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“...in the process of training generative models, we will endow the computer with the un-
derstanding of the world and what is made up of.”
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Abstract

In binary classification problems, class imbalance occurs if one of the classes has
overwhelmingly more instances than others. This causes a significant bias in the
accuracy of Machine Learning (ML) classifiers. A pioneering and popular approach
to alleviate class imbalance is the Synthetic Minority Over-sampling TEchnique
(SMOTE). However, SMOTE is less reliant on the true underlying probability dis-
tribution of the minority class data. Probability density estimation approaches have
recently been adopted, but most of these postulate the unknown probability distri-
bution of the minority class, which can be subjective and inappropriate. Generative
Adversarial Networks (GANs) can sample from the true underlying probability
distribution without explicitly specifying its form. GANSs have been used to create
realistic samples and outperforms other deep generative models. However, there
has been limited theoretical and empirical reviews comparing generative models
such as GANs and other SMOTE density-based approaches for alleviating class im-
balance, especially for tabular data sets akin to most financial institutions.

This report compares Wasserstein Conditional GAN with gradient penalty
(WCGAN-GP) to density-based SMOTE approaches for synthetic minority sample
generation on a number of imbalanced data sets. A Logistic Regression (LR) model
is trained to detect minority cases on the imbalanced and over-sampled data sets,
compared using Precision, Recall, F1-Score and the Receiver Operating Characteris-
tic (ROC) curve on a testing data set. On average, WCGAN-GP yields better results,
followed by SMOTE, with RWO and PDFOS having the worst performance than
the Baseline. WCGAN-GP shows a statistically superior predictive performance
over SMOTE density estimation techniques on 4 of the 5 data sets used. These re-
sults show a significant potential for GANs as an alternative to SMOTE density
techniques, useful for new sample creation, data augmentation and boosting clas-

sification models.

Keywords: Class imbalance, GAN, PDFOS, RWO, SMOTE, WCGAN-GP.
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1 Introduction

This chapter introduces the problem of class imbalance, gives the research aims and
objectives of the research, research questions and an outline of the research report.

1.1 Background

Whilst Machine Learning (ML) has gained wide applications, class imbalance re-
mains an ubiquitous problem [72]. In binary classification problems, this occurs
when one of the classes has overwhelmingly more instances than others. ML clas-
sifiers tend to have skewed accuracy towards the majority class when the data is
imbalanced [104]. This results in giving a false sense of performance, thereby under-
estimating the most important class of interest (usually the minority class contain-
ing far fewer instances) [58]. This is problematic as misclassifying a minority class
can result in significant misclassification costs than for the majority case [104].

Techniques exist to alleviate class imbalance and these techniques include re-
sampling, algorithmic-level, cost-sensitive learning, ensembles and generative mod-
elling [41, 49, 58, 72]. Re-sampling techniques modify the training data such that the
distribution of the classes is evenly balanced where the majority or minority class
is either under-sampled or over-sampled. Over-sampling has been the most fre-
quently used technique than under-sampling since under-sampling eliminates im-
portant information in the majority class [72]. A pioneering and popular method to
alleviate class imbalance has been the Synthetic Minority Over-sampling TEchnique
(SMOTE) method [27]. However, SMOTE suffers from over-fitting, over-lapping
classes, noisy examples, is less reliant on the true probability distribution, alters the
original distribution of the minority classes and this may not be desirable [38, 49,
73,179].

Techniques exist to overcome these issues, however, there is no consensus on

which technique is superior and which one is appropriate in a given domain setting



[49]. There have also been few empirical studies which compare, evaluate and syn-
thesize SMOTE and its variants. There have been few approaches which sample ex-
plicitly from the minority class distribution using density-based approaches, with-
out postulating a probability distribution of the minority class. Current density-
based approaches may be subjective as they need to specify in advance the format
and structure of the minority class distribution. Generative models offer a signifi-
cant alternative yet these models have not been thoroughly explored in imbalanced
learning.

Implicit generative models can approximate the true underlying minority class
distribution and we can sample from this probability distribution without know-
ing its form in advance. The idea is to not explicitly model density but instead just
sample to generate new instances. We want to sample from a complex probability
distribution but we cannot do this directly. However, we can sample from some-
thing simple (noise) and then learn a transformation to the training distribution
using Generative Adversarial Network (GAN) [68]. GAN provides an alternative
model-based approach to create synthetic examples in a single pass. A GAN is
a combination of neural networks [149] that generate synthetic data given certain
input data [66].

GANSs have been highly successful in anime character creation [88], video gen-
eration [168], images [21, 90, 184], celebrity faces [6], super resolutions [180], text
to images [145], music generation [173], learning joint distributions and imputing
missing data [176]. This technique can generate seemingly natural and new data
samples using the true probability distribution of the data [50]. GANs are notable
better than other generative models due to the quality of samples they generate
[67, 79]. A popular GAN, called the Wasserstein GAN (WGAN) [7] is evaluated
against recent SMOTE density-based approaches, for over-sampling the minority

cases observed in a number of imbalanced data sets.

1.2 Research Aims and Objectives

The aim of this work is to accurately over-sample the minority class of interest in
a number of public available data sets using an implicit generative modelling ap-
proach and then boost a Logistic Regression (LR) model for binary classification

[116]. This work covers the following objectives:



Review over-sampling approaches for alleviating class imbalance and catego-
rize the approaches according to their taxonomies, including generative mod-
elling;

Train a LR on 5 imbalanced data sets from the Machine Learning Repository;
Use SMOTE [27], Random Walk Over-sampling (RWO) [179] and PDF estima-
tion based Over-Sampling (PDFOS) [59] to over-sample the minority cases in
each data set; and

Through the Precision, Recall, F1-Score, Area under the Receiver Operating
Characteristic (ROC) curve (AUC) [71] and Area under the Precision-Recall
curve (AUPRC), compare these techniques against the Conditional WGAN
with gradient penalty (WCGAN-GP) [7, 69, 118].

1.3 Research Questions

This work addresses these research questions:

1.

Can we improve the model yielded by LR to detect each minority case and
address class imbalance using SMOTE?

. Do SMOTE density estimation variants outperform traditional SMOTE in im-

proving LR applied on the various experimental data sets?

Can GANSs outperform the best performing SMOTE density estimation vari-
ant in improving LR applied on the various data sets?

Does the GAN provide a statistically significant performance over SMOTE,
RWO and PDFOS?

1.4 Outline

The rest of the report is organised as follows. Chapter 2 reviews the literature on

class imbalance. Chapter 3 describes how neural networks work, while Chapter 4

describes GANs. Then Chapter 5 describes SMOTE density estimation approaches.

Chapter 6 outlines the experiments conducted. Chapter 7 presents the results and

discusses them, while Chapter 8 gives conclusions, limitations and possible future

work.



2 Literature Review

This chapter reviews the literature on imbalance learning, paying attention on syn-

thetic over-sampling solutions and generative models.

2.1 Class Imbalance

2.1.1 Definition

Whilst ML has gained significant prevalence in the past few decades, class imbal-
ance remains a pervasive problem [72]. Class imbalance occurs in a supervised
classification problem when there is an unequal distribution observed in the target
class of interest by a large margin [27, 49, 72]. Class imbalance occurs due to nature
of the data space, data collection costs and limitations and absolute rarity [58, 72].
This research is concerned with binary classification problems as these have been
the most studied.

Imbalanced data sets typically have accuracy bias towards the majority class
when ML classifiers are trained and tested on them [27, 26, 72, 85]. This arises
because ML classifiers are designed to improve the accuracy by reducing the mis-
classification error. Thus they do not necessarily take into account unequal class
distributions. This problem causes a significant and an unexpected performance
behaviour for most classifiers [104], creating the class imbalance issue.

2.1.2 Solutions

A number of solutions shown in Figure 2.1 [41, 48, 58, 72] exist dealing with this
problem, the most common and influential being sampling approaches. Most stud-
ies have shown that ML classifiers show good accuracy for data sets that are bal-
anced compared to those with class imbalance [12, 27]. This chapter reviews sam-

pling approaches in detail, more especially synthetic over-sampling, as this is the



most influential and popular solution to alleviate class imbalance.
Ndaive Sampling

Synthetic

Generaftive Sampling

modelling ‘

Algorithmic- . Hwlorid
level V Sampling

Cost-sensitive Ensembles
learming

FIGURE 2.1: Taxonomy of techniques to alleviate class imbalance

Under-Sampling approaches discard useful information, reduce the amount of data
set available for training and increase the variance of a classifier [12, 49, 72, 85, 86].
Essentially, generative modelling is argued to offer a possible different alternative
to synthetic over-sampling techniques based on density estimation.

2.2 Random Over-sampling

Random Over-Sampling (ROS) randomly replicates minority class instances until
the data set is balanced. ROS creates extra information so that no information is
lost from the original data set [27]. However, this does not add any new informa-
tion. This process induces over-fitting, thereby creating longer training and model
complexity [72].

Fernandez et al. [49] argue that ROS induces a higher weight and cost to the ma-
jority class instances, causing possible further model bias. Thus it might still be hard
to classify and model correctly the clusters of minority cases using a classifier, es-
pecially in the case of over-lapping or even small disjuncts [12]. An informed over-
sampling approach called synthetic over-sampling, improves ROS and has been the

most studied and popular approach.



2.3 Synthetic Over-sampling

Chawla et al. [27] introduce a pioneering method in class imbalance popularised as
SMOTE. This section reviews SMOTE and its variants.

2.3.1 SMOTE

SMOTE creates new minority cases by linearly interpolating between two nearest
neighbour (NN) instances of the minority class [27]. Chawla et al. [27] demon-
strate that SMOTE significantly improves the effectiveness of ML binary classifiers
compared to ROS and Under-Sampling approaches. Over time, this technique has
proved to be popular with researchers, becoming a pioneer in imbalanced learning.

However, SMOTE treats all minority class instances equally and does not con-
sider the entire data space as a whole [41]. Moreover, this technique may also get
confused between minority and majority instances if there are over-laps, creating
noisy examples and further possible model bias. This technique also neglects the
probability density function (PDF) of the overall minority class [38] whilst altering
the original PDF [179]. As a result, SMOTE is notable known to over-generalise and
over-fit.

Over the past decades, SMOTE variants have been proposed to alleviate some
of these problems. These techniques can be divided into those that focus on syn-
thetic data generation using clustering techniques, density estimation, feature ex-
traction, ensembles, filtering approaches, kernel functions and more recently gen-
erative modelling [41, 49, 50, 58, 72]. This research is not able to list all of these
techniques, however we review the most popular ones.

2.3.2 Borderline methods

Usually, the best candidates to be over-sampled are determined before generating
synthetic examples using some heuristic.

Borderline-SMOTE [70] focuses on instances near the decision boundary and
these are deemed more important. ADAptive SYNthetic sampling (ADASYN) [73]
infers which points are more difficult to pick up and attempts to place a higher ratio
of synthetic data close to these points. Safe-level-SMOTE [23] generates a safe level
for each data point before over-sampling synthetic examples.



The above three techniques are some of the most popular and common SMOTE
variants and baseline approaches to compare against newer alternatives. However,
these approaches do not sample from the true underlying minority class distribu-
tion when generating new synthetic cases and they may alter the original distri-
bution of the minority class. Density-based approaches account for the true global
structure of the minority classes and may solve some of the issues above [38, 59,
179].

2.3.3 Clustering methods

These approaches adopt clustering in the minority class and over-sample following
the centroids of the clusters, based on the notion that SMOTE does not take the
cluster structure into account [10, 11, 42, 61, 126]. There are a number of these
approaches which have been shown to be better than SMOTE.

Agglomerative Hierarchical Clustering (AHC) [63] was the first attempt adopt-
ing clustering where AHC is used to over-sample minority cases inside clusters.
Other clustering-based approaches are reported such as Majority Weighted Minor-
ity Over-sampling Technique (MWMOTE) [11] and Density-Based SMOTE (DB-
SMOTE) [22], among many others. Clustering techniques also make assumptions
around the number of centroids, density, distribution and connectivity. These add
further assumptions and these models may fail to generate enough clusters espe-

cially with too few minority instances.

