are accurate, thus
removing the need to balance the training of G and D by simply training D several
times between G’s updates, to ensure it is close to convergence. Typically, 5 critic
updates to 1 generator update is used [7]. The WGAN training algorithm is shown
in Algorithm 2 as per the original paper [7]. WGAN used the RMSProp version of
gradient GD with a small learning rate and no momentum [7]. However, Adam
may also be used as it is a combination of RMSProp with Momentum.

4.5 Improved WGAN Training

Even though WGAN has been shown to stabilise GAN training, it is not generalized
for deeper training due to weight clipping which tends to localise most parameters
at −0.01 and 0.01 [69, 111]. This effect dramatically reduces the modelling capacity

34

Algorithm 2 Wasserstein GAN [7]. Default experiments used η = 0.00005, c = 0.01,
m = 64 and ncritic = 5.
Require: η, the clipping parameter c, the batch size m, the number of iterations of

the critic per generator iteration nd.
Require: initial critic parameters w0, initial parameters of the generator Θ0

while θ has not converged do
2: for t = 0, · · · , ncritic do

Sample mini-batch of m noise samples {z(1), . . . , z(m)} from the noise prior
pg(z).

4: Sample mini-batch of m true examples {x(1), . . . , x(m)} from the training
data distribution pdata(x).

gw ← ∆w

[
1
m ∑m

i=1 fw

(
x(i)
)
− 1

m ∑m
i=1 fw

(
gθ

(
z(i)
))]

w← w + η.RMSProp
(
w, gw

)
w← clip (w,−c, c)

end for
6: Sample mini-batch of m true examples {x(1), . . . , x(m)} from the training data

distribution pdata(x).
gθ ← −∆θ

1
m ∑m

i=1 fw

(
gθ(z(i))

)
θ ← θ + η.RMSProp

(
Θ, gθ

)
end while

for D. Gulrajani et al. [69] further amend WGAN through an addition of a gradient-
penalty (GP) to the loss function, coming with WGAN-GP. In total, three changes
are made to WGAN critic to convert it to WGAN-GP: include a GP to the loss func-
tion; do not clip critic weights; and do not use batch normalisation layers in the
critic. WGAN-GP defined using the following loss function:

EX∼pdata(x)
[
D(x)

]
+ EZ∼pz(z)

[
1− D(G(z))

]
+ λEx̃∼pdata

[(
‖ ∆D(x̃) ‖2 −1

)2
]

(4.11)
where x̃ samples uniformly along the straight line between points sampled from
pdata and pg and λ is the GP term. Gulrajani et al. [69] show a better distribution
of learned parameters compared to WGAN and this method has been the default
method in most GAN loss variants.

We adopt the conditional version of WGAN-GP, called WCGAN-GP, as an al-
ternative to SMOTE density estimation approaches. Once WGAN-GP is trained to
convergence, G can be used to create new samples by feeding it the latent space Z.

35

5 SMOTE Methodologies

This chapter describes the theoretical operation of each SMOTE density estimation
approach chosen in this study, i.e. SMOTE, PDFOS and RWO. We did not consider
RACOG due to its relatively high computation requirements.

5.1 SMOTE

Considering a random minority instance x, a new instance s is generated by con-
sidering its k-NNs. These k-NNs are found by using the Euclidean distance metric
[27]. Initially, an instance y is generated at random from the k-NNs. Then a new
synthetic minority instance s is generated as follows:

s = x + α
(
y− x

)
(5.1)

where α is randomly generated from the Uniform distribution [0, 1]. SMOTE
parameters are the value of k and the number of minority cases to generate. The
number of k-NNs can be varied such that an optimal metric is found, whilst re-
stricting the number of generated instances to ensure a balanced class distribution.

5.2 PDFOS

PDFOS [59] uses the Parzen-window (PW) method [132], a widely used non-parametric
statistical method to estimate a kernel density estimate (KDE) for a specific point
from a sample. This is done by a mixture of continuous distributions K, called ker-
nels, that are centered at each data point and have bandwidth of h.

36

5.2.1 Kernel Function

Denoting the unknown PDF generating the minority class set by p(x), then a general
KDE for p(x) is formulated as:

p̂ (x) =
1

mhd

m

∑
i=1

K
(
(x− xi)

mh

)
(5.2)

where K is a differentiable non-negative kernel; x is the feature vector; d is the
number of features; m is the number of minority class examples and h is the band-
width. Due to its convenient mathematical properties and popularity, a multivari-
ate d-Gaussian kernel function is typically adopted. The PDF of a d-Gaussian func-
tion with a mean of 0 and co-variance matrix Ψ is:

ΦΨ(x) =
1√

(2π.det(Ψ))d
exp

(
−1

2
xΨ−1xT

)
(5.3)

Define S+ = xi = (w(i)
1, · · · , w(i)

d

m

i=1 as minority class instances, then an unbi-
ased co-variance estimate of S+ is given by:

U =
1

m− 1

m

∑
i=1

(xi − x̄i) (xi − x̄i)
T (5.4)

where x̄i =
1
m ∑m

i=1 xi. PDFOS uses the kernel function Φh(x) = ΨU(x
h) where h is a

bandwidth that needs to be estimated.

5.2.2 Bandwidth

The bandwidth h is determined using the mean integrated squared error (MISE)
[156], by minimising this function:

MISE(h) =
1

m2hd

m

∑
i=1

m

∑
j=1

Ψ∗h(xi − xj) +
2

mhd Ψh(0) (5.5)

where Ψ∗h ≈ Ψh
√

2−2Ψh
. Typically, using Silverman’s approach [156], h is ini-

tialised as

hSilverman =

(
4

m(d + 2)

) 1
d+4

(5.6)

37

where d is the number of variables and m is the size of the minority cases. SGD
can be used to find an optimal h value.

5.2.3 Generating Synthetic samples

After a suitable h is found, synthetic sampling for a new instance s is accomplished
using:

s = xi + hRr (5.7)

where xi ∈ S+, r ∼ Nd(0, 1); Nd(0, 1) is a multivariate d-Gaussian distribution
with mean 0 and variance 1; r is a sample from this distribution and R is an upper-
triangular Cholesky decomposition of the positive-definite unbiased co-variance
matrix (U) of the minority class defined as U = R.RT. For the PDFOS algorithm to
work, U should be a strict positive-definite matrix [35, 59].

Algorithm 3 PDFOS [59]

Require: S+ = {xi = (w(i)
1, · · · , w(i)

d}
m
i=1, minority class instances.

Require: T, the required number of synthetic minority instances to over-sample.
Initialise S′ = ∅.
Find for h which minimizes MISE(h).
Solve for U the unbiased positive definite co-variance matrix of S+.
Compute U = R.RT with Choleski decomposition.
for i = 1, . . . , T do

Randomly choose x ∈ S+.
Randomly pick r from Nd(0, 1).
Generate a synthetic sample using S′ = S′ ∪ {x + h.R.r}.

end for
return S′, the synthetic minority cases.

5.3 RWO Sampling

Random Walk Over-sampling (RWO) [179] generates new minority class instances
with approximately the same mean and variance as the original minority class data.

38

5.3.1 Central Limit Theorem

Given a collection of minority class variables, W1, · · · , Wm, with mean E(Wi) = µ

and variance Var(Wi) = σ2 < ∞, central limit theorem (CLT) states that:

lim
m

P

[√
m

σ
(W̄ − µ) ≤ z

]
= Ψ(z) (5.8)

where W̄ = 1
m ∑m

i=1 Wi, Ψ ∼ N(0, 1) and thus W̄−µ

σ/
√

m → N(0, 1). This idea
generates synthetic samples that conform to the sample mean and variance of the
original data.

Algorithm 4 RWO [179]

Require: S+ = {xi = (w(i)
1, · · · , w(i)

d}
m
i=1, minority class instances.

Require: T, the required number of synthetic minority cases to over-sample.
Initialise S′ = ∅.
for each j = 1, . . . , d do

if j− ith variables is continous then

σ′j =

√√√√ 1
m ∑m

i=1

(
w(i)

j −
∑m

i=1 w(i)
j

m

)2

end if
end for
Assign M = T

m
for t = 1, . . . , M do

for i = 1, . . . , m do
for j = 1, . . . , d do

if j− ith variables is continuous then
Pick r ∼ N(0, 1)
ŵi(j) = wi(j)− rj × σi√

m
else

Pick wj uniformly over {(w(1)
j , · · · , w(m)

j}
end if

end for
S′ = S′ ∪ {(w1, · · · , wd)}

end for
end for
S′ = Pick T random fraud cases from S′

return S′, the synthetic minority cases

39

5.3.2 Generating Synthetic samples

Let S+ = {xi = (w(i)
1, · · · , w(i)

d}
m
i=1 be the minority class instances. Suppose that

we fix some j ∈ {i, · · · , d}, and assume that the j− ith column is continuous with
mean uj and variance σ2

j . Then synthetic cases are created as follows where ŵi is a
new minority class instance:

ŵi(j) = wi(j)− rj ×
σi√
m

, i ∈ {1, 2, 3, . . . , T}, j ∈ {1, 2, 3, . . . , m} (5.9)

where T is the number of synthetic cases to create; m is the original number
of minority examples; σi is the standard deviation for the ith attribute of w and
r ∼ N(0, 1). It can be shown that the generated instances have the same mean and
variance as the original minority class data [179].

40

6 Experiments

This chapter outlines the experiments of comparing SMOTE density-based approaches
and WCGAN-GP for synthetic data generation.

6.1 Data

This section describes the data sources, data sets and any pre-processing applied
before the LR model is trained on the original and over-sampled data sets.

6.1.1 Data Sets

We considered 5 publicly available imbalanced data sets from the Machine Learning
Repository UCI. The data sets are described below and shown in Table 6.1.

Imbalanced Data Set Majority
Cases

Minority
Cases

Number
of Fea-
tures

Numeric
Features

Ordinal
Features

Credit Card Fraud 284,807 492 31 31 0
Pima Indians Diabetes 500 268 8 8 0
Glass Identification 144 70 9 9 0
German Credit Scoring 700 300 20 14 6
Breast Cancer Wisconsin 357 212 28 28 0

TABLE 6.1: Imbalanced data sets used in the experiments

6.1.1.1 Credit Card Fraud

European public credit card fraud transactions made in 2013 are utilised [37]. This
data is highly imbalanced, with 492 fraudulent transactions out of a total of 284, 807
transactions, representing a mere 0.172% of fraud cases. This data set contains 31
anonymised numeric features (Time, Amount, V0,V1,...V28) and the Class indicator

41

showing 1 for frauds and 0 for non-fraudulent cases. The goal is to predict whether
a transaction is fraudulent or not.