2.3.4 Feature extraction

Other algorithms adopt feature extraction before applying over-sampling in the re-
duced dimension. These approaches are based on the preservation of global dis-
tances or neighborhood relations between samples in the higher and lower dimen-
sion, where SMOTE is performed in the reduced space. These algorithms are partic-
ularly useful for inseparable and over-lapping classes and complex data sets [172].
The most common algorithm is t-distributed Stochastic Neighbor Embedding (t-
SNE) [108, 172] although Principal Component Analysis (PCA) [83], Autoencoder
(AE) [15] and Self-Organising Maps Over-sampling (SOMO) [61] also accomplish
this.



t-SNE reveals the underlying probability distribution structure at different scales
and preserving the global data structure better than other methods [108, 109, 172].
However, for data sets with too few variables or fewer samples, t-SNE and other
clustering techniques may not be inappropriate [49, 178]. These techniques may
also be time-consuming and complex and often are based on distance or neighbor-

hood assumptions.

2.3.5 Probability distribution methods

There are some methods adopting a density-based approach for the minority class
and then over-sample from the estimated probability distribution. This section re-

views these methods.

2.3.5.1 Random Walk Sampling

Zhang and Li [179] present Random Walk Over-sampling (RWO) which generates
synthetic minority examples by trying to preserve the variance and mean of the
minority class. Zhang and Li [179] compare RWO, SMOTE and ROS and note that
RWO was statistically better. However, RWO assumes the mean and variance of
each attribute, which exists only for continuous variables and thus this technique
may be arbitrary for non-continuous variables, despite its simplicity and ease of

use.

2.3.5.2 Kernel functions

Gao et al. [59] estimate the probability density function (PDF) of the minority class
using the Parzian-window (PW) kernel function, termed PDF estimation based
Over-sampling (PDFOS). PDFOS uses Normal kernel functions to locally approxi-
mate the PDF of the minority class. PDFOS has good theoretical components, en-
abling its practical and good results [35].

However, this approach is notable complex on its mathematical properties and
the Gaussian assumption may not always hold for some data sets. Mathew et al.
[114] consider a similar PDFOS algorithm which incorporate ADASYN, called Ker-
nel ADASYN. This approach focuses on the most important and difficult to classify
points by using a PDFOS around these points.



2.3.5.3 RACOG

Das, Krishnan, and Cook [38] generate synthetic minority examples through a Gibbs
sampler using the RApidly COnverging Gibbs algorithm (RACOG). Gibbs sam-
pling obtains samples from a multivariate PDF when sampling is impossible through
Markov chain Monte Carlo (MCMC) [62, 117]. Unlike Monte Carlo sampling meth-
ods that are able to draw independent samples from a PDF, MCMC methods draw
samples where the next sample is highly dependent on the existing sample, called
a Markov Chain [62, 117]. RACOG uses the Gibbs sampler to sample from a spec-
ified PDFE. Chow-Liu’s Algorithm [32] approximates the multivariate PDF of the
data through second-order product approximations. Then the Gibbs sampler finds
a stationary PDF for a sequence of sampled observations.

RACOG depends on two important parameters to find this stationary distribu-
tion: burn-in rate and the lag, computed using a convergence diagnostic test called
the Raftery-Lewis test [141]. Thus RACOG has slow convergence and dependence
between previous values, due to the requirement to build a Markov chain for each

minority example.

2.3.54 DEAGO

Bellinger, Japkowicz, and Drummond [16] use a Denoising Autoencoder (DAE)
[166, 167] for modeling a joint multivariate PDF of the minority class and then syn-
thetically creating samples from the learned distribution. This algorithm is called
DEnoising Autoencoder-based Generative Oversampling (DEAGO) and it can ap-
proximate the global structure of the minority distribution. Bellinger, Japkowicz,
and Drummond [16] show that DEAGO outperforms SMOTE and SMOTE boost-
ing techniques. However, this was not contrasted with other density estimation

approaches.

2.3.5.5 Other Methods

There are other methods capable for estimating a PDF and sampling from it. Bayesian
Networks (BNs) [9, 56, 150], copulas [162, 134] and generative models [67] may also
be adopted. Copulas can be used to find a multivariate PDF for uncorrelated vari-
ables and then sample from that PDF. However, BNs and copulas are limited by
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the PDF type, computational issues and strict assumptions, limiting their sample
generation capacity.

Generative models have received a lot of interest in the last few years [67]. Gen-
erative models use training observations py to learn the model p,,,4.; that accurately
mimics the observations produced by the model. Given the vast literature on gen-
erative models, we review them Section 2.5.

2.3.6 Ensembles

Another approach is the use of ensembles where a classifier’s accuracy is increased
by the use of training on different over-sampled data sets or different algorithms
and combining outputs to a single outcome [105]. SMOTE has also been extended
to include boosting and boostrapped aggregating (bagging). These approaches tend
to improve the results of SMOTE. However, they can take a long time to compute

and still do not solve the true data distribution issue.

2.4 Hybrid Methods

Other techniques include combining SMOTE with data cleaning techniques, in-
formed under-sampling techniques [12] or greedy-filtering approaches [4, 87, 143].
These hybrid approaches can also eliminate redundant and noisy instances, thereby

further improve accuracy.

2.5 Deep Generative Models

Generative models have received lots of interests from researchers for creating new
samples. This section covers a taxonomy of these techniques, with a particular focus
on GANS.

2.5.1 Definition

Given a data set with observations X, we assume that X has been generated from
an unknown PDF p;,,. A generative model p,;,o4.; mimics p,;, as close as possible.

If this is achieved, then we can sample from p,,,4.; to generate realistic samples that
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appear to have been drawn from p,,. We are satisfied if our model can also gen-
erate diverse samples that are suitable different from X. In some cases, the model
can be estimated explicitly and sometimes it can generate samples implicitly. Other
models are capable of doing both. GANSs provide no estimate of the model but are
capable of generating new data without knowing it. Goodfellow [66] provides a
taxonomy of common deep generative models show in Figure 2.2, divided into im-
plicit and explicit models. GANSs are designed to remedy most of the disadvantages
that come with explicit models and other Markov chain models.

E I » .t Approximate Variational Inference Variational Autoencoder
d -t Markov chain Deep Belief Network
e n SI y Restricted Boltzmann Machine
Tractable Fully Visible Belief Nets NADE
MADE
PixelRNN/CNN
Change of variable models Nonlinear ICA
. . Direct Generative Adversarial Minimax GAN
I m I I Clt Network Non-saturating GAN
GAN variants
= Generative Moment Matching
density Network
Markov Generative Stochastic

Network

FIGURE 2.2: Taxonomy of generative models

2.5.2 Explicit models

Explicit models specify or approximate a parameterised log-likelihood represen-
tation of the data [68]. Parameters are then estimated and learned from the data
and this requires a maximum likelihood estimation which integrates over the entire
data space and this may be intractable [98]. These approximation techniques may
not always yield the best results as some of them rely on Markov chains which are
time-consuming [68].

Two popular tractable models are fully visible belief networks (FVBNs) [53] and
nonlinear independent component analysis (ICA). Approximate methods improve
on the design of tractable models which can be computational intensive and lim-
ited [68, 110, 146]. Approximate methods use either deterministic i.e. variational
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inference or stochastic approximations i.e. MCMC approaches. Variational infer-
ence involves the use of Variational Autoencoders (VAEs) [92, 146] to approximate

Pmodel (X) using lower bounds.

2.5.21 FVBNs

FVBN estimates the PDF of the training data p,,4.(x) into a decomposed product
of one-dimensional probability distributions. This model outputs a probability for
each possible value if x is discrete and outputs a network of parameters of a simple
distribution if x is continuous. Using the generated model, sampling is done one
step at a time, conditioned on all previous steps [68].

The problem with these models is their computational complexities as they need
to generate one point at a time. Other problems include poor learning representa-
tions, over-emphasizing details over global data and not closely reflecting the true
generation process [66]. Moreover, these models have been more useful for image
synthesis than structured data sets such as tabular data [131]. GANs are known to

provide new samples in parallel, thus yielding greater speed of generation [66, 98].

2.5.2.2 Non-linear ICA

Non-linear ICA involves defining some continuous non-linear transformations of
data between high dimensions and lower dimensional spaces. The distribution of
the data ;4.1 is transformed into a distribution of a latent space z defined by p(g)
where g is some tractable transformed version of p,. The challenge in ICA is find-
ing tractable distributions in the latent space and these are limited [67]. GANSs are

known to have fewer restrictions than these models [17, 66, 68].

2.5.2.3 Variational Autoencoders

VAEs, along with FVBNs and GAN:Ss, are three of the most popular approaches for
sample generation. VAEs are an extension to AEs [15, 95, 146]. AE learns useful rep-
resentations of the data by encoding X into a compressed latent space z using q(z|x)
and then decoding z back into X using p(x|z) by minimising the reconstruction er-

ror between the original data and the deconstructed data [15]. VAE maximizes the
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following function :

log p(x) > Ez~q(z)x) [log p(x|2) + log p(z) — logq(z)] (2.1)

Unlike auto-regressive models, VAEs are normally easy to run in parallel during
training and inference [67, 95, 146]. Conversely, they are normally harder to opti-
mize than auto-regressive models [67, 110]. The encoder converts the input to latent
space representations through the mean and variance and samples can be created
from the learned representation. VAEs have been criticised to be generating blurry
samples and are intractable [67, 153].

2.5.2.4 Boltzmann Machines

Boltzmann machines rely on the use of Markov chains to model pp40(x) and to
sample from it [1, 75, 152]. A Markov chain is a process that is used to generate
samples by repeatedly drawing a sample from a transition operator [62]. A Boltz-
mann machine is an energy-based function defined as:

pmodel(x) = exp <_E(x)) /Z (2.2)

where E(x) is an energy function and Z is a normalizing factor to ensure that
Pmodel (X) sums to one [1, 67].

These methods include Restricted Boltzmann machine (RBM) [1] and Deep Be-
lief Networks (DBNs) [76, 77]. DBNs and RBMs are generative stochastic neural
networks that can estimate a PDF [1]. Samples are obtained through MCMC runs
to convergence and this can be very expensive to run [98]. These models were pio-
neers in early 2006 for deep generative models but they have been rarely used be-
cause of poor scale-ability for higher dimension problems and high computational
costs [67].

2.5.3 Implicit models

Implicit models learn to model the true distribution and define a stochastic proce-
dure to directly generate new data from a latent space. These models can be trained

indirectly without needing an explicit density function to be learned or defined.
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Some of these models such as the Generative Stochastic Network (GSN) [17] in-
volve MCMC methods which impose greater computational cost and often fail to
scale to higher dimensional spaces [67]. Generative Adversarial Networks (GANs)
[68] and Generative Moment Matching Networks (GMMNs) [98] are one of the few
implicit probabilistic models capable of sampling in parallel and in a single step.

2.5.3.1 GANs

GANs were originally invented in a landmark paper by Ian Goodfellow in 2014
[68]. The setup of the framework uses an adversarial process to estimate the pa-
rameters of two artificial neural network (ANN) [149] models by iteratively and
concomitantly training a discriminator (D) and a generator (G), as shown in Figure
2.3.
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FIGURE 2.3: GAN operation

Through multiple cycles of generation and discrimination, both networks train
each other, while simultaneously trying to outwit each other [68, 113, 130, 184].
GANs have two adversarial ANNS:

* G picks z from the prior latent space Z and then generates samples from this

distribution using ANN;

* D receives generated samples from G and the true data examples, and must

distinguish between the two for authenticity.
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Both D and G are ANNs which play a zero-sum game, where G learns to pro-
duce realistic-looking samples and D learns to get better at discriminating between
the generated samples and the true data. Once G is trained to optimality, it can
create new samples and augment the training data set. GANs can sample in par-
allel better than other generative models, have fewer restrictions on the generator
function, assume no use of Markov Chains, no variational bounds unlike VAE and
produce subjectively better quality samples than other generative models [7, 66, 67,
68, 140, 153].