6.1.1.2 Pima Indians Diabetes

This data set contains the prediction of the onset of diabetes within 5 years in Pima
Indians given some medical details, representing 34.90% of diabetic cases out of a
total of 768 women [157]. There are 8 medical variables: plasma glucose concentra-
tion, diastolic blood pressure, triceps skin fold thickness, serum insulin, body mass
index, number of times pregnant, diabetes pedigree function and age in years. All
the variables are numeric.

6.1.1.3 Glass Identification

This data set is used to determine whether the glass type is float or not in terms
of their oxide content [47]. There are 32.71% of float glass types out of a total of
214 cases. The original data was a multi-class classification problem. In this report,
we considered the binary version of the data by choosing the smallest class as the
minority class and collapsing the rest of the classes into one as was done in the
KEEL [3] imbalanced data set repository. There are 9 real variables.

6.1.1.4 German Credit Scoring

This data set is a German Credit Scoring problem from the UCL Machine Learning
Repository. There are 1000 observations with 20 variables. The dependent vari-
able is the evaluation of customer’s current credit status which indicates whether
a borrower’s risk is good or bad. There are 14 numeric variables and 6 categorical
variables.

6.1.1.5 Breast Cancer Wisconsin

This data set represents the characteristics of a cell nuclei that is present in the digi-
tised image of a breast mass [161]. The data is used to predict the presence of benign
or malignant cancer, with 37.25% being malignant samples from a total of 569 nu-
cleus cases. There are 28 real-valued variables for each cell nucleus.

42

6.1.2 Data Pre-processing

This section describes how the data was pre-processed before the LR model was
trained, particularly how variables were treated and converted to the same basis so
that there is avoidance of the dominance of certain variables. This ensures consis-
tency and stability of the LR model [67, 120].

6.1.2.1 Continuous Variables

Many ML methods expect data to be of the same scale to avoid the dominance of
certain numeric variables and this can affect the accuracy of specific models [84,
120]. Normalisation re-scales the data to the range between 0 and 1. Standardisa-
tion centers the data distribution to N(0, 1). We adopt normalisation as it does not
assume any specific distribution. This potentially speeds up convergence [67, 120].

6.1.2.2 Categorical Encoding

Categorical encoding is a process of converting categories to numbers, using One-
Hot Encoding or Label Encoding [137]. One-Hot Encoding takes a categorical col-
umn and then splits the column into multiple columns. The numbers are replaced
by 1s and 0s depending on which column has what value. It creates additional fea-
tures based on the number of unique values in the categorical feature. Every unique
value in the category is added as a feature. Label Encoding converts all the cate-
gorical variables into numeric numbers based on their alphabetical order and may
give false sense of the impact of that feature category. In this report, the variables
that are categorical were converted using One-Hot Encoding before the LR model
was trained.

6.1.3 Train-Test Split

ML models are usually trained and tested on unseen data. Two approaches to split
the data are cross-validation (CV) and train-test split [54]. CV divides the data into
K subsets that can lack sufficient credibility and can result in higher variability of
predictions, if the data size is too small [54]. Train-test split, however, can allow a
larger subset of the data to be used for estimating model coefficients and results in
more reasonable results [120].

43

Existing literature typically uses a 70%-30% train-test split, especially if the data
is large. This technique is simple, easy to understand and widely used, despite
giving noisy estimates sometimes [54, 67, 120]. CV is typically used to optimise
parameters of a classifier. This work adopts 75%-25% train-test split.

6.2 SMOTE Implementations

Over-sampling is performed on the 75% training data using the R imbalance library
[35]. The R imbalance library contains functions for performing SMOTE, RWO and
PDFOS. Over-sampling is performed to ensure a balanced class distribution in each
data set i.e. over-sample the minority class to the size of the majority class.

6.2.1 SMOTE

The two parameters to tune are the number of neighbors (K-NN) and the over-
sampling rate. We kept the over-sampling rate the same to ensure balanced class
distributions within each data set. We varied the number of K-NNs for each data
set to ensure optimal parameters are chosen through a 10-fold CV.

This was done through a grid search scheme, with values of K-NN ranging from
1 to 15, optimised using the Area under the Precision-Recall Curve (AUPRC) de-
fined in Section 6.5. The best parameter values for each data set are shown in Table
6.2 below.

Data Set Value of K-NN

Credit Card Fraud 6
Pima Indians Diabetes 9
Glass Identification 10
German Credit Scoring 12
Breast Cancer Wisconsin 10

TABLE 6.2: Optimal parameter values for K-NN for each data set

6.2.2 PDFOS

Due its popularity and wide use, a Gaussian kernel function is chosen [59]. The
bandwidth h is automatically obtained through MISE as defined in Equation 5.5.

44

The co-variance matrix of S+ was found to be semi positive-definite, thus PDFOS
could be used for over-sampling.

6.2.3 RWO

There are no parameters to tune in RWO as it uses minority class data to capture
the first and second moments of each numeric feature. If the feature is categorical,
RWO picks the minority instances uniformly over the distribution of each feature.

6.3 GAN Implementation

Given its popularity and wide use, WGAN is adopted for an alternative synthetic
sample generation. Specifically, we adopt the conditional version of WGAN with
GP, thus we use WCGAN-GP [69, 118]. Below we describe how parameters are
chosen and results generated.

6.3.1 Software

GANs can be implemented in a number of open-source neural-network libraries
in Python [51]. Due to its simplicity and faster computations, the high-level Keras
library [52] with Tensorflow [163] back-end is chosen to implement WCGAN-GP.
This is trained using all minority cases of each data set.

6.3.2 The Generator

This section describes how the parameters for G are chosen.

6.3.2.1 Latent Noise

The random noise for z is generated from N(0, 1) with 100 dimensions. This is based
from GAN hacks which suggest to sample from a spherical distribution [153].

6.3.2.2 Activation Function

ReLU is adopted in the hidden layers [140, 153]. For G’s output later, tanh is
adopted. No drop out or batch normalisation is applied following advise from
Gulrajani et al. [69] for WGAN-GP.

45

6.3.2.3 Layers

The layers are chosen such that they are ordered in an ascending manner for G. For
simplicity, after a number of iterations, 3 layers were chosen for each data set. In the
first layer, there were 128 units, in the second layer 256 units and in the third layer
512 units. These layers worked well in the experiments conducted. The output
layer had the data dimension of the data as the number of units.

Weights are initialised using the He initialisation method and ReLU is adopted
[74]. Adam is used to optimise the weights of G [140, 153]. We used default values
with β1 = 0.5 and β2 = 0.9 for G [91].

We used a batch size of 128 when optimising the gradients for faster training
[84]. Initial η for G was fixed at 0.00004. The number of epochs were found to be
5, 000 where the GAN training was found to be stable.

6.3.3 The Critic

Leaky ReLu is adopted with a negative slope of 0.2 [107, 140]. As per the generator,
3 layers were used in the hidden layers. The layers were arranged in a descending
manner, with 512 units in the first layer, 256 units in the second layer and 128 units
for the last layer. The critic gives the output a single value using a linear function [7].
Adam was used with the following default parameters in Keras [52]: η = 0.00001,
β1 = 0.5, β2 = 0.90 and ε = 10−8.

Critic weights were also initialised using the He method and a similar batch size
as in the generator was used. We pre-trained the critic 100 times at each adversarial
training step [7]. This ensures faster convergence at each step before G is updated.
We used WGAN with a GP with the default values as per the original paper [69].
The GP value was left unchanged at 10. We call this model WGAN-GP. We found
that after 5000 epochs, the losses plateaued and did not change much.

6.3.4 Labels

Typically, to boost faster training and fix mode collapse, additional information can
be incorporated in both G and D using cGAN [118]. We used the conditional ver-
sion of WGAN-GP where class labels were added to the minority cases. To accom-
plish this, clustering was done on the minority cases in order to induce class labels

46

on the training data.
We explored a number of common mechanisms considering k-means, AHC

[169], Hierarchical DBSCAN [46] and t-SNE [108]. The details of these algorithms
are beyond the scope of this report. Due to its wide use and simplicity, we adopted
k-means clustering with 2 clusters for each data set. This yielded labels that could
be fed into G and D to induce generated samples. We call the final model WCGAN-
GP after incorporating these class labels into the training.

6.3.5 Training WGAN-GP

Figure 6.1 shows the critic loss for each epoch, where after 1000 epochs, the loss
starts to plateau. Thus we decided to stop the training after 5000 epochs. We re-
peated this experiment for each data set and adopted WCGAN with GP after 5, 000
epochs as the model to use for synthetic sample generation.

FIGURE 6.1: Difference between generated and real data critic loss

Figure 6.2 presents the experiments of training WCGAN with GP. For compar-
ative purposes, using similar parameters, we show the quality of samples gener-
ated for WCGAN with GP, WGAN, cGAN and non-saturating GAN on the credit
card fraud data. The version of the WCGAN was incorporated with an improved
WGAN training using the GP term as per the paper by Gulrajani et al. [69]. We con-
sider this for two combinations of the features for illustrative purposes up to 5000
epochs.

The results show the superiority of samples generated by WCGAN with GP.
There is a clear mode collapse problem on the vanilla GAN and cGAN. WGAN and
WCGAN with GP show better samples. There is also clear damped oscillations and

47

unstable losses for GAN and cGAN where Wasserstein GANs exhibit stable training
and losses, especially after 1000 iterations where it seems to settle and stabilise.

FIGURE 6.2: Comparison of GAN experiments ran on fraud data cases

6.3.6 Generating Synthetic samples

Once the WCGAN with GP is trained to 5000 epochs, the learned generator distri-
bution is used to create more synthetic samples by feeding it the number of samples
to output.