Whilst GANs are gaining popularity in many applications, they have notable
issues. GANs are notoriously difficult to train properly, difficult to evaluate, the
likelihood cannot be easily be computed, suffer from the vanishing gradient prob-
lem, mode collapse, boundary distortion and over-fitting [7, 67, 153].

Mode collapse is when many latent noise values z are mapped to the same data
point x, leading to a lack of diversity in the samples that are created i.e. under-
fitting. The vanishing gradient problem occurs when D becomes perfect in its
training without giving G the chance to improve. As a result, GANs may fail to
converge and thereby leading to poor generated samples [7]. Figure 2.4 provides a
non-exhaustive taxonomy of GAN variants and improved training, including com-
mon examples [36, 79, 82, 170].
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FIGURE 2.4: Taxonomy of GAN variants

Salimans et al. [153] look at ways to improve GANSs (called hacks) while other
authors propose variants to the vanilla GAN by changing the cost function, adding
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gradient penalties (GPs), adding labels, avoiding over-fitting and finding better
ways of optimising GANSs. The first extension of GAN was the Conditional GAN
(cGAN) which gave the generator the label in the latent space, making them class
conditional [118]. Until the introduction of Deep Convolutional GAN (DCGAN)
[140], training GANs was very unstable. DCGANSs provide some further tricks
using convolutional and deconvolutional layers. Since then, more variants and
heuristics were proposed.

Wasserstein GAN (WGAN) [7] proposes a different loss function, becoming the
most studied and widely used GAN architecture ever since [82]. WGAN has been
shown to give better quality of generated synthetic data than the vanilla GAN and
alleviating most of the GAN issues [7]. Gulrajani et al. [69] further amends WGAN
through an addition of a GP to the cost function, coming with WGAN-GP.

In recent years, other loss functions which unify the GAN loss framework in-
cluding f-divergence [129], Integral Probability Metrics (IPMs) [82] and Relativistic
GANs (RGANS) [89], were proposed. The f-divergence measures the difference be-
tween pg,, and pg with a specific convex function f [129]. f-divergence GAN, IPMs
and RGAN are considered unified frameworks suitable for stronger generalization
to other loss-variants [111]. WGAN is a special class of IPMs and the most stud-
ied GAN. Other popular GAN loss variants include Least Squares GAN (LSGAN)
[112], Boundary Equilibrium GAN (BEGAN) [19], Loss Sensitive GAN (LS-GAN)
[138] and Energy-Based GAN (EBGAN) [182].

Other advanced GANs include the revolutionary Progressive Growing GAN
(PROGAN) [90] which proposes a progressive growing and steps towards GAN
performance. Other variants include Self-attention GAN [180] and BigGAN [21]
which achieved tremendous performances on Imagenet data sets. There have been
hybrids of GANs and VAEs where VAEs are used to encode the latent space to come
up with VAE-GAN [95]. For further GAN reviews, Creswell et al. [36], Hitawala
[79] and Hong et al. [82] provide a comparative overview. Lucic et al. [106] conduct
an in-depth study on GANs and note no significant performance differences on the
GAN s studied.

Fiore et al. [50] compare GAN and ordinary SMOTE on a credit card fraud detec-
tion problem. Douzas and Bacao [41] apply cGAN [118] to improve the classifica-
tion effectiveness on 12 data sets. Zheng et al. [183] compare GANs and deep learn-
ing methods for fraud detection in two large banks in China. Mariani et al. [113]
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propose Balanced GAN (BAGAN) to restore imbalance on image data sets. Mul-
lick, Datta, and Das [124] propose Generative Adversarial Minority Over-sampling
(GAMO) for imbalanced image data sets, compared against SMOTE and common
GAN architectures. GAMO outperformed the other methods on image data sets.

Armanious et al. [8] propose the learning of multi-label discrete variables for
electronic health records using medical GAN (medGAN). This study compared
medGAN, VAE, stacked RBMs and vanilla GANs and noted a significant improve-
ment on samples generated. Mottini, Lheritier, and Acuna-Agost [122] generate
new airline passenger name records using GANs. Avifi¢, Ruffini, and Gavalda [9],
Camino, Hammerschmidt, and State [25] and Che et al. [28] generate multi-label
discrete data for healthcare records in various settings.

However, these studies were not compared with other SMOTE density estima-
tion algorithms nor with other common ML classifiers. Even though there is im-
provement over SMOTE in these studies, it is not clear if GAN can outperform
SMOTE architectures which focus on density estimation. Whilst there is promising
work for GANs in handling class imbalance in other domains, this work has not
been thoroughly explored with other SMOTE density-based approaches nor with
other generative models. This research determines whether GANs may provide a

superior alternative compared to SMOTE density-based approaches.

2.5.3.2 GMMNs

GMMNs minimize the maximum mean discrepancy (MMD) between the moments
of paata and pyo4e and are known to be simpler than other generative models [98].
Moment matching evaluates whether the moments of the true distribution pye(x)
match those of the data pg,,(x) through MMD. This approach is similar to GANs
in terms of training except using a different loss function which leads to faster sam-
pling. However, GMMNSs have received less attention than GANs and VAEs, limit-
ing their sample generative scheme [7, 67, 79].

2.54 Summary

There are a number of deep generative models for synthetic sample generation.
Some of the models are explicit with an intractable likelihood and inference. Some

models are only approximate and generate blurry samples. Other methods do
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not sample in parallel, are complex and rely on Markov chains which are time-
consuming. GANSs are attractive as they do not make any explicit density estima-
tion and they remedy most of these issues. GANs have generated extremely good
examples in many domains such as images [21, 90, 118, 184], videos [168], music
[40, 173], medicine [8], texts [145], anime creation [88] and imputation [97, 176].

2.6 Other Solutions

Cost-sensitive learning incorporates mis-classification costs in the evaluation metric
[72]. This approach is more computationally efficient than data-level solutions [58].
However, mis-classification costs are often unknown and difficult to set, making
this method less popular than sampling techniques [72]. A different perspective is
phrasing the problem as a one-class classifier and treating it as an anomaly detection
approach [58, 72, 105]. However, SMOTE and its variants remain the most studied
and widely used solutions [49].

2.7 Synthesis of Literature Reviews

Data-level solutions such as over-sampling are generally better than under-sampling
techniques. Specifically, SMOTE is the pioneering and popular method in imbal-
anced learning. However, this approach has its limitations such over-lapping classes.
SMOTE variants have been designed to address some of its issues. However, most
of these techniques still neglect the true probability distribution, could lead to infor-
mation loss and altering the probability distribution [38, 41, 179]. Other approaches
are also subjective such as distribution-based, clustering-based and kernel-based
functions. GANs may be useful in augmenting the minority class by implicitly gen-
erating new synthetic samples from the true underlying probability distribution,
unlike other SMOTE explicit density-based approaches.

Whilst each of the SMOTE variants have been shown to outperform the original
SMOTE algorithm, there is no consensus on which approach is optimal or best in a
given setting. Moreover, there have been few studies which systematically compare
SMOTE taxonomies, particularly those relying on the PDF approach [49]. This work
has also been less explored for tabular studies [41]. Since GANSs are entirely based

on deep learning, a theoretical literature on ANNSs is covered in Chapter 3.
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3 Neural Networks

There are different types of ANNSs for various tasks such as tabular data, sequences,
text and images. This section deals with fully connected layers, termed Multi-Layer
Perceptron (MLP), for tabular data. Both MLPs and ANNSs can be used interchange-
ably. This chapter describes ANNSs as it forms the foundation work for GANs.

3.1 Definition

From a statistical viewpoint, an ANN represents a nested combination of several
functions stacked sequentially to yield a desired output [67]. An example of an

ANN is shown in Figure 3.1. Below we describe each key operation in detail.
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FIGURE 3.1: A fully connected MLP example with three layers

3.2 Layers

An ANN has input features, hidden layers and the target which gives the resulting
output [67]. Deep Learning is concerned with many complex layers of the ANN.
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Each input feature is assigned a weight 6 which represents its importance. Hidden
layers receive inputs from prior nodes beneath them and propagate the output to
other hidden layers above them [67, 120].

As anillustration, Figure 3.1 shows an ANN with three layers, with two-dimensional

I _
P =

21(©; + b)), x; is the input, x is the bias term, @?i is a weight parameter for each

input, two layers with three units and one output layer with one unit, where u

layer and hy(x") is the predicted target. This ANN can be a regression or a classifier,
depending on the activation function in the output.

3.3 Activation Functions

An input X is multiplied by a weight 0, results added together and the resulting
sum flows through an activation function. Activation functions introduce non-
linearities and transmit the resulting output into the target output [67, 120], re-
stricting the output to a certain finite value [54]. A key characteristic of activation
functions is that they must be continuously differentiable. Table 3.1 lists common
activation functions where z is the result of the weight matrix ® multiplied by the

feature vector X and g(.) is the activation function.

Activation Function ‘ Formula

Linear g(z) =z

Sigmoid g(z) =1 +e>1<p,z
Hyperbolic tangent (tanh) g(z zgi ;Eﬁg:z
Rectified Linear Unit (ReLU) [65] z) = max (0,z)

g

Leaky ReLU [107] I'§
Parametric ReLU (PReLU) [74] g
8

8

= max (nz,z)
z) = log (1 + exp?)
z) = z.sigmoid (Bz)

Softplus [125]
Swish [142]

()
()
(2)
(z) = max (0.01z, z)
(2)
(2)
(2)

TABLE 3.1: Taxonomy of activation functions for ANNs

The linear activation function is not as useful for complex and non-linear classifi-
cation problems. The sigmoid outputs a vector where each element is a probability,
bounded between 0 and 1 and is typically adopted in the final layer for binary clas-
sification problems. ReLU ranges between zero and infinity and is known for being
robust against vanishing gradients [34, 65, 107]. Leaky ReLU [107] solves the dying
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ReLU problem. The tanh function is bounded between —1 and 1 and has been a
default activation function in the hidden layers until ReLU was proposed [65]. The
tanh function gives values of different signs which makes it easier to decide which
scores to consider in the next layer and which to ignore. However, it shares the
unfortunate weakness of vanishing gradients with the sigmoid activation function
[34, 65, 107].

Parametric ReLU (PReLU) [74] is of the same form as Leaky ReLU except that
it has a scalable and learnable parameter a. Softplus [125] is a smoother version
of ReLU [142]. Ramachandran, Zoph, and Le [142] show that the Swish activation
function behaves in a similar manner as the ReLUs and worked better on many
challenging data sets. It remains to be seen if recent activation functions such as
Swish [142] and Mish [119] will replace ReLU and Leaky ReLU in the future.

3.4 Gradient Descent

The weights © are optimised to minimise a loss function [67]. This means that
training an ANN means to show it many examples, make predictions through feed-
forward computations and then compare them with the actual labels to compute
the resulting loss. Finally, the ANN adjusts these weights from all nodes until it
gets a desired minimum loss value and thus optimal weights. Mathematically, for

a binary problem, the loss function J(6) to be minimised is:

J©) =" [ﬁ 33 og (a(x)) + (1 -3 ) tog (1 - h9<x<f>>k)] (3.1)

i=1k=1

where N is the size of the data set, hg(x(i)) k is the predicted target, 6;’s are the
unknown coefficients, X is the feature vector and y]((i) is the actual target. Gradient
Descent (GD) optimises the above loss function [148]. GD finds the most optimal
weights O iteratively [75] using the following process:

* Initialise weights (9,50) randomly using He or Xavier initialisation;

* Loop until convergence i.e. until sufficient number of epochs t are reached:

e Compute the gradient %9?) ;

¢ Update weights 6, using the learning rate # to move towards the minimum

loss, 9,£t) = Ql(ct_l) -1 —a]a((i))"
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* Return weights ©.

Other optimisation approaches can be used such as second order approxima-
tions i.e. Newton’s method. However, these methods tend to be infeasible for high
dimensions and large training data sets [148]. Thus GD is the most popular and
common approach for solving ANN weights.

3.4.1 Gradient Descent Variants

The above process is called Batch GD (BGD) as the weights are updated using the
entire data set [148]. This can be very slow, intractable and does not allow to update
weights online [44, 91, 177]. Stochastic GD (SGD) updates the weights one sample
at a time [148].

However, SGD usually performs frequent updates and this leads to volatility
as there might be fluctuations and over-shooting [101]. A compromise between
BGD and SGD is called mini-batch GD and this updates weights using a batch of m
training samples. Typically, mini-batch training samples can be anything from 50
to 256 but this could vary with different domains [148].

3.4.2 Learning Rate Scheme

However, even though mini-batch GD tends to be better than BGD or SGD, it may
still be slow in convergence due to 1 [44, 91]. The learning rate 7 specifies how
fast an ANN updates its weights. If 7 is too small, the model may not converge or
descend slowly and this can be computationally expensive [101]. If 7 is too large,
the model may take gigantic descents and miss the global minimum [43, 91, 128].
Adaptive learning rates have been proposed to improve 1 (shown in Table 3.2).

Basically, the algorithms incorporate a term to adapt 77 or use exponential mov-
ing average of current and/or past gradients [91, 119, 181]. Adaptive Moment es-
timation (Adam) [91] is the most popular and recommended algorithm for solving
weights of an ANN [101, 144, 148].

Table 3.2 shows a taxonomy of GD optimisers, differing on two ways on ei-
ther modifying # or modifying the gradient component or both. We describe three
popular GD optimisation variants as these are typically used in most deep ANNSs:
Momentum [139], Root Mean Square propagation (RMSprop) [78] and Adam [91].



23

GD optimiser | Year | Learning rate | Gradient
Momentum [139] 1964 V
Adaptive gradient (AdaGrad) [44] 2011 | /

Root Mean Square propagation (RMSprop) [78] | 2012 | |/

Adaptive delta (Adadelta) [177] 2012 | /

Nesterov Accelerated Gradient (NAG) [128] 2013 V
Adaptive Moment estimation (Adam) [91] 2014 | / vV
AdaMax [91] 2015 | / vV
Nesterov Adam (NAdam) [43] 2015 | v/ V
AMSGrad [144] 2018 | \/ V
Rectified Adam (RAdam) [101] 2019 | v/ v
LookAhead, Ranger [181] 2019 | v/ vV

TABLE 3.2: Gradient descent optimisation variants

3.4.2.1 Momentum

Momentum helps in accelerating SGD in the correct direction and dampening os-
cillations [139] using the following equation:

Opi1i =01 — Vii

9/ (©)

Vii= Vi1 + T30,
i

where V; is the velocity representing the exponential moving average of past gra-
dients and <y is the momentum (typically 0.9) [148]. Values for V; are typically ini-
tialised close to zero.

3.4.2.2 RMSprop

RMSprop [78] chooses a different # for each weight ®, formulated as follows:

01, = 01 — 1
E [gf,l} +¢€
E[gf,i] =7E [gtzfl,z} +(1—17) 8?,1'
9] (®)

8t = 00, ;
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where typically v = 0.9, 7 = 0.001, € avoids null division and E[g?]; ; represents
the running average of past gradients at time step ¢.
3.4.23 Adam

Adam is a combination of Momentum and RMSprop. Kingma and Ba [91] show a
superior performance of Adam over other optimisers. Adam is defined below:

11, = 61 — —d—iity
+1, , \/UTt‘i‘S
N my
my = ————
1- B
A (4
Ot = ———~
1- B}

my = Bimi_1+ (1—P1) g
vy = Bovs_1 + (1 — B2) 8

where 7i1; and 9; are bias-corrected first m; and second moment estimates v; of
the gradients respectively, typically initialised to 0’s. The parameters can be esti-
mated via cross-validation approach or using default values proposed by the au-
thors as per Keras documentation [52, 91, 148].

In general, Adam has been empirically shown to work well in practise and
compares fairly well with other optimisers [52, 91, 101, 140, 144, 148]. However,
it remains to be seen if recent optimisers such as Rectified Adam (RAdam) [101],
LookAhead and Ranger [181] will consistently outperform Adam in the future.

3.5 Weight Initialisation

To conduct GD, weights © needs to be initialised. The weights can affect how
quickly or if at all the local minimum is found by the network training algorithm
[66], known as the exploding gradient problem.

Two popular approaches are the He (if using ReLU/Leaky ReLU in the hid-
den layers) [74] and Xavier (if using tanh in the hidden layers) [64] initialisation.
He initialisation initialises weights from a standard Gaussian distribution and then
multiplied by the square root of (2/n;) where n; is number of input units for that

layer. Xavier initialisation works by replacing 2 with a 1 instead.
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3.6 Regularisation

The specification of many of the hyper-parameters in ANNs could often cause over-
fitting or under-fitting [67]. Regularisation is a practice in ML that is used to curb
over-fitting. Typically, batch normalisation [84], drop-out [160], early stopping, L1
and L2 regularisation [54, 164] can be used.

3.6.1 Batch normalisation

Batch normalisation standardizes hidden layers such that they have a mean 0 and
unit standard deviation for each training mini-batch as units flow through each
layer [84]. In practise, this results in faster, more stable training and a regularization
effect [84, 140].

3.6.2 Drop-out

In drop-out, some units in the layer are temporarily excluded at random from the
training [160]. The drop-out parameter is typically in the range [0, 1] with 0.5 the
most popular value for retaining the output of each layer [66, 140, 160]. This can be
implemented per layer in the network. This forces the training process to be more
noisy, allowing each layer to take flexible responsibility for the inputs.

3.6.3 Early Stop

GD proceeds in epochs which consist of using the training set entirely to update
each parameter [148]. Initially, weights © are initialised. Then at each epoch, the
weights are updated using partial derivatives using any GD optimiser until the
process the weights do not change much i.e. until convergence [64, 74]. Typically,
we require many epochs until this convergence and then we stop. Early stop is a
practice where training is stopped when the cost starts increasing steadily instead
of decreasing. One can then stop training the model at that epoch.

3.6.4 L1 and L2 regularisation

Regularisation enforces the ANN to learn a less complex model by adding a penal-
ising term Equation 3.1 [164].
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L1 regularisation performs sparse modelling by adding A Z,‘le 0 to Equation
3.1 where A is the importance parameter. This shrinks some coefficients to zero,
yielding to implicit variable selection. This method is preferred for model explain-
ability. L2 regularisation or ridge regression adds A 2%:1 62 to Equation 3.1. This
is typically preferred for maximising model performance [54]. Elastic net combines
both L1 and L2 regularisations. Hyper-parameterisation can be done in order to

chose which approach is desirable.

3.7 Summary

There are a number of parameters to tune in ANNSs. Typically, weight initialisation,
activation function, 7, the number of layers, regularisation approach, the number
of neurons, GD optimiser and the number of epochs are required before training an
ANN. There is no best approach but some heuristics and best practise are typically
followed. In this work, ANNSs provide theoretical foundations for GANS.
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4 GAN Methodology

This chapter describes in detail the theoretical operation of GANSs, their challenges
and tricks to improve their training. Throughout this paper, it is assumed that both
GAN networks are implemented with ANNS.

4.1 Vanilla GAN

This section describes the original GAN formulation, called MiniMax GAN (MM-
GAN). This is the baseline model over which all other variants are based.

41.1 The Discriminator

The discriminator (D) receives generated samples from a generator G and the true
data examples from p,,(x), and must distinguish between the two for authentic-
ity through a deep ANN [68]. The resulting output Dy, (x) for an input x is the
probability of x being sampled from p,,(x) instead of pg, where pq is the implicit
distribution defined by G. The vector ©; represents learned parameters from D.
The discriminator’s goal is to yield D(x) near 1 for x ~ p4,s, and D(G(z)) closer
to 0 for p,(z) using the sigmoid function in the output layer. This is achieved by

maximising D’s loss over 0;:

IpM N = B [108 Doa (x)] + Ezep o [log(l N D"d(G"g(z))] @D

4.1.2 The Generator

The generator (G) randomly picks a sample z from the prior latent space defined by
p(z) and then generates samples from this distribution using an ANN. This deep
ANN must learn the parameters @, given an input z ~ p.(z), that will give the
output Ggg(z). G is trained to fool D i.e. to make D’s output for fake/generated
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sample D(G(z)) closer to 1. The parameters of G are learned by minimising G’ loss
over O,:

]é/IMfGAN =Ez p.(2) [108(1 - Ded(GOg(Z))} (4.2)

4.1.3 GAN Loss

Combining the losses for D and G, GANs solve the following minimax game in
alternate steps through GD:

i A 0 [10g Dy, (x)| + Bz (c) [log(1 — Dy, (Gog(2)|  43)
The above losses for D and G are the original formulation proposed by Goodfellow
in 2014, called minimax GAN (MM-GAN). Since we are minimising over 6, and
maximising over 0, training of GANSs alternate between GD on G and gradient as-
cent on D [67]. Typically, for every training of G, D is trained k times although an
optimal choice is debatable among researchers. This is shown in Algorithm 1.

Remark 1. Gradient based updates on the ANN can be accomplished using any of the GD
optimisers reviewed in Chapter 3. Typically, SGD with Momentum for D, RMSProp or
Adam for G tend to work well in practise [68, 140].

4.14 Non-Saturating GAN

While the above loss function is useful for theoretical results, unfortunately it does
not work well in practise and there are challenges getting the GAN to convergence,
stabilise its training and getting diverse samples [7, 68, 118, 140, 153]. In practice,
rather than training the above loss function for G, to provide better gradients in
earlier training, Goodfellow et al. [68] suggest to maximise the following objective

function for G instead:

JETOMN — By, () 10g (Doa(Gog(2)) (4.4)

This version of GAN is called non-saturating GAN (NS-GAN) and is typically
used as the benchmark in most studies and in practise. This leads to the following
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NS-GAN loss function:

max Hb?X]EXdi,,m(x) [log Dy, (X)} +Ez p.(z)log (Ded(GGg(Z)) (4.5)
8

With this new loss function, we alternate between gradient ascent on D and

gradient ascent on G. The algorithm presented below is based on the original MM-

GAN formulation, however, it can easily be tweaked to represent NS-GAN.

Algorithm 1 Mini-batch SG ascent of GANs with the original objective for MM-
GAN [68]. The number of steps to apply to D, k, is a hyper-parameter. For every
training of G, we train D k times. Goodfellow et al. [68] used k = 1.

1: for number of epochs do
2:  update the discriminator
3:  for k steps do

4: o Sample mini-batch of m noise samples {z(1),...,z("™} from the noise
prior pe(z).
. Sample mini-batch of 1 true examples {x(1), ..., x(™)} from the train-
ing data distribution pga,(x).
. Update the discriminator D by ascending its stochastic gradient on

these mini-batches:

1 m
A9dﬁz

i=1

g (+) +105 (1- (60 )|

5.  end for
6: update the generator
7: e  Sample mini-batch of m noise samples {z(l), . ,z(’”)} from the noise

prior pe(z).
e Update the generator by descending its stochastic gradient computed
on this mini-batch:

Aeg%i_illog (1 -D (G(zi)>> .

8. end for
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4.1.5 Optimal Solution

Theoretically, it can be shown that for pg = pjas,, the GAN zero-sum game in Equa-
tion 4.3 has a global optima. Given enough capacity for both networks and D is
trained to optimality for a fixed G, convergence of the GAN algorithm is guaran-
teed [68, 111, 118, 129, 140]. The optimal discriminator D (x) for a fixed G is:

* o Pdata(X)
DG(x) = 5 () + pe®) (4.6)

Assuming that D is perfectly trained and if we substitute D} (x) into Equation
4.3 for G’s loss, this gives rise to the Jensen-Shannon (JS) divergence [100]. The JS
divergence can be written as a function of the Kullback-Leibler (KL) divergence [93,
94].