48

6.4 Logistic Regression

LR is trained using Python 3.7 [51] on both the imbalanced training data and over-
sampled data sets to predict the likelihood of each minority case using this equa-
tion:

log

(
hθ(x(d))

1− hθ(x(d))

)
= θ0 +

d

∑
i=1

θiXi, 0 < hθ(x(d)) < 1 (6.1)

where hθ(x(d)) is the probability of the given minority case, θi’s are the estimated
coefficients using SGD, Xi is the feature vector for sample i and d is the number of
features to include in the LR model. The coefficients are estimated by minimising
a loss function through SGD in Equation 3.1. Typically, classification is such that
when hθ(x(d)) ≥ 50% for each instance, assign the minority case, otherwise the
majority case. We varied the regularisation parameter λ considering both L1 and
L2 regularisation using the values [0.001, 0.01, 0.1, 1, 10, 100, 1000] through a 10-fold
CV on the training data sets. The LR model was optimised for each data set.

6.5 Evaluation

This section describes evaluation metrics adopted to compare the different over-
sampling methods.

6.5.1 Confusion Matrix

The confusion matrix returns a report showing how predicted classes on unseen
test data using the LR model compare to actual observed classes, as depicted in
Table 6.3.

Confusion Matrix Predicted: Minority Predicted: Majority

Actual: Minority True Positive (TP) False Negative (FN)
Actual: Majority False Positive (FP) True Negative (TN)

TABLE 6.3: The confusion matrix

TN is the number of majority cases that were correctly classified as such. FP
is the number of majority cases that were incorrectly classified as minority. TP is

49

the number of minority cases that were correctly classified as minority. FN is the
number of minority cases that were incorrectly classified as majority. Using these
definitions, Table 6.4 presents the most well known evaluation metrics for binary
classification problems. Accuracy, Precision, Recall and F1-Score should be close to
100% for a LR model to do well on the testing data. Accuracy can be misleading and
inappropriate when there are imbalanced classes and thus may be biased towards
majority cases [27, 58, 72]. Thus we do not use rely on it in this work.

Metric Formula

Accuracy
(

TP+TN
TP+TN+FP+FN

)
Precision

(
TP

TP+FP

)
Recall

(
TP

TP+FN

)
F1-Score 2 ∗

(
Precision∗Recall
Precision+Recall

)
TABLE 6.4: Evaluation metrics for binary classification problems

Precision is the ability of the LR model not to label a minority case that is actually
majority. Recall is the ability of the LR model to find all minority cases. F1-Score
is a harmonic mean between Precision and Recall [72]. F1-Score puts equal weight
to both Precision and Recall. The higher the scores are towards 100%, the better is
the LR model. However, these scores are influenced by what threshold is used to
decide between the two binary classes.

6.5.2 Precision-Recall and ROC curve

The ROC curve [20, 71] measures a classifier’s performance on a test set over dif-
ferent decision thresholds by varying the Precision and the FP rate. AUC measures
the performance of the LR model trained on both imbalanced and over-sampled
data sets and tested on unseen data with values close to 100% considered excel-
lent performance [14, 71]. We also compute the Precision-Recall curve and compute
AUPRC to get a weighted score. Table 6.5 shows the AUC/AUPRC scale for inter-
preting performance of classifiers [14].

50

Metric Value Performance

50% <AUC/AUPRC <= 60% Poor
60%<AUC/AUPRC <= 70% Fair
70% <AUC/AUPRC <= 80% Good
80% <AUC/AUPRC <= 90% Very Good
90% <AUC/AUPRC <= 100% Excellent

TABLE 6.5: Interpretation of AUC/AUPRC performance

6.6 Statistical Hypothesis Testing

Friedman test [55] followed by a post-hoc Nemenyi test [127] are performed to ver-
ify the statistical significant differences between WCGAN-GP, SMOTE, PDFOS and
RWO.

6.6.1 Friedman test

The Friedman test is a non-parametric ranking test to determine whether all over-
sampling methods perform similarly in mean performance rankings based on the
measures above, when normality does not hold [55] on 30 experiments.

6.6.2 Post-hoc Nemenyi test

If the null hypothesis is rejected, a post-hoc test can be applied where WCGAN-GP
is considered as the control method. The post-hoc Nemenyi test evaluates pairwise
comparisons between the over-sampling methods if the Friedman test suggests that
there is a difference in performance [127, 136]. We adopt WCGAN-GP as the control
method.

6.6.3 Implementation

Both tests are conducted using the Pairwise Multiple Comparison Ranks Package
(PMCMR) [136] available in R. We assume statistical significance of the alternative
hypothesis at p-values < 0.05. In other words, we fail to reject the null hypothesis
when the resulting p-value is higher than 0.05, suggesting that there is no difference
between the over-sampling methods.

51

7 Results and Discussion

This chapter presents the results of all the LR models applied on the baseline and
over-sampled data sets, with metrics on Precision, Recall, F1-Score, AUC and AUPRC
computed on the same unseen test data.

7.1 Comparisons

Table 7.1 presents the evaluation metrics (based on the testing set) of the LR model
applied on the baseline and over-sampled data sets for a default threshold of 50%
across 30 experiments. Figure 7.1 shows the average performance across all data
sets from each evaluation metric. Bold shows an algorithm that performs the best
for that data set i.e. a higher score for that metric.

FIGURE 7.1: Average performance across all data sets

Figure 7.1 depicts that on the average, over-sampling increases Recall despite
slightly reducing the Precision. On average, the F1-Score is highest for WCGAN-GP,
followed by Baseline, then SMOTE, with PDFOS and RWO performing the worst.

52

Data set Precision Recall F1-Score AUPRC AUC

Credit Card Fraud

Baseline 85.710% 63.410% 72.893% 74.600% 81.700%
SMOTE 5.110% 93.333% 9.689% 72.284% 98.358%
PDFOS 6.290% 90.240% 11.760% 48.270% 93.960%
RWO 6.670% 90.240% 12.422% 48.460% 94.030%
WCGAN-GP 86.240% 76.420% 81.034% 81.350% 88.200%

Pima Indians Diabetes

Baseline 74.470% 56.450% 64.220% 72.490% 73.610%
SMOTE 53.535% 80.303% 64.242% 68.183% 75.480%
PDFOS 61.430% 69.350% 65.150% 70.340% 74.290%
RWO 64.290% 72.580% 68.184% 72.860% 76.670%
WCGAN-GP 75.510% 59.680% 66.668% 74.100% 75.220%

German Credit Scoring

Baseline 60.320% 51.350% 55.475% 63.030% 68.570%
SMOTE 47.826% 70.513% 56.995% 58.838% 69.610%
PDFOS 59.380% 51.350% 55.074% 62.560% 68.290%
RWO 54.880% 60.810% 57.693% 63.640% 69.890%
WCGAN-GP 46.510% 81.080% 59.112% 66.600% 70.940%

Glass Identification

Baseline 50.000% 42.860% 46.156% 53.840% 63.930%
SMOTE 73.913% 70.833% 72.340% 87.286% 72.860%
PDFOS 41.380% 85.710% 55.814% 65.400% 71.610%
RWO 40.620% 92.860% 56.517% 67.670% 72.680%
WCGAN-GP 55.000% 78.570% 64.705% 69.560% 78.040%

Breast Cancer Wisconsin

Baseline 94.340% 94.340% 94.340% 95.390% 95.500%
SMOTE 92.593% 100.000% 96.154% 98.556% 96.450%
PDFOS 94.340% 94.340% 94.340% 95.390% 95.500%
RWO 92.730% 96.230% 94.448% 95.180% 95.890%
WCGAN-GP 96.230% 96.230% 96.230% 96.930% 97.000%

TABLE 7.1: Evaluation metrics based on a default threshold of 50%

53

While the univariate results on Precision, Recall and F1-Score are useful, they do
not give the entire picture over different thresholds [14]. Since AUC and AUPRC
are based on varied thresholds, these metrics are typically preferred over one di-
mension measurements such as Precision, Recall and F1-Score [14, 58, 105]. Since
we are also comparing the above results with the Baseline model, these metrics are
impacted by class imbalance [72]. Thus we rely more on the AUC and AUPRC.

7.1.1 Performance between over-sampling techniques

This section compares the performance of each over-sampling technique against the
Baseline and other techniques using the AUPRC and AUC.

7.1.1.1 SMOTE

SMOTE appears worse than the Baseline on 3 of the 5 data sets used on the AUPRC.
On the contrary, SMOTE shows a superior AUC score than the Baseline for all
data sets. SMOTE appears better than both PDFOS and RWO on both AUC and
AUPRC scores, showing a relatively good performance. The poor performance of
SMOTE compared to the Baseline on the Credit Card Fraud, Pima Indians and Ger-
man Credit Scoring data sets may be partially due to the underlying minority class
distribution which may have been altered by SMOTE.

For example, there are clusters and small disjuncts in the Credit Card Fraud data
set, which may create noisy examples and over-lapping of classes when SMOTE is
applied, resulting in the degradation of performance. The German Credit Scoring
data set has ordinal and categorical features and SMOTE does not do well with such
features [49]. There is a possible dimensional impact of the data set which may be
affecting SMOTE, especially for those data sets with many variables such as the
Credit Card Fraud data set [11].

7.1.1.2 PDFOS

PDFOS appears worse than the Baseline on 4 of the 5 data sets for the AUPRC.
Looking at the AUC, PDFOS is at least better on 4 of the data sets used. PDFOS
performs worse than SMOTE on 3 data sets. For the German Credit Scoring data
set, PDFOS is better than SMOTE whilst showing a poorer performance than the

54

Baseline. The German Credit Scoring data contains a number of categorical vari-
ables which both PDFOS and SMOTE may not be dealing with appropriately. In
general, PDFOS appears as the worst over-sampling approach than SMOTE. This
can be attributed to its rather strong Gaussian KDE which may not appropriate for
the given variables.

7.1.1.3 RWO

RWO is worse than the Baseline and SMOTE even though it appears to be slightly
better than PDFOS. RWO uses the CLT to approximate the minority class distribu-
tion, based on the mean and variance of each variable. PDFOS assumes a KDE of
the entire data set using the Gaussian distribution. While the two approaches seem
fundamentally similar, they are based on rather different distributional approaches.
PDFOS can be said to be a non-parametric approach which requires a parameter es-
timation for the bandwidth used in the KDE [59].

RWO assumes that, theoretically, the distribution of each variable is Gaussian
as the sample size increases. These are strong data assumptions which may not be
entirely met, especially with skewed data sets such as the Credit Card Fraud, Ger-
man Credit Scoring and Pima Indians Diabetes. As a result of possible inadequate
distributions, overall, both RWO and PDFOS are showing poorer results than both
SMOTE and the Baseline.