Definition 1. The KL divergence between two probability distributions pga, and pg is
defined as

ata X
KL(Pdam,Pg) = Dxki. <pdata||pg) = /Pdata(x) log <—Pd d ( )> dx

Definition 2. The |S divergence between two probability distributions pga, and pg is
defined as

1 ata T 1 ata T
JS(Pdatas Pg) = Dys (PdamHPg) = 5KL (Pdatmw) +5KL (pg, Pdata T Pg t2 Pg)

If we substitute D}, (x) into Equation 4.3, the minimum loss for G is reached if and

only if pg = Pgata, thus one can show that:

Jo = —10g4+2JS ( paatar Py ) (47)

This equation tells us that when D has no capacity limitation and is optimal,
the GAN loss function measures the similarity between pg4,;, and p, using JS di-
vergence. However, although the above results provide a nice theoretical result, in
practise, D is rarely ever fully optimal when optimising G [68]. Thus alternative
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GAN architectures have been proposed to fix this issue and to get closer to opti-
mality. Below we describe what causes this failure to convergence and how to fix
it.

4.2 Challenges with GANs

GAN:Ss are notoriously difficult to train properly, difficult to evaluate, the likelihood
cannot be easily be computed, suffer from the vanishing gradient problem, mode
collapse, boundary distortion and over-fitting [7, 36, 67,79, 82, 99, 153]. This section
describes key challenges on GAN training.

4.2.1 Mode collapse

Mode collapse is when many latent noise values z are mapped to the same data
point x, leading to a lack of diversity in the samples that are created i.e. under-
titting. This is regarded as the most significant problem with GANs [99, 111]. Many
studies have spent lots of time in varied contexts to fix this.

4.2.2 Vanishing gradient

This occurs when D becomes perfect in its training without giving G the chance
to improve. As a result, GANs may fail to converge and thereby leading to poor
generated samples [7].

4.3 Improved GAN Training

There are many GAN architectures which avoid the problems that come with the
vanilla GAN. We briefly describe some of the most common and popular GAN
solutions. Given the vast number of taxonomies, we are not able to cover all of

them but only discuss the most popular and those subsequently used in this work.

4.3.1 Conditional GANs

The first extension of GAN was the Conditional GAN (cGAN) which gave the gen-
erator the label Y in the latent space, making them class conditional [30, 118, 130].



32

Most of the GAN variants can be modified to include cGAN. cGAN allows to cre-
ate diversified samples and forcing G to create specific samples and thereby fixing
mode collapse problem.

4.3.2 Loss Variants

There are a number of GAN architectures which change the loss function to im-
prove GAN training and stability. The loss function for GAN measures the similar-
ity between py,, and pg using JS. Unfortunately, JS tends not to be smooth enough
to ensure a stable training [82, 111]. Broadly, there are two loss function groups with
better properties i.e. f-divergence [129] and IPM [123]. Among these loss groups,
WGAN is arguably the most popular and well-studied [79, 82, 170]. WGAN is con-
sidered a general unified framework under the recently proposed Relativistic GAN
(RGAN) [89]. Thus we adopt WGAN in this work.

44 WGAN

This section describes WGAN and its improved training using WGAN-GP.

4.4.1 Wasserstein distance

IPM generalises a critic function f belonging to an arbitrary function class where
IPM measures the maximal distance between two distributions under some func-
tional frame f [79]. Among the IPMs, the Wasserstein distance is the most com-
mon and widely used metric [111]. Informally, the Earth mover (EM) [147] distance
W (Pdatas Pg) measures the minimal changes needed to transform p into py,. More
formally, EM between two probability distributions p,, and py is:

44 (pdata/ Pg) = ’Y~H(iPI;fm/Pg) E(x,y)wy [“ xX—Yy |” (48)

where IT( ) represents a set of all joint probability distributions whose marginal

PdataPg
distributions are respectively pq,(x) and pg(x). Precisely, y(x,y) is a transport
plan i.e. percentage of mass that should be moved from x to y to transform p, into

Pdata- The infimum in Equation 4.8 is intractable as it is tricky to exhaust all the
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elements of I . This is solved using the following functional format:

Pdatarpg) [7]

144 (pdatar Pg) = sup Exwpgata [f(X)] = Exmpg [f(2)] 4.9)
Il <1

where the supremum is taken over a 1-Lipschitz function f. A function f is 1-
Lipschitz if for all x1,xp @ |f(x1) — f(x2)] < |x1 — x2].

4.4.2 The Critic

In WGAN, D’s output is not a probability anymore but can instead be any number
and for this reason, D is typically called the critic. The WGAN critic tries to max-
imise the difference between its predictions for real samples and generated samples,
with real samples scoring higher. Arjovsky, Chintala, and Bottou [7] force the critic
to be 1-Lipschitz continuous for the loss function to work well:

]WGAN - gleavi]( IEX’Vpdatu(x) [D(X)] + IEZNPZ(Z) [1 - D(G(Z))} (410)

where W is the set of 1-Lipschitz continuous functions. Typically, to enforce the
Lipschitz constraint, the critic weights w are clipped to lie within a small range,
usually [—0.01,0.01] after each training batch [7, 69].

The critic is trained to convergence so that the gradients of G are accurate, thus
removing the need to balance the training of G and D by simply training D several
times between G’s updates, to ensure it is close to convergence. Typically, 5 critic
updates to 1 generator update is used [7]. The WGAN training algorithm is shown
in Algorithm 2 as per the original paper [7]. WGAN used the RMSProp version of
gradient GD with a small learning rate and no momentum [7]. However, Adam

may also be used as it is a combination of RMSProp with Momentum.

4.5 Improved WGAN Training

Even though WGAN has been shown to stabilise GAN training, it is not generalized
for deeper training due to weight clipping which tends to localise most parameters
at —0.01 and 0.01 [69, 111]. This effect dramatically reduces the modelling capacity
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Algorithm 2 Wasserstein GAN [7]. Default experiments used 1 = 0.00005, ¢ = 0.01,
m = 64 and ngjtic = 5.

Require: 7, the clipping parameter c, the batch size m, the number of iterations of
the critic per generator iteration n,.
Require: initial critic parameters wy, initial parameters of the generator @
while 6 has not converged do
2. fort=0,--- 1 do
Sample mini-batch of 7 noise samples {z(1),...,z(™} from the noise prior
pg(z).
4: Sample mini-batch of m true examples {x(1), ..., x(™} from the training
data distribution p .4, (x).

8w < Ay [% Yty fw <x(i)> - %2?1:1 fo (ge <Z(i))>]

w < w + 11.RMSProp (w, gw)
w < clip (w, —c, c)
end for
6: Sample mini-batch of m true examples {x(1),...,x(")} from the training data
distribution pgu,(x).

80 < —Doy X1y fo (ge(z(i))>
0 < 0+ 1.RMSProp (©, gp)
end while

for D. Gulrajani et al. [69] further amend WGAN through an addition of a gradient-
penalty (GP) to the loss function, coming with WGAN-GP. In total, three changes
are made to WGAN critic to convert it to WGAN-GP: include a GP to the loss func-
tion; do not clip critic weights; and do not use batch normalisation layers in the
critic. WGAN-GP defined using the following loss function:

Extpan) (D] + Ezp o) [1 = D(G(2))] + Aty [ (I AD() 2 ~1)7]
(4.11)
where ¥ samples uniformly along the straight line between points sampled from
Pdata and pg and A is the GP term. Gulrajani et al. [69] show a better distribution
of learned parameters compared to WGAN and this method has been the default
method in most GAN loss variants.
We adopt the conditional version of WGAN-GP, called WCGAN-GP, as an al-
ternative to SMOTE density estimation approaches. Once WGAN-GP is trained to

convergence, G can be used to create new samples by feeding it the latent space Z.
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5 SMOTE Methodologies

This chapter describes the theoretical operation of each SMOTE density estimation
approach chosen in this study, i.e. SMOTE, PDFOS and RWO. We did not consider
RACOG due to its relatively high computation requirements.

51 SMOTE

Considering a random minority instance x, a new instance s is generated by con-
sidering its k-NNs. These k-NNs are found by using the Euclidean distance metric
[27]. Initially, an instance y is generated at random from the k-NNs. Then a new

synthetic minority instance s is generated as follows:
s=x+a(y—x) (5.1)

where & is randomly generated from the Uniform distribution [0,1]. SMOTE
parameters are the value of k and the number of minority cases to generate. The
number of k-NNs can be varied such that an optimal metric is found, whilst re-

stricting the number of generated instances to ensure a balanced class distribution.

5.2 PDFOS

PDFOS [59] uses the Parzen-window (PW) method [132], a widely used non-parametric
statistical method to estimate a kernel density estimate (KDE) for a specific point
from a sample. This is done by a mixture of continuous distributions K, called ker-

nels, that are centered at each data point and have bandwidth of h.
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5.2.1 Kernel Function

Denoting the unknown PDF generating the minority class set by p(x), then a general
KDE for p(x) is formulated as:

P (x) = mlhd ZK(( thi)) (5.2)

where K is a differentiable non-negative kernel; x is the feature vector; d is the
number of features; m is the number of minority class examples and 4 is the band-
width. Due to its convenient mathematical properties and popularity, a multivari-
ate d-Gaussian kernel function is typically adopted. The PDF of a d-Gaussian func-

tion with a mean of 0 and co-variance matrix ¥ is:

1 [
Qrdet(®)) F (‘E” x ) (5:3)

. N\ m
Define ST = x; = (w(l%, e ,w(l;izl as minority class instances, then an unbi-

ased co-variance estimate of S™ is given by:

CIDT(x) =

s LY ) (-5 (5.4)

m i=1

where ¥; = L Y7 | x;. PDFOS uses the kernel function ®;(x) = ¥Y (%) where hiisa
bandwidth that needs to be estimated.

5.2.2 Bandwidth

The bandwidth / is determined using the mean integrated squared error (MISE)
[156], by minimising this function:

2
MISE(h m2 i Z Z‘I’h — ——¥,(0) (5.5)

i=1j=1

where ¥, ~ Y, Vi-2¥," Typically, using Silverman’s approach [156], h is ini-

4 e
hSilverman = m (56)

tialised as
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where d is the number of variables and m is the size of the minority cases. SGD

can be used to find an optimal / value.

5.2.3 Generating Synthetic samples

After a suitable & is found, synthetic sampling for a new instance s is accomplished
using:
s = x;+ hRr (5.7)

where x; € ST, 7 ~ N%(0,1); N%(0,1) is a multivariate d-Gaussian distribution
with mean 0 and variance 1; r is a sample from this distribution and R is an upper-
triangular Cholesky decomposition of the positive-definite unbiased co-variance
matrix (U) of the minority class defined as U = R.RT. For the PDFOS algorithm to
work, U should be a strict positive-definite matrix [35, 59].

Algorithm 3 PDFOS [59]

Require: ST = {x; = (w(i%,- > ,w(i;}l’-”:l, minority class instances.
Require: T, the required number of synthetic minority instances to over-sample.
Initialise S’ = @.
Find for i which minimizes MISE(h).
Solve for U the unbiased positive definite co-variance matrix of S*.
Compute U = R.RT with Choleski decomposition.
fori=1,...,Tdo
Randomly choose x € ST.
Randomly pick r from N¥(0,1).
Generate a synthetic sample using S’ = S’ U {x + h.R.r}.
end for
return S, the synthetic minority cases.

5.3 RWO Sampling

Random Walk Over-sampling (RWO) [179] generates new minority class instances
with approximately the same mean and variance as the original minority class data.
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5.3.1 Central Limit Theorem

Given a collection of minority class variables, Wy, - - - , Wy, with mean E(W;) = u
and variance Var(W;) = ¢? < oo, central limit theorem (CLT) states that:

lim P [@(w —u) < z] =¥ (z) (5.8)

o

where W = Ly W, ¥ ~ N(0,1) and thus Zf\_/% — N(0,1). This idea

generates synthetic samples that conform to the sample mean and variance of the

original data.

Algorithm 4 RWO [179]

Require: ST = {x; = (w(ii,- . ,w(i[)i};.”zl, minority class instances.
Require: T, the required number of synthetic minority cases to over-sample.
Initialise ' = @.
foreachj=1,...,ddo
if j — ith variables is continous then

! 0 o i
/ m _ 1= ]
0-]' - m —i=1 wj m

end if
end for
Assign M = %
fort=1,...,Mdo
fori=1,...,mdo
forj=1,...,ddo
if j — ith variables is continuous then
Pick r ~ N(0,1)
W;(j) = w;(j) —r; X \/%
else
Pick w; uniformly over {(w(lj)., e ,w(m)}
end if
end for
S/ = S/ U {(wl,- e ,wd)}
end for
end for
S’ = Pick T random fraud cases from S’
return S, the synthetic minority cases
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5.3.2 Generating Synthetic samples
)

Let S* = {x; = (wli),---, w(il)jl}l’.”:1 be the minority class instances. Suppose that
we fix some j € {i,---,d}, and assume that the j — ith column is continuous with
mean u; and variance (7]-2. Then synthetic cases are created as follows where ; is a

new minority class instance:

Ny . o ,

Wi (j) = wi(j) —rj x \/—lﬁ, ie€{1,2,3,...,T},j€{1,2,3,...,m} (5.9)

where T is the number of synthetic cases to create; m is the original number

of minority examples; 0; is the standard deviation for the ith attribute of w and
r ~ N(0,1). It can be shown that the generated instances have the same mean and

variance as the original minority class data [179].
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6 Experiments

This chapter outlines the experiments of comparing SMOTE density-based approaches
and WCGAN-GP for synthetic data generation.

6.1 Data

This section describes the data sources, data sets and any pre-processing applied

before the LR model is trained on the original and over-sampled data sets.

6.1.1 Data Sets

We considered 5 publicly available imbalanced data sets from the Machine Learning
Repository UCI. The data sets are described below and shown in Table 6.1.

Imbalanced Data Set Majority | Minority| Number | Numeric | Ordinal

Cases Cases of Fea- | Features | Features
tures

Credit Card Fraud 284,807 | 492 31 31 0

Pima Indians Diabetes 500 268 8 8 0

Glass Identification 144 70 9 9 0

German Credit Scoring | 700 300 20 14 6

Breast Cancer Wisconsin | 357 212 28 28 0

TABLE 6.1: Imbalanced data sets used in the experiments

6.1.1.1 Credit Card Fraud

European public credit card fraud transactions made in 2013 are utilised [37]. This
data is highly imbalanced, with 492 fraudulent transactions out of a total of 284, 807
transactions, representing a mere 0.172% of fraud cases. This data set contains 31
anonymised numeric features (Time, Amount, V0,V1,..V28) and the Class indicator
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showing 1 for frauds and 0 for non-fraudulent cases. The goal is to predict whether

a transaction is fraudulent or not.

6.1.1.2 Pima Indians Diabetes

This data set contains the prediction of the onset of diabetes within 5 years in Pima
Indians given some medical details, representing 34.90% of diabetic cases out of a
total of 768 women [157]. There are 8 medical variables: plasma glucose concentra-
tion, diastolic blood pressure, triceps skin fold thickness, serum insulin, body mass
index, number of times pregnant, diabetes pedigree function and age in years. All

the variables are numeric.

6.1.1.3 Glass Identification

This data set is used to determine whether the glass type is float or not in terms
of their oxide content [47]. There are 32.71% of float glass types out of a total of
214 cases. The original data was a multi-class classification problem. In this report,
we considered the binary version of the data by choosing the smallest class as the
minority class and collapsing the rest of the classes into one as was done in the
KEEL [3] imbalanced data set repository. There are 9 real variables.

6.1.1.4 German Credit Scoring

This data set is a German Credit Scoring problem from the UCL Machine Learning
Repository. There are 1000 observations with 20 variables. The dependent vari-
able is the evaluation of customer’s current credit status which indicates whether
a borrower’s risk is good or bad. There are 14 numeric variables and 6 categorical

variables.

6.1.1.5 Breast Cancer Wisconsin

This data set represents the characteristics of a cell nuclei that is present in the digi-
tised image of a breast mass [161]. The data is used to predict the presence of benign
or malignant cancer, with 37.25% being malignant samples from a total of 569 nu-

cleus cases. There are 28 real-valued variables for each cell nucleus.
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6.1.2 Data Pre-processing

This section describes how the data was pre-processed before the LR model was
trained, particularly how variables were treated and converted to the same basis so
that there is avoidance of the dominance of certain variables. This ensures consis-
tency and stability of the LR model [67, 120].

6.1.2.1 Continuous Variables

Many ML methods expect data to be of the same scale to avoid the dominance of
certain numeric variables and this can affect the accuracy of specific models [84,
120]. Normalisation re-scales the data to the range between 0 and 1. Standardisa-
tion centers the data distribution to N(0,1). We adopt normalisation as it does not

assume any specific distribution. This potentially speeds up convergence [67, 120].

6.1.2.2 Categorical Encoding

Categorical encoding is a process of converting categories to numbers, using One-
Hot Encoding or Label Encoding [137]. One-Hot Encoding takes a categorical col-
umn and then splits the column into multiple columns. The numbers are replaced
by 1s and 0s depending on which column has what value. It creates additional fea-
tures based on the number of unique values in the categorical feature. Every unique
value in the category is added as a feature. Label Encoding converts all the cate-
gorical variables into numeric numbers based on their alphabetical order and may
give false sense of the impact of that feature category. In this report, the variables
that are categorical were converted using One-Hot Encoding before the LR model

was trained.

6.1.3 Train-Test Split

ML models are usually trained and tested on unseen data. Two approaches to split
the data are cross-validation (CV) and train-test split [54]. CV divides the data into
K subsets that can lack sufficient credibility and can result in higher variability of
predictions, if the data size is too small [54]. Train-test split, however, can allow a
larger subset of the data to be used for estimating model coefficients and results in

more reasonable results [120].
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Existing literature typically uses a 70%-30% train-test split, especially if the data
is large. This technique is simple, easy to understand and widely used, despite
giving noisy estimates sometimes [54, 67, 120]. CV is typically used to optimise
parameters of a classifier. This work adopts 75%-25% train-test split.

6.2 SMOTE Implementations

Over-sampling is performed on the 75% training data using the R imbalance library
[35]. The R imbalance library contains functions for performing SMOTE, RWO and
PDFOS. Over-sampling is performed to ensure a balanced class distribution in each
data set i.e. over-sample the minority class to the size of the majority class.

6.2.1 SMOTE

The two parameters to tune are the number of neighbors (K-NN) and the over-
sampling rate. We kept the over-sampling rate the same to ensure balanced class
distributions within each data set. We varied the number of K-NNs for each data
set to ensure optimal parameters are chosen through a 10-fold CV.

This was done through a grid search scheme, with values of K-NN ranging from
1 to 15, optimised using the Area under the Precision-Recall Curve (AUPRC) de-
fined in Section 6.5. The best parameter values for each data set are shown in Table
6.2 below.

Data Set \ Value of K-NN
Credit Card Fraud 6

Pima Indians Diabetes 9

Glass Identification 10

German Credit Scoring 12
Breast Cancer Wisconsin | 10

TABLE 6.2: Optimal parameter values for K-NN for each data set

6.2.2 PDFOS

Due its popularity and wide use, a Gaussian kernel function is chosen [59]. The
bandwidth / is automatically obtained through MISE as defined in Equation 5.5.
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The co-variance matrix of ST was found to be semi positive-definite, thus PDFOS
could be used for over-sampling.

6.2.3 RWO

There are no parameters to tune in RWO as it uses minority class data to capture
the first and second moments of each numeric feature. If the feature is categorical,
RWO picks the minority instances uniformly over the distribution of each feature.

6.3 GAN Implementation

Given its popularity and wide use, WGAN is adopted for an alternative synthetic
sample generation. Specifically, we adopt the conditional version of WGAN with
GP, thus we use WCGAN-GP [69, 118]. Below we describe how parameters are
chosen and results generated.

6.3.1 Software

GAN s can be implemented in a number of open-source neural-network libraries
in Python [51]. Due to its simplicity and faster computations, the high-level Keras
library [52] with Tensorflow [163] back-end is chosen to implement WCGAN-GP.

This is trained using all minority cases of each data set.

6.3.2 The Generator

This section describes how the parameters for G are chosen.

6.3.2.1 Latent Noise

The random noise for z is generated from N (0, 1) with 100 dimensions. This is based
from GAN hacks which suggest to sample from a spherical distribution [153].

6.3.2.2 Activation Function

ReLU is adopted in the hidden layers [140, 153]. For G’s output later, tanh is
adopted. No drop out or batch normalisation is applied following advise from
Gulrajani et al. [69] for WGAN-GP.
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6.3.2.3 Layers

The layers are chosen such that they are ordered in an ascending manner for G. For
simplicity, after a number of iterations, 3 layers were chosen for each data set. In the
tirst layer, there were 128 units, in the second layer 256 units and in the third layer
512 units. These layers worked well in the experiments conducted. The output
layer had the data dimension of the data as the number of units.

Weights are initialised using the He initialisation method and ReLU is adopted
[74]. Adam is used to optimise the weights of G [140, 153]. We used default values
with 1 = 0.5 and B, = 0.9 for G [91].

We used a batch size of 128 when optimising the gradients for faster training
[84]. Initial # for G was fixed at 0.00004. The number of epochs were found to be
5,000 where the GAN training was found to be stable.

6.3.3 The Critic

Leaky ReLu is adopted with a negative slope of 0.2 [107, 140]. As per the generator,
3 layers were used in the hidden layers. The layers were arranged in a descending
manner, with 512 units in the first layer, 256 units in the second layer and 128 units
for the last layer. The critic gives the output a single value using a linear function [7].
Adam was used with the following default parameters in Keras [52]: # = 0.00001,
B1=0.5,8,=090and ¢ = 105,

Critic weights were also initialised using the He method and a similar batch size
as in the generator was used. We pre-trained the critic 100 times at each adversarial
training step [7]. This ensures faster convergence at each step before G is updated.
We used WGAN with a GP with the default values as per the original paper [69].
The GP value was left unchanged at 10. We call this model WGAN-GP. We found
that after 5000 epochs, the losses plateaued and did not change much.

6.3.4 Labels

Typically, to boost faster training and fix mode collapse, additional information can
be incorporated in both G and D using cGAN [118]. We used the conditional ver-
sion of WGAN-GP where class labels were added to the minority cases. To accom-
plish this, clustering was done on the minority cases in order to induce class labels
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on the training data.

We explored a number of common mechanisms considering k-means, AHC
[169], Hierarchical DBSCAN [46] and t-SNE [108]. The details of these algorithms
are beyond the scope of this report. Due to its wide use and simplicity, we adopted
k-means clustering with 2 clusters for each data set. This yielded labels that could
be fed into G and D to induce generated samples. We call the final model WCGAN-

GP after incorporating these class labels into the training.

6.3.5 Training WGAN-GP

Figure 6.1 shows the critic loss for each epoch, where after 1000 epochs, the loss
starts to plateau. Thus we decided to stop the training after 5000 epochs. We re-
peated this experiment for each data set and adopted WCGAN with GP after 5,000

epochs as the model to use for synthetic sample generation.