7.1.1.4 WCGAN-GP

Overall, WCGAN-GP has the highest AUPRC value and second highest AUC value.
WCGAN-GP outperforms the Baseline in both the AUPRC and AUC scores. Using
the AUPRC, WCGAN-GP outperforms SMOTE on 3 data sets which include Credit
Card Fraud, Pima Indians Diabetes and German Credit Scoring. Overall, WCGAN-
GP outperforms SMOTE.

The poor performance of WCGAN-GP compared to SMOTE on the Glass Iden-
tification and Breast Cancer Wisconsin data sets may be attributed to their slightly
lower sample sizes compared to other data sets which have large sample sizes.
GAN training requires a substantial training size to ensure a stable training and
better sample quality [68, 66, 153, 7].

55

Compared to PDFOS and RWO, WCGAN-GP is better for all the other data sets
when using the AUPRC. WCGAN-GP does not make any probability distribution
assumptions but instead learns the true minority class distribution in order to create
synthetic samples from it. This means that WCGAN-GP captures the probability
distribution better than SMOTE, PDFOS and RWO, leading to a better predictive
performance when the LR model is applied on the resulting synthesized data sets.

When using the AUC, WCGAN-GP is better than all the other methods on the
German Credit Scoring, Glass Identification and Breast Cancer Wisconsin data sets.
However, for the other 2 data sets, WCGAN-GP appears to be worse than SMOTE
and its density-based variants.

Overall, using the AUC, SMOTE appears better than WCGAN-GP and all the
density-based variants. When using the AUPRC, WCGAN-GP is better, followed
by SMOTE. Below we provide insights as to which metric is appropriate to use for
imbalanced learning.

7.1.2 AUC

The ROC curve represents the trade-off between Precision and the FP rate while
the AUC is the area under the ROC curve [14]. Overall, SMOTE techniques report
higher AUC values than the Baseline, suggesting that over-sampling improves the
LR model. PDFOS appears as the worst method on the AUC score compared to
other SMOTE density-based approaches. RWO is worse than SMOTE on 3 of the 5
data sets except for Pima Indians Diabetes and German Credit Scoring data sets.

In general, WCGAN-GP is better on 3 of the 5 data sets except on Credit card
fraud and Diabetes data sets. Overall, the average AUC value is not too different
between WCGAN-GP, SMOTE and RWO, while PDFOS is the lowest. This result
conflicts the AUPRC scores where WCGAN-GP shows a clear dominant superiority
over all the methods.

Whilst AUC may be useful, it does not consider Recall, which may be the most
important metric for minority cases. AUC may be affected by skewed data sets and
the data distribution [72]. ROC curves are appropriate when the data is balanced,
whereas Precision-Recall curves are appropriate for imbalanced data sets [14, 72].
AUC may tend to provide an overly optimistic view than AUPRC [72], as can be
seen by the results shown above, which seem to suggest that SMOTE is better.

56

In general, an algorithm that dominates in AUC may not necessarily dominate
the AUPRC space [72]. Saito and Rehmsmeier [151] suggest that the Precision-
Recall curve and AUPRC is more informative than the ROC curve and AUC. Since
we are also comparing with the Baseline which is imbalanced, ROC and AUC may
be inappropriate, thus AUPRC provides a sensible measure for all methods.

7.1.3 AUPRC

AUPRC has all the characteristics of the AUC and thus for the purposes of this
work, we rely more on AUPRC than AUC [72, 151]. Overall, WCGAN-GP shows
better improvements over all other SMOTE techniques. WCGAN-GP is highest on
AUPRC, suggesting this algorithm performs the best across many thresholds and
all the data sets used.

On the average, PDFOS and RWO do not provide a superior predictive perfor-
mance than the Baseline. PDFOS appears as the worst approach for over-sampling.
Below we further provide conclusive evidence on the statistical significance of the
above results on the AUPRC.

7.2 Statistical Hypothesis Testing

Table 7.2 shows the results of the Friedman test applied on AUPRC to verify the sta-
tistical significance of WCGAN-GP compared to the other over-sampling methods.
There is enough evidence at 5% significance level (since all p-values are less than
5%) to reject the null hypothesis on all the data sets, suggesting that over-sampling
methods are not performing similarly and are different.

Data set P-value Significance

Credit Card Fraud 2.595112e-18 Yes
Pima Indians Diabetes 3.384100e-12 Yes
German Credit Scoring 2.021626e-05 Yes
Glass Identification 3.253634e-12 Yes
Breast Cancer Wisconsin 4.828195e-13 Yes

TABLE 7.2: Results for Friedman’s test

57

Since the null hypothesis was rejected on all the data sets, a Post-hoc test was
applied to further determine pairwise comparisons using the Nemenyi test where
WCGAN-GP is the control method. These results confirm the significant superior-
ity of WCGAN-GP over SMOTE as all the p-values are less than 0.05 for the data
sets where Friedman suggested a difference.

There is a statistically significant superiority of WCGAN-GP over PDFOS except
on the Glass Identification data set. WCGAN-GP is also superior and statistically
different compared to RWO, except on the Glass Identification and Pima Indians
Diabetes data sets.

Comparison
Test

Credit
Card
Fraud

German
Credit
Scoring

Breast
Cancer
Wisconsin

Glass
Identifi-
cation

Pima
Indians
Diabetes

WCGAN-GP vs. SMOTE 0.001000 0.001000 0.007510 0.001000 0.001000
WCGAN-GP vs. PDFOS 0.001000 0.001000 0.003000 0.014361 0.001000
WCGAN-GP vs. RWO 0.001000 0.001000 0.003000 0.779980 0.22811
SMOTE vs. PDFOS 0.002623 0.059946 0.900000 0.001000 0.779980
SMOTE vs. RWO 0.001000 0.014361 0.836106 0.001000 0.001000
PDFOS vs. RWO 0.001000 0.187904 0.823993 0.153112 0.001236

TABLE 7.3: Results for the Post-hoc Nemenyi test

We observe a statistically significant difference between SMOTE techniques on
the Credit Card Fraud data set. We observe no statistically significant differences
between RWO and PDFOS on 3 data sets. We also note that RWO and PDFOS
are not fundamentally too different in terms of the assumptions made as they both
assume that the minority class data has a Gaussian distribution somehow.

Thus for the data sets that do not seem to exhibit numeric features that con-
form to this assumption, RWO and PDFOS do not seem to provide significantly too
different results.

These results confirm the findings shown in Figure 7.1 and Table 7.1 where the
average performance seen on both the AUC and AUPRC was lower for SMOTE
techniques compared to WCGAN-GP. In general, WCGAN-GP provides statisti-
cally superior significant performance.

58

7.3 Discussion

Overall, SMOTE was worse than the Baseline on 3 of the 5 data sets when using the
AUPRC. SMOTE samples synthetic points along line segments joining minority in-
stances using the Euclidean distance. This approach may end up using majority in-
stances and thus creating noisy examples and over-lapping cases [70, 135]. SMOTE
is not based on the true distribution of the minority class data [38]. The poor per-
formance of SMOTE on the AUPRC may be attributed to these effects, especially
since the German Credit data set contains categorical variables which SMOTE may
not be dealing with appropriately. Overall, SMOTE, RWO and PDFOS alter the data
distribution as was observed by the significant compromise on Precision and gener-
ally lower F1-Score, AUPRC and AUC values. As a result, there was no statistically
significant differences between the SMOTE techniques.

PDFOS and RWO are meant to improve the above SMOTE weaknesses. How-
ever, they both make strict assumptions about the structure and distribution of the
minority class data. PDFOS assumes a KDE of the minority class using a multi-
variate Gaussian probability distribution [59]. PDFOS may not deal well with other
non-continuous and multiple data structures such as the presence of categorical or
ordinal variables [16, 59]. As a result, PDFOS was the worst over-sampling tech-
nique.

RWO was worse than both the Baseline and SMOTE although it appeared better
than PDFOS. RWO uses CLT i.e. a Gaussian distribution and this approach is very
similar to PDFOS. Thus the performance between PDFOS and RWO were not too
dissimilar. RWO is only based on the minority class data and makes no assumptions
and no pre-training is needed [179]. Thus run-times are way shorter than PDFOS.
The lower RWO performance on the AUPRC than both SMOTE and Baseline may
be attributed to the assumption made on the PDF of the minority class data which
may not be appropriate. Furthermore, RWO requires the data to be continuous and
this assumption may be invalid for categorical variables [35, 179].

Run-times for PDFOS appeared to be longer than SMOTE and RWO. PDFOS
requires a rapid pre-training and computation of the co-variance matrix of the mi-
nority class data and determination of the bandwidth before over-sampling. The
determination of h is performed via CV and this takes a while. SMOTE was the
quickest to over-sample, followed by RWO and PDFOS and then WCGAN-GP.

59

WCGAN-GP requires a significant pre-training of both the critic and the gen-
erator. GANs are well-known for their training and computing powers [36, 106].
Thus they have expensive run-times. However, current GANs such as WGAN and
WGAN-GP remedy this impact with stable training. The quality of generated sam-
ples may be worth it compared to the training times. GANs do not make explicit
assumptions about the probability distribution of the minority class data. This idea
has been used to create new samples for images [140], music [40], arts [88] and
videos [60, 168, 175].

There is a significant potential to create new samples using GANs and aug-
ment imbalanced data sets. Recent work on this [41, 50] report a GAN superior
performance over SMOTE but no mention is referenced on other SMOTE density-
estimation approaches. This work is comprehensive and offering a distinct compar-
ative study on density-estimation approaches. While GANs are notoriously diffi-
cult to train and optimise, in this study, using a simple architecture provided stable
superior significant results after 5000 epochs.

Given the current surge in interest for GANs, optimising and training GANs
is becoming straightforward as there are many implementations in Keras [52], Py-
torch [133] and Tensorflow [163]. Given their impressive results and advancement
in deep learning techniques, we expect a wider extensive use of GANs. The train-
ing instability of GANs will soon be done without any problems as the maturity
of the training process improves with new techniques being invented at a rapid
speed. Thus running times for GANs might not necessarily be an issue, forcing
GANs to provide a superior over-sampling approach to supplement imbalanced
data sets. Because GANs have become so popular, their limitations have been im-
proved tremendously.