WHCGAMN-GP
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~

5

Critic Los

0 1000 2000
Epoch

FIGURE 6.1: Difference between generated and real data critic loss

Figure 6.2 presents the experiments of training WCGAN with GP. For compar-
ative purposes, using similar parameters, we show the quality of samples gener-
ated for WCGAN with GP, WGAN, cGAN and non-saturating GAN on the credit
card fraud data. The version of the WCGAN was incorporated with an improved
WGAN training using the GP term as per the paper by Gulrajani et al. [69]. We con-
sider this for two combinations of the features for illustrative purposes up to 5000
epochs.

The results show the superiority of samples generated by WCGAN with GP.
There is a clear mode collapse problem on the vanilla GAN and cGAN. WGAN and
WCGAN with GP show better samples. There is also clear damped oscillations and
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unstable losses for GAN and cGAN where Wasserstein GANs exhibit stable training
and losses, especially after 1000 iterations where it seems to settle and stabilise.
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FIGURE 6.2: Comparison of GAN experiments ran on fraud data cases

6.3.6 Generating Synthetic samples

Once the WCGAN with GP is trained to 5000 epochs, the learned generator distri-
bution is used to create more synthetic samples by feeding it the number of samples
to output.
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6.4 Logistic Regression

LR is trained using Python 3.7 [51] on both the imbalanced training data and over-
sampled data sets to predict the likelihood of each minority case using this equa-

tion:

ho(x9) é d
log [ —=— )| =6+ Y 6;X;, 0 < hy(x¥ 1 6.1
0g<1_h9(x(d)) 0 ; < he(x') < (6.1)

where 11g(x(?)) is the probability of the given minority case, 6;'s are the estimated
coefficients using SGD, X; is the feature vector for sample i and d is the number of
features to include in the LR model. The coefficients are estimated by minimising
a loss function through SGD in Equation 3.1. Typically, classification is such that
when hg(x(@) > 50% for each instance, assign the minority case, otherwise the
majority case. We varied the regularisation parameter A considering both L1 and
L2 regularisation using the values [0.001,0.01,0.1,1, 10, 100, 1000] through a 10-fold
CV on the training data sets. The LR model was optimised for each data set.

6.5 Evaluation

This section describes evaluation metrics adopted to compare the different over-
sampling methods.

6.5.1 Confusion Matrix

The confusion matrix returns a report showing how predicted classes on unseen
test data using the LR model compare to actual observed classes, as depicted in
Table 6.3.

Confusion Matrix | Predicted: Minority | Predicted: Majority

Actual: Minority \ True Positive (TP) \ False Negative (FN)
Actual: Majority \ False Positive (FP) \ True Negative (TN)

TABLE 6.3: The confusion matrix

TN is the number of majority cases that were correctly classified as such. FP

is the number of majority cases that were incorrectly classified as minority. TP is
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the number of minority cases that were correctly classified as minority. FN is the
number of minority cases that were incorrectly classified as majority. Using these
definitions, Table 6.4 presents the most well known evaluation metrics for binary
classification problems. Accuracy, Precision, Recall and F1-Score should be close to
100% for a LR model to do well on the testing data. Accuracy can be misleading and
inappropriate when there are imbalanced classes and thus may be biased towards

majority cases [27, 58, 72]. Thus we do not use rely on it in this work.

Metric \ Formula
TP+TN
Accuracy ( TP+TN+FP+FN )
R TP
Precision <w>
TP
Recall (m)
PrecisionxRecall
F1-Score | 2% ( Precision+Recall )

TABLE 6.4: Evaluation metrics for binary classification problems

Precision is the ability of the LR model not to label a minority case that is actually
majority. Recall is the ability of the LR model to find all minority cases. F1-Score
is a harmonic mean between Precision and Recall [72]. F1-Score puts equal weight
to both Precision and Recall. The higher the scores are towards 100%, the better is
the LR model. However, these scores are influenced by what threshold is used to

decide between the two binary classes.

6.5.2 Precision-Recall and ROC curve

The ROC curve [20, 71] measures a classifier’s performance on a test set over dif-
ferent decision thresholds by varying the Precision and the FP rate. AUC measures
the performance of the LR model trained on both imbalanced and over-sampled
data sets and tested on unseen data with values close to 100% considered excel-
lent performance [14, 71]. We also compute the Precision-Recall curve and compute
AUPRC to get a weighted score. Table 6.5 shows the AUC/AUPRC scale for inter-
preting performance of classifiers [14].
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Metric Value | Performance

50% <AUC/AUPRC <= 60% | Poor
60%<AUC/AUPRC <=70% | Fair

70% <AUC/AUPRC <=80% | Good

80% <AUC/AUPRC <=90% | Very Good
90% <AUC/AUPRC <= 100% | Excellent

TABLE 6.5: Interpretation of AUC/AUPRC performance

6.6 Statistical Hypothesis Testing

Friedman test [55] followed by a post-hoc Nemenyi test [127] are performed to ver-
ify the statistical significant differences between WCGAN-GP, SMOTE, PDFOS and
RWO.

6.6.1 Friedman test

The Friedman test is a non-parametric ranking test to determine whether all over-
sampling methods perform similarly in mean performance rankings based on the

measures above, when normality does not hold [55] on 30 experiments.

6.6.2 Post-hoc Nemenyi test

If the null hypothesis is rejected, a post-hoc test can be applied where WCGAN-GP
is considered as the control method. The post-hoc Nemenyi test evaluates pairwise
comparisons between the over-sampling methods if the Friedman test suggests that
there is a difference in performance [127, 136]. We adopt WCGAN-GP as the control
method.

6.6.3 Implementation

Both tests are conducted using the Pairwise Multiple Comparison Ranks Package
(PMCMR) [136] available in R. We assume statistical significance of the alternative
hypothesis at p-values < 0.05. In other words, we fail to reject the null hypothesis
when the resulting p-value is higher than 0.05, suggesting that there is no difference

between the over-sampling methods.
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7 Results and Discussion

This chapter presents the results of all the LR models applied on the baseline and
over-sampled data sets, with metrics on Precision, Recall, F1-Score, AUC and AUPRC
computed on the same unseen test data.

7.1 Comparisons

Table 7.1 presents the evaluation metrics (based on the testing set) of the LR model
applied on the baseline and over-sampled data sets for a default threshold of 50%
across 30 experiments. Figure 7.1 shows the average performance across all data
sets from each evaluation metric. Bold shows an algorithm that performs the best
for that data set i.e. a higher score for that metric.

90.00%

80.00%
70.00%
=
S 60.00%
o
g 50.00%
E
40.00%
30.00%
20.00%
Precision Recall Fl-Score AUPRC AUC
mBaseline 72.97% 61.68% 66.62% TLETH 76.66%
=SMOTE 54.60% 83.00% 59.88% 77.03% 82.55%
=PDFOS 52 56% T8 30% 56.43% 68.39% B0.73%
RWD 51 84% 82 543 57 85% 69 56% B183%
WWCGAN-GP 71.90% TB.40% 73555 T7.T1% 81.88%

FIGURE 7.1: Average performance across all data sets

Figure 7.1 depicts that on the average, over-sampling increases Recall despite
slightly reducing the Precision. On average, the F1-Score is highest for WCGAN-GP,
followed by Baseline, then SMOTE, with PDFOS and RWO performing the worst.
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Data set | Precision | Recall | F1-Score | AUPRC | AUC
Credit Card Fraud I

Baseline 85.710% 63.410% 72.893% | 74.600% | 81.700%
SMOTE 5.110% 93.333% | 9.689% 72.284% | 98.358%
PDFOS 6.290% 90.240% 11.760% | 48.270% | 93.960%
RWO 6.670% 90.240% 12.422% | 48.460% | 94.030%
WCGAN-GP 86.240% 76.420% 81.034% | 81.350% | 88.200%
Pima Indians Diabetes H

Baseline 74.470% 56.450% 64.220% | 72.490% | 73.610%
SMOTE 53.535% 80.303% 64.242% | 68.183% | 75.480%
PDFOS 61.430% 69.350% 65.150% | 70.340% | 74.290%
RWO 64.290% 72.580% 68.184% | 72.860% | 76.670%
WCGAN-GP 75.510% 59.680% 66.668% | 74.100% | 75.220%
German Credit Scoring H

Baseline 60.320% 51.350% 55.475% | 63.030% | 68.570%
SMOTE 47.826% 70.513% 56.995% | 58.838% | 69.610%
PDFOS 59.380% 51.350% | 55.074% | 62.560% | 68.290%
RWO 54.880% 60.810% | 57.693% | 63.640% | 69.890%
WCGAN-GP 46.510% 81.080% 59.112% | 66.600% | 70.940%
Glass Identification H

Baseline 50.000% 42.860% 46.156% | 53.840% | 63.930%
SMOTE 73.913% 70.833% 72.340% | 87.286% | 72.860%
PDFOS 41.380% 85.710% 55.814% | 65.400% | 71.610%
RWO 40.620% 92.860% 56.517% | 67.670% | 72.680%
WCGAN-GP 55.000% 78.570% 64.705% | 69.560% | 78.040%
Breast Cancer Wisconsin H

Baseline 94.340% 94.340% | 94.340% | 95.390% | 95.500%
SMOTE 92.593% 100.000% | 96.154% | 98.556% | 96.450%
PDFOS 94.340% 94.340% 94.340% | 95.390% | 95.500%
RWO 92.730% 96.230% 94.448% | 95.180% | 95.890%
WCGAN-GP 96.230% 96.230% 96.230% | 96.930% | 97.000%

TABLE 7.1: Evaluation metrics based on a default threshold of 50%
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While the univariate results on Precision, Recall and F1-Score are useful, they do
not give the entire picture over different thresholds [14]. Since AUC and AUPRC
are based on varied thresholds, these metrics are typically preferred over one di-
mension measurements such as Precision, Recall and F1-Score [14, 58, 105]. Since
we are also comparing the above results with the Baseline model, these metrics are
impacted by class imbalance [72]. Thus we rely more on the AUC and AUPRC.

7.1.1 Performance between over-sampling techniques

This section compares the performance of each over-sampling technique against the
Baseline and other techniques using the AUPRC and AUC.

7111 SMOTE

SMOTE appears worse than the Baseline on 3 of the 5 data sets used on the AUPRC.
On the contrary, SMOTE shows a superior AUC score than the Baseline for all
data sets. SMOTE appears better than both PDFOS and RWO on both AUC and
AUPRC scores, showing a relatively good performance. The poor performance of
SMOTE compared to the Baseline on the Credit Card Fraud, Pima Indians and Ger-
man Credit Scoring data sets may be partially due to the underlying minority class
distribution which may have been altered by SMOTE.

For example, there are clusters and small disjuncts in the Credit Card Fraud data
set, which may create noisy examples and over-lapping of classes when SMOTE is
applied, resulting in the degradation of performance. The German Credit Scoring
data set has ordinal and categorical features and SMOTE does not do well with such
features [49]. There is a possible dimensional impact of the data set which may be
affecting SMOTE, especially for those data sets with many variables such as the
Credit Card Fraud data set [11].

7.1.1.2 PDFOS

PDFOS appears worse than the Baseline on 4 of the 5 data sets for the AUPRC.
Looking at the AUC, PDFOS is at least better on 4 of the data sets used. PDFOS
performs worse than SMOTE on 3 data sets. For the German Credit Scoring data
set, PDFOS is better than SMOTE whilst showing a poorer performance than the
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Baseline. The German Credit Scoring data contains a number of categorical vari-
ables which both PDFOS and SMOTE may not be dealing with appropriately. In
general, PDFOS appears as the worst over-sampling approach than SMOTE. This
can be attributed to its rather strong Gaussian KDE which may not appropriate for

the given variables.

7113 RWO

RWO is worse than the Baseline and SMOTE even though it appears to be slightly
better than PDFOS. RWO uses the CLT to approximate the minority class distribu-
tion, based on the mean and variance of each variable. PDFOS assumes a KDE of
the entire data set using the Gaussian distribution. While the two approaches seem
fundamentally similar, they are based on rather different distributional approaches.
PDFOS can be said to be a non-parametric approach which requires a parameter es-
timation for the bandwidth used in the KDE [59].