However, there are still open challenges for GANs. GANs rely on the generated
examples being completely differentiable with respect to the generative parameters.
As a result, GANs cannot product discrete data directly [79, 170]. Another key
challenge is the evaluation of GANs after training even though there are measures
to compute the quality of results generated [36]. Research for GANs grows each
year. Practitioners may need to add GANs to their toolkit as this will significantly
improve their models and aid on decision-making as GANs will be characterised
by advancements in deep learning, training process maturity, open acceptance and
their wide use in commercial applications.

60

8 Conclusions and Future Research

This section concludes this work, gives limitations and provides scope for future
research.

8.1 Conclusions

This work detailed a class imbalance study on imbalanced data sets where SMOTE
density estimation approaches and WCGAN-GP were used to over-sample the mi-
nority cases on 5 imbalanced data sets. A LR model was trained on the base-
line and over-sampled data sets and the results were compared using Precision,
Recall, F1-Score, AUPRC and AUC. SMOTE improved the classification perfor-
mance. However, SMOTE is not based on the true underlying minority class distri-
bution. SMOTE density estimation approaches remedy this issue, however, these
techniques make assumptions around the minority class distribution. As a result,
both PDFOS and RWO performed poorly than SMOTE and the Baseline. WCGAN-
GP was statistically better than all the SMOTE techniques on the majority of the
data sets.

PDFOS and RWO results were not significantly too dissimilar to SMOTE results
on 3 of the data sets. Thus there were no statistically significant differences be-
tween SMOTE, RWO and PDFOS on 3 of the experimental data sets used. Using
WCGAN-GP, it is possible to create synthetic cases implicitly and this turned out
to offer a significantly better improvement over all SMOTE techniques, across vari-
ous thresholds and on 3 of the data sets used. AUPRC appeared as a more sensible
informative measure to compare the algorithms.

This work has demonstrated the potential for GANs for data augmentation and
boosting predictive models. There are other useful areas where GANs are becom-
ing more useful such as anomaly detection [2, 154], semi-supervised learning [31,

61

103, 121, 159], domain adaptation [80, 81, 165], time series generation [45, 57], pri-
vacy preservation [13], joint distribution learning [33, 102, 174, 184], reinforcement
learning [158], missing data imputation [97, 155, 176] and many other computer
vision areas [18, 90, 96, 180].

8.2 Limitations

This work considered binary cases whereas other data sets may have multiple classes.
We repeated training and testing of each over-sampling method 30 times to min-
imise stochastic effects - this sample size can be increased for more robustness.
Alternatively a bootstrapping approach can be applied to better understand the
distributional attributes of the model errors.

There were mixed results when using AUC and AUPRC. Existing literature has
no consensus on which metric to prefer, despite most studies using AUC. Other
evaluation metrics exist and these can offer a different and comprehensive perspec-
tive. These include Partial AUC [115], Weighted AUC [171], Discriminative Power
[5], Matthews correlation coefficient (MCC) [39], Gain and Lifts charts [24]. A fur-
ther comprehensive study would be to utilise some of these metrics and statistically
evaluate the performance of the over-sampling methods.

8.3 Future Research

Possible future research to improve this work includes a consideration on other data
sets to apply the same methods, especially complex data sets that include small dis-
juncts, over-lapping, mixed data types and multiple classes. The results could be
repeated by varying the imbalanced ratio to determine which technique performs
the best depending on the extent of imbalance observed in the data set. We could
consider other ML algorithms such as ANN and Gradient Boosting Machines [29].
An empirical comparison of these results with other tabular data sets where GAN
was applied would be useful. New Adam variants were recently proposed called
Rectified Adam (RAdam) [101], AMSGrad [144] and LookAhead or Ranger [181],
which seem to show better results for GAN training. Other loss variants and ad-
vanced architectures such as BEGAN, EBGAN, DRAGAN, LSGAN and VAE-GAN
could be explored for better GAN training.

62

Bibliography

[1] D.H. Ackley, G.E. Hinton, and T.J. Sejnowski. “A learning algorithm for
Boltzmann machines”. In: Cognitive Science 9.1 (1985), pp. 147–169.

[2] S. Akcay, A. Atapour-Abarghouei, and T.P. Breckon. “Ganomaly: Semi-supervised
anomaly detection via adversarial training”. In: Asian Conference on Computer
Vision. Springer. 2018, pp. 622–637.

[3] J. Alcalá-Fdez et al. “Keel data-mining software tool: data set repository, in-
tegration of algorithms and experimental analysis framework.” In: Journal of
Multiple-Valued Logic & Soft Computing 17 (2011).

[4] B.A. Almogahed and I.A. Kakadiaris. “NEATER: Filtering of Over-sampled
Data Using Non-cooperative Game Theory”. In: 2014 22nd International Con-
ference on Pattern Recognition. 2014, pp. 1371–1376.

[5] A. An, N. Cercone, and X. Huang. “A case study for learning from imbal-
anced data sets”. In: Conference of the Canadian Society for Computational Stud-
ies of Intelligence. Springer. 2001, pp. 1–15.

[6] G. Antipov, M. Baccouche, and J. Dugelay. “Face aging with conditional gen-
erative adversarial networks”. In: 2017 IEEE International Conference on Image
Processing (ICIP). IEEE. 2017, pp. 2089–2093.

[7] M. Arjovsky, S. Chintala, and L. Bottou. “Wasserstein GAN”. In: arXiv preprint
arXiv:1701.07875 (2017).

[8] K. Armanious et al. “MedGAN: Medical image translation using GANs”. In:
arXiv preprint arXiv:1806.06397 (2018).

[9] L. Aviñó, M. Ruffini, and R. Gavaldà. “Generating Synthetic but Plausible
Healthcare Record Datasets”. In: arXiv preprint arXiv:1807.01514 (2018).

[10] S. Barua, M.M. Islam, and K. Murase. “A novel synthetic minority oversam-
pling technique for imbalanced data set learning”. In: International Conference
on Neural Information Processing. Springer. 2011, pp. 735–744.

63

[11] S. Barua et al. “MWMOTE–majority weighted minority oversampling tech-
nique for imbalanced data set learning”. In: IEEE Transactions on Knowledge
and Data Engineering 26.2 (2014), pp. 405–425.

[12] G.E. Batista, R.C. Prati, and M.C. Monard. “A study of the behavior of sev-
eral methods for balancing machine learning training data”. In: ACM SIGKDD
explorations newsletter 6.1 (2004), pp. 20–29.

[13] B.K. Beaulieu-Jones et al. “Privacy-preserving generative deep neural net-
works support clinical data sharing”. In: Circulation: Cardiovascular Quality
and Outcomes 12.7 (2019), e005122.

[14] M. Bekkar, H. Kheliouane Djemaa, and Taklit A. A. “Evaluation measures
for models assessment over imbalanced data sets”. In: Journal of Information
Engineering and Applications 3.10 (2013).

[15] C. Bellinger, C. Drummond, and N. Japkowicz. “Beyond the Boundaries of
SMOTE”. In: Joint European Conference on Machine Learning and Knowledge
Discovery in Databases. Springer. 2016, pp. 248–263.

[16] C. Bellinger, N. Japkowicz, and C. Drummond. “Synthetic oversampling for
advanced radioactive threat detection”. In: 2015 IEEE 14th International Con-
ference on Machine Learning and Applications (ICMLA). IEEE. 2015, pp. 948–
953.

[17] Y. Bengio et al. “Deep generative stochastic networks trainable by back-
prop”. In: International Conference on Machine Learning. 2014, pp. 226–234.

[18] U. Bergmann, N. Jetchev, and R. Vollgraf. “Learning texture manifolds with
the periodic spatial GAN”. In: Proceedings of the 34th International Conference
on Machine Learning-Volume 70. JMLR. org. 2017, pp. 469–477.

[19] D. Berthelot, T. Schumm, and L. Metz. “Began: Boundary equilibrium gen-
erative adversarial networks”. In: arXiv preprint arXiv:1703.10717 (2017).

[20] A.P. Bradley. “The use of the area under the ROC curve in the evaluation of
machine learning algorithms”. In: Pattern Recognition 30.7 (1997), pp. 1145–
1159.

[21] A. Brock, J. Donahue, and K. Simonyan. “Large scale gan training for high
fidelity natural image synthesis”. In: arXiv preprint arXiv:1809.11096 (2018).

64

[22] C. Bunkhumpornpat, K. Sinapiromsaran, and C. Lursinsap. “DBSMOTE:
density-based synthetic minority over-sampling technique”. In: Applied In-
telligence 36.3 (2012), pp. 664–684.

[23] C. Bunkhumpornpat, K. Sinapiromsaran, and C. Lursinsap. “Safe-level-smote:
Safe-level-synthetic minority over-sampling technique for handling the class
imbalanced problem”. In: Pacific-Asia conference on Knowledge Discovery and
Data Mining. Springer. 2009, pp. 475–482.

[24] J. Burez and D. Van den Poel. “Handling class imbalance in customer churn
prediction”. In: Expert Systems with Applications 36.3 (2009), pp. 4626–4636.

[25] R. Camino, C. Hammerschmidt, and R. State. “Generating Multi-Categorical
Samples with Generative Adversarial Networks”. In: arXiv preprint arXiv:1807.01202
(2018).

[26] N.V. Chawla, N. Japkowicz, and A. Kotcz. “Special issue on learning from
imbalanced data sets”. In: ACM Sigkdd Explorations Newsletter 6.1 (2004),
pp. 1–6.

[27] N.V. Chawla et al. “SMOTE: synthetic minority over-sampling technique”.
In: Journal of Artificial Intelligence Research 16 (2002), pp. 321–357.

[28] Z. Che et al. “Boosting deep learning risk prediction with generative ad-
versarial networks for electronic health records”. In: 2017 IEEE International
Conference on Data Mining (ICDM). IEEE. 2017, pp. 787–792.

[29] T. Chen and C. Guestrin. “Xgboost: A scalable tree boosting system”. In: Pro-
ceedings of the 22nd acm sigkdd international conference on knowledge discovery
and data mining. ACM. 2016, pp. 785–794.

[30] X. Chen et al. “Infogan: Interpretable representation learning by information
maximizing generative adversarial nets”. In: Advances in Neural Information
Processing systems. 2016, pp. 2172–2180.

[31] L. Chongxuan et al. “Triple generative adversarial nets”. In: Advances in Neu-
ral Information Processing Systems. 2017, pp. 4088–4098.

[32] C. Chow and T. Wagner. “Consistency of an estimate of tree-dependent prob-
ability distributions (corresp.)” In: IEEE Transactions on Information Theory
19.3 (1973), pp. 369–371.

65

[33] C. Chu, A. Zhmoginov, and M. Sandler. “Cyclegan, a master of steganogra-
phy”. In: arXiv preprint arXiv:1712.02950 (2017).

[34] D. Clevert, T. Unterthiner, and S. Hochreiter. “Fast and accurate deep net-
work learning by exponential linear units (elus)”. In: arXiv preprint arXiv:1511.07289
(2015).

[35] I. Cordón et al. “Imbalance: oversampling algorithms for imbalanced classi-
fication in R”. In: Knowledge-Based Systems 161 (2018), pp. 329–341.

[36] A. Creswell et al. “Generative adversarial networks: An overview”. In: IEEE
Signal Processing Magazine 35.1 (2018), pp. 53–65.

[37] A. Dal Pozzolo. “Adaptive machine learning for credit card fraud detec-
tion”. In: (2015).

[38] B. Das, N.C. Krishnan, and D.J. Cook. “RACOG and wRACOG: Two proba-
bilistic oversampling techniques”. In: IEEE transactions on knowledge and data
engineering 27.1 (2015), pp. 222–234.

[39] Z. Ding. “Diversified ensemble classifiers for highly imbalanced data learn-
ing and its application in bioinformatics”. PhD thesis. Georgia State Univer-
sity, 2011.

[40] H. Dong et al. “Musegan: Multi-track sequential generative adversarial net-
works for symbolic music generation and accompaniment”. In: Thirty-Second
AAAI Conference on Artificial Intelligence. 2018.

[41] G. Douzas and F. Bacao. “Effective data generation for imbalanced learning
using conditional generative adversarial networks”. In: Expert Systems with
applications 91 (2018), pp. 464–471.

[42] G. Douzas, F. Bacao, and F. Last. “Improving imbalanced learning through
a heuristic oversampling method based on k-means and SMOTE”. In: Infor-
mation Sciences 465 (2018), pp. 1–20.

[43] T. Dozat. “Incorporating nesterov momentum into adam”. In: ICLR Work-
shop. Vol. 1. 2013. 2016, p. 2016.

[44] J. Duchi, E. Hazan, and Y. Singer. “Adaptive subgradient methods for on-
line learning and stochastic optimization”. In: Journal of Machine Learning
Research 12.Jul (2011), pp. 2121–2159.

66

[45] C. Esteban, S.L. Hyland, and G. Rätsch. “Real-valued (medical) time series
generation with recurrent conditional gans”. In: arXiv preprint arXiv:1706.02633
(2017).

[46] M. Ester et al. “A density-based algorithm for discovering clusters in large
spatial databases with noise”. In: Kdd. Vol. 96. 34. 1996, pp. 226–231.

[47] I.W. Evett and E.J. Spiehler. “Rule induction in forensic science”. In: KBS in
Goverment (1987), pp. 107–118.

[48] A. Fernández, S. García, and F. Herrera. “Addressing the classification with
imbalanced data: open problems and new challenges on class distribution”.
In: International Conference on Hybrid Artificial Intelligence Systems. Springer.
2011, pp. 1–10.

[49] A. Fernández et al. “Smote for learning from imbalanced data: progress and
challenges, marking the 15-year anniversary”. In: Journal of Artificial Intelli-
gence Research 61 (2018), pp. 863–905.

[50] U. Fiore et al. “Using Generative Adversarial Networks for improving classi-
fication effectiveness in Credit card fraud detection”. In: Information Sciences
(2017).

[51] Python Software Foundation. “Python Language Reference (Version 3.6. 3.)”
In: (2017).

[52] C. François. keras. https://github.com/fchollet/keras. 2015.

[53] B.J. Frey, G.E. Hinton, and P. Dayan. “Does the wake-sleep algorithm pro-
duce good density estimators?” In: Advances in Neural Information Processing
Systems. 1996, pp. 661–667.

[54] J. Friedman, T. Hastie, and R. Tibshirani. The Elements Of Statistical Learning.
Vol. 1. Springer series in statistics New York, 2001.

[55] M. Friedman. “The use of ranks to avoid the assumption of normality im-
plicit in the analysis of variance”. In: Journal of the American Statistical Associ-
ation 32.200 (1937), pp. 675–701.

[56] N. Friedman, D. Geiger, and M. Goldszmidt. “Bayesian network classifiers”.
In: Machine learning 29.2-3 (1997), pp. 131–163.

https://github.com/fchollet/keras

67

[57] R. Fu et al. “Time Series Simulation by Conditional Generative Adversarial
Net”. In: arXiv preprint arXiv:1904.11419 (2019).

[58] V. Ganganwar. “An overview of classification algorithms for imbalanced
datasets”. In: International Journal of Emerging Technology and Advanced En-
gineering 2.4 (2012), pp. 42–47.

[59] M. Gao et al. “PDFOS: PDF estimation based over-sampling for imbalanced
two-class problems”. In: Neurocomputing 138 (2014), pp. 248–259.

[60] J. Gauthier. “Conditional generative adversarial nets for convolutional face
generation”. In: Class Project for Stanford CS231N: Convolutional Neural Net-
works for Visual Recognition, Winter semester 2014.5 (2014), p. 2.

[61] D. Georgios and B. Fernando. “Self-Organizing Map Oversampling (SOMO)
for imbalanced data set learning”. In: Expert Systems with Applications 82
(2017), pp. 40 –52. ISSN: 0957-4174. DOI: https://doi.org/10.1016/j.eswa.
2017.03.073. URL: http://www.sciencedirect.com/science/article/
pii/S0957417417302324.

[62] C.J. Geyer. “Practical markov chain monte carlo”. In: Statistical science (1992),
pp. 473–483.

[63] C. Gilles et al. “Learning from imbalanced data in surveillance of nosocomial
infection”. In: Artificial Intelligence in Medicine 37.1 (2006), pp. 7 –18.

[64] X. Glorot and Y. Bengio. “Understanding the difficulty of training deep feed-
forward neural networks”. In: Proceedings of the thirteenth international confer-
ence on artificial intelligence and statistics. 2010, pp. 249–256.

[65] X. Glorot, A. Bordes, and Y. Bengio. “Deep sparse rectifier neural networks”.
In: Proceedings of the fourteenth international conference on artificial intelligence
and statistics. 2011, pp. 315–323.

[66] I. Goodfellow. “NIPS 2016 tutorial: Generative adversarial networks”. In:
arXiv preprint arXiv:1701.00160 (2016).

[67] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. Vol. 1. MIT press
Cambridge, 2016.

[68] I. Goodfellow et al. “Generative Adversarial Nets”. In: Advances in Neural
Information Processing Systems. 2014, pp. 2672–2680.

https://doi.org/https://doi.org/10.1016/j.eswa.2017.03.073
https://doi.org/https://doi.org/10.1016/j.eswa.2017.03.073
http://www.sciencedirect.com/science/article/pii/S0957417417302324
http://www.sciencedirect.com/science/article/pii/S0957417417302324

68

[69] I. Gulrajani et al. “Improved training of Wasserstein gans”. In: Advances in
Neural Information Processing Systems. 2017, pp. 5767–5777.

[70] H. Han, W. Wang, and B. Mao. “Borderline-SMOTE: A New Over-Sampling
Method in Imbalanced Data Sets Learning”. In: International Conference on
Intelligent Computing. Springer. 2005, pp. 878–887.

[71] J.A. Hanley and B.J. McNeil. “The meaning and use of the area under a
receiver operating characteristic (ROC) curve”. In: Radiology 143.1 (1982),
pp. 29–36.

[72] H. He and E.A. Garcia. “Learning from imbalanced data”. In: IEEE Transac-
tions on Knowledge & Data Engineering 9 (2008), pp. 1263–1284.

[73] H. He et al. “ADASYN: Adaptive synthetic sampling approach for imbal-
anced learning”. In: Neural Networks, 2008. IJCNN 2008.(IEEE World Congress
on Computational Intelligence). IEEE International Joint Conference on. IEEE.
2008, pp. 1322–1328.

[74] K. He et al. “Delving deep into rectifiers: Surpassing human-level perfor-
mance on imagenet classification”. In: Proceedings of the IEEE international
conference on computer vision. 2015, pp. 1026–1034.

[75] G.E. Hinton. “Training products of experts by minimizing contrastive diver-
gence”. In: Neural computation 14.8 (2002), pp. 1771–1800.

[76] G.E Hinton, S. Osindero, and Y. Teh. “A fast learning algorithm for deep
belief nets”. In: Neural Computation 18.7 (2006), pp. 1527–1554.

[77] G.E. Hinton and R.R. Salakhutdinov. “Reducing the dimensionality of data
with neural networks”. In: science 313.5786 (2006), pp. 504–507.

[78] G.E. Hinton and T. Tieleman. Lecture 6.5 - RMSProp, COURSERA: Neural Net-
works for Machine Learning. https://www.cs.toronto.edu/~tijmen/csc321/
slides/lecture_slides_lec6.pdf. 2012.

[79] S. Hitawala. “Comparative study on generative adversarial networks”. In:
arXiv preprint arXiv:1801.04271 (2018).

[80] J. Hoffman et al. “Cycada: Cycle-consistent adversarial domain adaptation”.
In: arXiv preprint arXiv:1711.03213 (2017).

https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf

69

[81] W. Hong et al. “Conditional generative adversarial network for structured
domain adaptation”. In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition. 2018, pp. 1335–1344.

[82] Y. Hong et al. “How Generative Adversarial Networks and Their Variants
Work: An Overview”. In: ACM Computing Surveys (CSUR) 52.1 (2019), p. 10.

[83] H. Hotelling. “Analysis of a complex of statistical variables into principal
components.” In: Journal of Educational Psychology 24.6 (1933), pp. 417–441.

[84] S. Ioffe and C. Szegedy. “Batch normalization: Accelerating deep network
training by reducing internal covariate shift”. In: arXiv preprint arXiv:1502.03167
(2015).

[85] N. Japkowicz. “The class imbalance problem: Significance and strategies”.
In: Proceedings of the International Conference on Artificial Intelligence. 2000.

[86] N. Japkowicz and S. Stephen. “The class imbalance problem: A systematic
study”. In: Intelligent Data Analysis 6.5 (2002), pp. 429–449.

[87] K. Jiang, J. Lu, and K. Xia. “A Novel Algorithm for Imbalance Data Classi-
fication Based on Genetic Algorithm Improved SMOTE”. In: Arabian Journal
for Science and Engineering 41.8 (2016), pp. 3255–3266.

[88] Y. Jin et al. “Towards the automatic anime characters creation with genera-
tive adversarial networks”. In: arXiv preprint arXiv:1708.05509 (2017).

[89] A. Jolicoeur-Martineau. “The relativistic discriminator: a key element miss-
ing from standard GAN”. In: arXiv preprint arXiv:1807.00734 (2018).

[90] T. Karras et al. “Progressive growing of gans for improved quality, stability,
and variation”. In: arXiv preprint arXiv:1710.10196 (2017).

[91] D.P. Kingma and J. Ba. “Adam: A method for stochastic optimization”. In:
arXiv preprint arXiv:1412.6980 (2014).

[92] D.P. Kingma and M. Welling. “Auto-encoding variational bayes”. In: arXiv
preprint arXiv:1312.6114 (2013).

[93] S. Kullback. Information theory and statistics. Courier Corporation, 1997.

[94] S. Kullback and R.A. Leibler. “On information and sufficiency”. In: The An-
nals of Mathematical Statistics 22.1 (1951), pp. 79–86.

70

[95] A.B.L. Larsen et al. “Autoencoding beyond pixels using a learned similarity
metric”. In: arXiv preprint arXiv:1512.09300 (2015).

[96] C. Ledig et al. “Photo-realistic single image super-resolution using a gener-
ative adversarial network”. In: Proceedings of the IEEE conference on computer
vision and pattern recognition. 2017, pp. 4681–4690.

[97] S.C. Li, B. Jiang, and B. Marlin. “Misgan: Learning from incomplete data
with generative adversarial networks”. In: arXiv preprint arXiv:1902.09599
(2019).

[98] Y. Li, K. Swersky, and R. Zemel. “Generative moment matching networks”.
In: International Conference on Machine Learning. 2015, pp. 1718–1727.

[99] J.H. Lim and J.C. Ye. “Geometric gan”. In: arXiv preprint arXiv:1705.02894
(2017).

[100] J. Lin. “Divergence measures based on the Shannon entropy”. In: IEEE Trans-
actions on Information theory 37.1 (1991), pp. 145–151.

[101] L. Liu et al. “On the variance of the adaptive learning rate and beyond”. In:
arXiv preprint arXiv:1908.03265 (2019).

[102] M. Liu and O. Tuzel. “Coupled generative adversarial networks”. In: Ad-
vances in Neural Information Processing Systems. 2016, pp. 469–477.

[103] Z. Liu, J. Wang, and Z. Liang. “CatGAN: Category-aware Generative Adver-
sarial Networks with Hierarchical Evolutionary Learning for Category Text
Generation”. In: arXiv preprint arXiv:1911.06641 (2019).

[104] R. Longadge and S. Dongre. “Class imbalance problem in data mining re-
view”. In: arXiv preprint arXiv:1305.1707 (2013).

[105] V. López et al. “An insight into classification with imbalanced data: Empir-
ical results and current trends on using data intrinsic characteristics”. In:
Information sciences 250 (2013), pp. 113–141.

[106] M. Lucic et al. “Are gans created equal? a large-scale study”. In: Advances in
Neural Information Processing systems. 2018, pp. 700–709.

[107] A.L. Maas, A.Y. Hannun, and A.Y. Ng. “Rectifier nonlinearities improve neu-
ral network acoustic models”. In: Proc. icml. Vol. 30. 1. 2013, p. 3.

71

[108] L. Maaten and G. Hinton. “Visualizing data using t-SNE”. In: Journal of Ma-
chine Learning Research 9.Nov (2008), pp. 2579–2605.

[109] L. Van der Maaten and G. Hinton. “Visualizing non-metric similarities in
multiple maps”. In: Journal of Machine Learning 87.1 (2012), pp. 33–55.

[110] A. Makhzani et al. “Adversarial autoencoders”. In: arXiv preprint arXiv:1511.05644
(2015).

[111] P. Manisha and S. Gujar. “Generative Adversarial Networks (GANs): What it
can generate and What it cannot?” In: arXiv preprint arXiv:1804.00140 (2018).

[112] X. Mao et al. “Least Squares Generative Adversarial Networks”. In: Proceed-
ings of the IEEE International Conference on Computer Vision. 2017, pp. 2794–
2802.

[113] G. Mariani et al. “Bagan: Data Augmentation with Balancing GAN”. In:
arXiv preprint arXiv:1803.09655 (2018).

[114] J. Mathew et al. “Kernel-based SMOTE for SVM classification of imbalanced
datasets”. In: IECON 2015-41st Annual Conference of the IEEE Industrial Elec-
tronics Society. IEEE. 2015, pp. 1127–1132.

[115] D.K. McClish. “Analyzing a portion of the ROC curve”. In: Medical Decision
Making 9.3 (1989), pp. 190–195.

[116] P. McCullagh. “Generalized linear models”. In: European Journal of Opera-
tional Research 16.3 (1984), pp. 285–292.

[117] N. Metropolis et al. “Equation of state calculations by fast computing ma-
chines”. In: The Journal of Chemical Physics 21.6 (1953), pp. 1087–1092.

[118] M. Mirza and S. Osindero. “Conditional generative adversarial nets”. In:
arXiv preprint arXiv:1411.1784 (2014).

[119] D. Misra. “Mish: A Self Regularized Non-Monotonic Neural Activation Func-
tion”. In: arXiv preprint arXiv:1908.08681 (2019).

[120] T.M. Mitchell. The Discipline of Machine Learning. Vol. 9. Carnegie Mellon Uni-
versity, School of Computer Science, Machine Learning Department, 2006.

[121] T. Miyato et al. “Virtual adversarial training: a regularization method for
supervised and semi-supervised learning”. In: IEEE transactions on pattern
analysis and machine intelligence 41.8 (2018), pp. 1979–1993.

72

[122] A. Mottini, A. Lheritier, and R. Acuna-Agost. “Airline passenger name record
generation using generative adversarial networks”. In: arXiv preprint arXiv:1807.06657
(2018).

[123] A. Müller. “Integral probability metrics and their generating classes of func-
tions”. In: Advances in Applied Probability 29.2 (1997), pp. 429–443.

[124] S.S. Mullick, S. Datta, and S. Das. “Generative Adversarial Minority Over-
sampling”. In: arXiv preprint arXiv:1903.09730 (2019).

[125] V. Nair and G.E. Hinton. “Rectified linear units improve restricted boltz-
mann machines”. In: Proceedings of the 27th international conference on machine
learning (ICML-10). 2010, pp. 807–814.

[126] I. Nekooeimehr and S.K. Lai-Yuen. “Adaptive semi-unsupervised weighted
oversampling (A-SUWO) for imbalanced datasets”. In: Expert Systems with
Applications 46 (2016), pp. 405–416.

[127] P. Nemenyi. “Distribution-free multiple comparisons”. In: Biometrics. Vol. 18.
2. Princeton University. 1962, p. 263.

[128] Y. Nesterov. “A method for unconstrained convex minimization problem
with the rate of convergence O (1/kˆ 2)”. In: Doklady AN USSR. Vol. 269.
1983, pp. 543–547.

[129] S. Nowozin, B. Cseke, and R. Tomioka. “f-gan: Training generative neural
samplers using variational divergence minimization”. In: Advances in Neural
Information Processing systems. 2016, pp. 271–279.

[130] A. Odena, C. Olah, and J. Shlens. “Conditional image synthesis with aux-
iliary classifier gans”. In: Proceedings of the 34th International Conference on
Machine Learning-Volume 70. JMLR. org. 2017, pp. 2642–2651.

[131] A. Van den Oord et al. “Conditional image generation with pixelcnn de-
coders”. In: Advances in neural information processing systems. 2016, pp. 4790–
4798.

[132] E. Parzen. “On estimation of a probability density function and mode”. In:
The Annals of Mathematical Statistics 33.3 (1962), pp. 1065–1076.

73

[133] A. Paszke et al. “PyTorch: An Imperative Style, High-Performance Deep
Learning Library”. In: Advances in Neural Information Processing Systems 32.
Ed. by H. Wallach et al. Curran Associates, Inc., 2019, pp. 8024–8035. URL:
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-

high-performance-deep-learning-library.pdf.

[134] N. Patki, R. Wedge, and K. Veeramachaneni. “The synthetic data vault”.
In: 2016 IEEE International Conference on Data Science and Advanced Analyt-
ics (DSAA). IEEE. 2016, pp. 399–410.

[135] M. Pérez-Ortiz, P.A. Gutiérrez, and C. Hervás-Martínez. “Borderline kernel
based over-sampling”. In: International Conference on Hybrid Artificial Intelli-
gence Systems. Springer. 2013, pp. 472–481.

[136] T. Pohlert. “The pairwise multiple comparison of mean ranks package (PM-
CMR)”. In: R package 27 (2014).

[137] K. Potdar, T.S. Pardawala, and C.D. Pai. “A comparative study of categorical
variable encoding techniques for neural network classifiers”. In: International
journal of computer applications 175.4 (2017), pp. 7–9.

[138] G. Qi. “Loss-sensitive generative adversarial networks on lipschitz densi-
ties”. In: arXiv preprint arXiv:1701.06264 (2017).

[139] N. Qian. “On the momentum term in gradient descent learning algorithms”.
In: Neural networks 12.1 (1999), pp. 145–151.

[140] A. Radford, L. Metz, and S. Chintala. “Unsupervised representation learning
with deep convolutional generative adversarial networks”. In: arXiv preprint
arXiv:1511.06434 (2015).

[141] A.E. Raftery and S. Lewis. “How many iterations in the Gibbs sampler”. In:
Bayesian Statistics 4.2 (1992), pp. 763–773.

[142] P. Ramachandran, B. Zoph, and Q.V. Le. “Searching for activation functions”.
In: arXiv preprint arXiv:1710.05941 (2017).

[143] E. Ramentol et al. “SMOTE-RSB*: a hybrid preprocessing approach based
on oversampling and undersampling for high imbalanced data-sets using
SMOTE and rough sets theory”. In: Knowledge and Information Systems 33.2
(2012), pp. 245–265.

http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

74

[144] S.J. Reddi, S. Kale, and S. Kumar. “On the convergence of adam and be-
yond”. In: arXiv preprint arXiv:1904.09237 (2019).

[145] S. Reed et al. “Generative adversarial text to image synthesis”. In: arXiv
preprint arXiv:1605.05396 (2016).

[146] D.J. Rezende, S. Mohamed, and D. Wierstra. “Stochastic backpropagation
and approximate inference in deep generative models”. In: arXiv preprint
arXiv:1401.4082 (2014).

[147] Y. Rubner, C. Tomasi, and L.J. Guibas. “The earth mover’s distance as a met-
ric for image retrieval”. In: International Journal of Computer Vision 40.2 (2000),
pp. 99–121.

[148] S. Ruder. “An overview of gradient descent optimization algorithms”. In:
arXiv preprint arXiv:1609.04747 (2016).

[149] D.E Rumelhart, G.E. Hinton, and R.J. Williams. “Learning Representations
by Back-propagating Errors”. In: Nature 323.6088 (1986), p. 533.

[150] Y. Saatci and A.G. Wilson. “Bayesian gan”. In: Advances in Neural Information
Processing systems. 2017, pp. 3622–3631.

[151] T. Saito and M. Rehmsmeier. “The precision-recall plot is more informa-
tive than the ROC plot when evaluating binary classifiers on imbalanced
datasets”. In: PloS one 10.3 (2015), e0118432.

[152] R. Salakhutdinov and G. Hinton. “Deep boltzmann machines”. In: Artificial
Intelligence and Statistics. 2009, pp. 448–455.

[153] T. Salimans et al. “Improved techniques for training GANs”. In: Advances in
Neural Information Processing Systems. 2016, pp. 2234–2242.

[154] T. Schlegl et al. “Unsupervised anomaly detection with generative adver-
sarial networks to guide marker discovery”. In: International Conference on
Information Processing in Medical Imaging. Springer. 2017, pp. 146–157.

[155] C. Shang et al. “VIGAN: Missing view imputation with generative adversar-
ial networks”. In: 2017 IEEE International Conference on Big Data (Big Data).
IEEE. 2017, pp. 766–775.

[156] B.W. Silverman. Density estimation for statistics and data analysis. Routledge,
2018.

75

[157] J.W. Smith et al. “Using the ADAP learning algorithm to forecast the onset
of diabetes mellitus”. In: Proceedings of the Annual Symposium on Computer
Application in Medical Care. American Medical Informatics Association. 1988,
pp. 261–265. URL: \url{https:www.kaggle.com/uciml/pima- indians-
diabetes-database}.

[158] J. Song et al. “Multi-agent generative adversarial imitation learning”. In: Ad-
vances in Neural Information Processing Systems. 2018, pp. 7461–7472.

[159] K. Sricharan et al. “Semi-supervised conditional gans”. In: arXiv preprint
arXiv:1708.05789 (2017).

[160] N. Srivastava et al. “Dropout: a simple way to prevent neural networks from
overfitting”. In: The Journal of Machine Learning Research 15.1 (2014), pp. 1929–
1958.

[161] W.N. Street, W.H. Wolberg, and O.L. Mangasarian. “Nuclear feature extrac-
tion for breast tumor diagnosis”. In: Biomedical image processing and biomedical
visualization. Vol. 1905. International Society for Optics and Photonics. 1993,
pp. 861–870.

[162] Y. Sun, A. Cuesta-Infante, and K. Veeramachaneni. “Learning Vine Copula
Models for Synthetic Data Generation”. In: Proceedings of the AAAI Conference
on Artificial Intelligence. Vol. 33. 2019, pp. 5049–5057.

[163] TensorFlow Team. TensorFlow: Large-Scale Machine Learning on Heterogeneous
Systems. Software available from http://www.tensorflow.org. 2015. URL:
http://www.tensorflow.org.

[164] R. Tibshirani. “Regression shrinkage and selection via the lasso”. In: Journal
of the Royal Statistical Society. Series B (Methodological) (1996), pp. 267–288.

[165] E. Tzeng et al. “Adversarial discriminative domain adaptation”. In: Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017,
pp. 7167–7176.

[166] P. Vincent et al. “Extracting and composing robust features with denoising
autoencoders”. In: Proceedings of the 25th international conference on Machine
learning. ACM. 2008, pp. 1096–1103.

\url{https:www.kaggle.com/uciml/pima-indians-diabetes-database}
\url{https:www.kaggle.com/uciml/pima-indians-diabetes-database}
http://www.tensorflow.org
http://www.tensorflow.org

76

[167] P. Vincent et al. “Stacked denoising autoencoders: Learning useful repre-
sentations in a deep network with a local denoising criterion”. In: Journal of
Machine Learning Research 11.Dec (2010), pp. 3371–3408.

[168] C. Vondrick, H. Pirsiavash, and A. Torralba. “Generating videos with scene
dynamics”. In: Advances in Neural Information Processing Systems. 2016, pp. 613–
621.

[169] E.M. Voorhees. “Implementing agglomerative hierarchic clustering algorithms
for use in document retrieval”. In: Information Processing & Management 22.6
(1986), pp. 465–476.

[170] K. Wang et al. “Generative adversarial networks: introduction and outlook”.
In: IEEE/CAA Journal of Automatica Sinica 4.4 (2017), pp. 588–598.

[171] C.G. Weng and J. Poon. “A new evaluation measure for imbalanced datasets”.
In: Proceedings of the 7th Australasian Data Mining Conference-Volume 87. Aus-
tralian Computer Society, Inc. 2008, pp. 27–32.

[172] Z. Xie et al. “A synthetic minority oversampling method based on local
densities in low-dimensional space for imbalanced learning”. In: Interna-
tional Conference on Database Systems for Advanced Applications. Springer. 2015,
pp. 3–18.

[173] L. Yang, S. Chou, and Y. Yang. “MidiNet: A convolutional generative ad-
versarial network for symbolic-domain music generation”. In: arXiv preprint
arXiv:1703.10847 (2017).

[174] Z. Yi et al. “Dualgan: Unsupervised dual learning for image-to-image trans-
lation”. In: Proceedings of the IEEE international conference on computer vision.
2017, pp. 2849–2857.

[175] D. Yoo et al. “Pixel-level domain transfer”. In: European Conference on Com-
puter Vision. Springer. 2016, pp. 517–532.

[176] J. Yoon, J. Jordon, and M. Van Der Schaar. “Gain: Missing data imputation
using generative adversarial nets”. In: arXiv preprint arXiv:1806.02920 (2018).

[177] M.D. Zeiler. “ADADELTA: an adaptive learning rate method”. In: arXiv preprint
arXiv:1212.5701 (2012).

[178] Z.Q. Zeng et al. “A classification method for imbalance data set based on
kernel SMOTE”. In: Acta Electronica Sinica 37.11 (2009), pp. 2489–2495.

77

[179] H. Zhang and M. Li. “RWO-Sampling: A Random Walk Over-Sampling Ap-
proach to Imbalanced Data Classification”. In: 20 (Nov. 2014).

[180] H. Zhang et al. “Self-attention generative adversarial networks”. In: arXiv
preprint arXiv:1805.08318 (2018).

[181] M.R. Zhang et al. “Lookahead Optimizer: k steps forward, 1 step back”. In:
arXiv preprint arXiv:1907.08610 (2019).

[182] J. Zhao, M. Mathieu, and Y. LeCun. “Energy-based generative adversarial
network”. In: arXiv preprint arXiv:1609.03126 (2016).

[183] Y. Zheng et al. “Generative adversarial network based telecom fraud detec-
tion at the receiving bank”. In: Neural Networks 102 (2018), pp. 78–86.

[184] J. Zhu et al. “Unpaired image-to-image translation using cycle-consistent
adversarial networks”. In: Proceedings of the IEEE international conference on
computer vision. 2017, pp. 2223–2232.

	Declaration
	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	List of Abbreviations
	List of Symbols
	Introduction
	Background
	Research Aims and Objectives
	Research Questions
	Outline

	Literature Review
	Class Imbalance
	Definition
	Solutions

	Random Over-sampling
	Synthetic Over-sampling
	SMOTE
	Borderline methods
	Clustering methods
	Feature extraction
	Probability distribution methods
	Random Walk Sampling
	Kernel functions
	RACOG
	DEAGO
	Other Methods

	Ensembles

	Hybrid Methods
	Deep Generative Models
	Definition
	Explicit models
	FVBNs
	Non-linear ICA
	Variational Autoencoders
	Boltzmann Machines

	Implicit models
	GANs
	GMMNs

	Summary

	Other Solutions
	Synthesis of Literature Reviews

	Neural Networks
	Definition
	Layers
	Activation Functions
	Gradient Descent
	Gradient Descent Variants
	Learning Rate Scheme
	Momentum
	RMSprop
	Adam

	Weight Initialisation
	Regularisation
	Batch normalisation
	Drop-out
	Early Stop
	L1 and L2 regularisation

	Summary

	GAN Methodology
	Vanilla GAN
	The Discriminator
	The Generator
	GAN Loss
	Non-Saturating GAN
	Optimal Solution

	Challenges with GANs
	Mode collapse
	Vanishing gradient

	Improved GAN Training
	Conditional GANs
	Loss Variants

	WGAN
	Wasserstein distance
	The Critic

	Improved WGAN Training

	SMOTE Methodologies
	SMOTE
	PDFOS
	Kernel Function
	Bandwidth
	Generating Synthetic samples

	RWO Sampling
	Central Limit Theorem
	Generating Synthetic samples

	Experiments
	Data
	Data Sets
	Credit Card Fraud
	Pima Indians Diabetes
	Glass Identification
	German Credit Scoring
	Breast Cancer Wisconsin

	Data Pre-processing
	Continuous Variables
	Categorical Encoding

	Train-Test Split

	SMOTE Implementations
	SMOTE
	PDFOS
	RWO

	GAN Implementation
	Software
	The Generator
	Latent Noise
	Activation Function
	Layers

	The Critic
	Labels
	Training WGAN-GP
	Generating Synthetic samples

	Logistic Regression
	Evaluation
	Confusion Matrix
	Precision-Recall and ROC curve

	Statistical Hypothesis Testing
	Friedman test
	Post-hoc Nemenyi test
	Implementation

	Results and Discussion
	Comparisons
	Performance between over-sampling techniques
	SMOTE
	PDFOS
	RWO
	WCGAN-GP

	AUC
	AUPRC

	Statistical Hypothesis Testing
	Discussion

	Conclusions and Future Research
	Conclusions
	Limitations
	Future Research

	Bibliography