RWO assumes that, theoretically, the distribution of each variable is Gaussian
as the sample size increases. These are strong data assumptions which may not be
entirely met, especially with skewed data sets such as the Credit Card Fraud, Ger-
man Credit Scoring and Pima Indians Diabetes. As a result of possible inadequate
distributions, overall, both RWO and PDFOS are showing poorer results than both
SMOTE and the Baseline.

7114 WCGAN-GP

Overall, WCGAN-GP has the highest AUPRC value and second highest AUC value.
WCGAN-GP outperforms the Baseline in both the AUPRC and AUC scores. Using
the AUPRC, WCGAN-GP outperforms SMOTE on 3 data sets which include Credit
Card Fraud, Pima Indians Diabetes and German Credit Scoring. Overall, WCGAN-
GP outperforms SMOTE.

The poor performance of WCGAN-GP compared to SMOTE on the Glass Iden-
tification and Breast Cancer Wisconsin data sets may be attributed to their slightly
lower sample sizes compared to other data sets which have large sample sizes.
GAN training requires a substantial training size to ensure a stable training and
better sample quality [68, 66, 153, 7].
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Compared to PDFOS and RWO, WCGAN-GP is better for all the other data sets
when using the AUPRC. WCGAN-GP does not make any probability distribution
assumptions but instead learns the true minority class distribution in order to create
synthetic samples from it. This means that WCGAN-GP captures the probability
distribution better than SMOTE, PDFOS and RWO, leading to a better predictive
performance when the LR model is applied on the resulting synthesized data sets.

When using the AUC, WCGAN-GP is better than all the other methods on the
German Credit Scoring, Glass Identification and Breast Cancer Wisconsin data sets.
However, for the other 2 data sets, WCGAN-GP appears to be worse than SMOTE
and its density-based variants.

Overall, using the AUC, SMOTE appears better than WCGAN-GP and all the
density-based variants. When using the AUPRC, WCGAN-GP is better, followed
by SMOTE. Below we provide insights as to which metric is appropriate to use for
imbalanced learning.

71.2 AUC

The ROC curve represents the trade-off between Precision and the FP rate while
the AUC is the area under the ROC curve [14]. Overall, SMOTE techniques report
higher AUC values than the Baseline, suggesting that over-sampling improves the
LR model. PDFOS appears as the worst method on the AUC score compared to
other SMOTE density-based approaches. RWO is worse than SMOTE on 3 of the 5
data sets except for Pima Indians Diabetes and German Credit Scoring data sets.

In general, WCGAN-GP is better on 3 of the 5 data sets except on Credit card
fraud and Diabetes data sets. Overall, the average AUC value is not too different
between WCGAN-GP, SMOTE and RWO, while PDFOS is the lowest. This result
conflicts the AUPRC scores where WCGAN-GP shows a clear dominant superiority
over all the methods.

Whilst AUC may be useful, it does not consider Recall, which may be the most
important metric for minority cases. AUC may be affected by skewed data sets and
the data distribution [72]. ROC curves are appropriate when the data is balanced,
whereas Precision-Recall curves are appropriate for imbalanced data sets [14, 72].
AUC may tend to provide an overly optimistic view than AUPRC [72], as can be
seen by the results shown above, which seem to suggest that SMOTE is better.
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In general, an algorithm that dominates in AUC may not necessarily dominate
the AUPRC space [72]. Saito and Rehmsmeier [151] suggest that the Precision-
Recall curve and AUPRC is more informative than the ROC curve and AUC. Since
we are also comparing with the Baseline which is imbalanced, ROC and AUC may
be inappropriate, thus AUPRC provides a sensible measure for all methods.

7.1.3 AUPRC

AUPRC has all the characteristics of the AUC and thus for the purposes of this
work, we rely more on AUPRC than AUC [72, 151]. Overall, WCGAN-GP shows
better improvements over all other SMOTE techniques. WCGAN-GP is highest on
AUPRC, suggesting this algorithm performs the best across many thresholds and
all the data sets used.

On the average, PDFOS and RWO do not provide a superior predictive perfor-
mance than the Baseline. PDFOS appears as the worst approach for over-sampling.
Below we further provide conclusive evidence on the statistical significance of the
above results on the AUPRC.

7.2 Statistical Hypothesis Testing

Table 7.2 shows the results of the Friedman test applied on AUPRC to verify the sta-
tistical significance of WCGAN-GP compared to the other over-sampling methods.
There is enough evidence at 5% significance level (since all p-values are less than
5%) to reject the null hypothesis on all the data sets, suggesting that over-sampling
methods are not performing similarly and are different.

Data set | P-value | Significance

Credit Card Fraud 2.595112e-18 | Yes
Pima Indians Diabetes 3.384100e-12 | Yes
German Credit Scoring | 2.021626e-05 | Yes
Glass Identification 3.253634e-12 | Yes
Breast Cancer Wisconsin | 4.828195e-13 | Yes

TABLE 7.2: Results for Friedman’s test
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Since the null hypothesis was rejected on all the data sets, a Post-hoc test was
applied to further determine pairwise comparisons using the Nemenyi test where
WCGAN-GP is the control method. These results confirm the significant superior-
ity of WCGAN-GP over SMOTE as all the p-values are less than 0.05 for the data
sets where Friedman suggested a difference.

There is a statistically significant superiority of WCGAN-GP over PDFOS except
on the Glass Identification data set. WCGAN-GP is also superior and statistically
different compared to RWO, except on the Glass Identification and Pima Indians

Diabetes data sets.

Comparison Credit | German | Breast Glass Pima
Test Card Credit | Cancer Identifi- | Indians
Fraud Scoring | Wisconsin | cation Diabetes

WCGAN-GP vs. SMOTE | 0.001000 | 0.001000 | 0.007510 0.001000 | 0.001000

WCGAN-GP vs. PDFOS | 0.001000 | 0.001000 | 0.003000 0.014361 | 0.001000

WCGAN-GP vs. RWO 0.001000 | 0.001000 | 0.003000 0.779980 | 0.22811

SMOTE vs. PDFOS 0.002623 | 0.059946 | 0.900000 0.001000 | 0.779980
SMOTE vs. RWO 0.001000 | 0.014361 | 0.836106 0.001000 | 0.001000
PDFOS vs. RWO 0.001000 | 0.187904 | 0.823993 0.153112 | 0.001236

TABLE 7.3: Results for the Post-hoc Nemenyi test

We observe a statistically significant difference between SMOTE techniques on
the Credit Card Fraud data set. We observe no statistically significant differences
between RWO and PDFOS on 3 data sets. We also note that RWO and PDFOS
are not fundamentally too different in terms of the assumptions made as they both
assume that the minority class data has a Gaussian distribution somehow.

Thus for the data sets that do not seem to exhibit numeric features that con-
form to this assumption, RWO and PDFOS do not seem to provide significantly too
different results.

These results confirm the findings shown in Figure 7.1 and Table 7.1 where the
average performance seen on both the AUC and AUPRC was lower for SMOTE
techniques compared to WCGAN-GP. In general, WCGAN-GP provides statisti-

cally superior significant performance.
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7.3 Discussion

Overall, SMOTE was worse than the Baseline on 3 of the 5 data sets when using the
AUPRC. SMOTE samples synthetic points along line segments joining minority in-
stances using the Euclidean distance. This approach may end up using majority in-
stances and thus creating noisy examples and over-lapping cases [70, 135]. SMOTE
is not based on the true distribution of the minority class data [38]. The poor per-
formance of SMOTE on the AUPRC may be attributed to these effects, especially
since the German Credit data set contains categorical variables which SMOTE may
not be dealing with appropriately. Overall, SMOTE, RWO and PDFOS alter the data
distribution as was observed by the significant compromise on Precision and gener-
ally lower F1-Score, AUPRC and AUC values. As a result, there was no statistically
significant differences between the SMOTE techniques.

PDFOS and RWO are meant to improve the above SMOTE weaknesses. How-
ever, they both make strict assumptions about the structure and distribution of the
minority class data. PDFOS assumes a KDE of the minority class using a multi-
variate Gaussian probability distribution [59]. PDFOS may not deal well with other
non-continuous and multiple data structures such as the presence of categorical or
ordinal variables [16, 59]. As a result, PDFOS was the worst over-sampling tech-
nique.

RWO was worse than both the Baseline and SMOTE although it appeared better
than PDFOS. RWO uses CLT i.e. a Gaussian distribution and this approach is very
similar to PDFOS. Thus the performance between PDFOS and RWO were not too
dissimilar. RWO is only based on the minority class data and makes no assumptions
and no pre-training is needed [179]. Thus run-times are way shorter than PDFOS.
The lower RWO performance on the AUPRC than both SMOTE and Baseline may
be attributed to the assumption made on the PDF of the minority class data which
may not be appropriate. Furthermore, RWO requires the data to be continuous and
this assumption may be invalid for categorical variables [35, 179].

Run-times for PDFOS appeared to be longer than SMOTE and RWO. PDFOS
requires a rapid pre-training and computation of the co-variance matrix of the mi-
nority class data and determination of the bandwidth before over-sampling. The
determination of & is performed via CV and this takes a while. SMOTE was the
quickest to over-sample, followed by RWO and PDFOS and then WCGAN-GP.
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WCGAN-GP requires a significant pre-training of both the critic and the gen-
erator. GANs are well-known for their training and computing powers [36, 106].
Thus they have expensive run-times. However, current GANs such as WGAN and
WGAN-GP remedy this impact with stable training. The quality of generated sam-
ples may be worth it compared to the training times. GANs do not make explicit
assumptions about the probability distribution of the minority class data. This idea
has been used to create new samples for images [140], music [40], arts [88] and
videos [60, 168, 175].

There is a significant potential to create new samples using GANs and aug-
ment imbalanced data sets. Recent work on this [41, 50] report a GAN superior
performance over SMOTE but no mention is referenced on other SMOTE density-
estimation approaches. This work is comprehensive and offering a distinct compar-
ative study on density-estimation approaches. While GANSs are notoriously diffi-
cult to train and optimise, in this study, using a simple architecture provided stable
superior significant results after 5000 epochs.

Given the current surge in interest for GANs, optimising and training GANs
is becoming straightforward as there are many implementations in Keras [52], Py-
torch [133] and Tensorflow [163]. Given their impressive results and advancement
in deep learning techniques, we expect a wider extensive use of GANs. The train-
ing instability of GANs will soon be done without any problems as the maturity
of the training process improves with new techniques being invented at a rapid
speed. Thus running times for GANs might not necessarily be an issue, forcing
GAN:Ss to provide a superior over-sampling approach to supplement imbalanced
data sets. Because GANs have become so popular, their limitations have been im-
proved tremendously.

However, there are still open challenges for GANs. GANSs rely on the generated
examples being completely differentiable with respect to the generative parameters.
As a result, GANs cannot product discrete data directly [79, 170]. Another key
challenge is the evaluation of GANSs after training even though there are measures
to compute the quality of results generated [36]. Research for GANs grows each
year. Practitioners may need to add GANSs to their toolkit as this will significantly
improve their models and aid on decision-making as GANs will be characterised
by advancements in deep learning, training process maturity, open acceptance and
their wide use in commercial applications.



60

8 Conclusions and Future Research

This section concludes this work, gives limitations and provides scope for future

research.

8.1 Conclusions

This work detailed a class imbalance study on imbalanced data sets where SMOTE
density estimation approaches and WCGAN-GP were used to over-sample the mi-
nority cases on 5 imbalanced data sets. A LR model was trained on the base-
line and over-sampled data sets and the results were compared using Precision,
Recall, F1-Score, AUPRC and AUC. SMOTE improved the classification perfor-
mance. However, SMOTE is not based on the true underlying minority class distri-
bution. SMOTE density estimation approaches remedy this issue, however, these
techniques make assumptions around the minority class distribution. As a result,
both PDFOS and RWO performed poorly than SMOTE and the Baseline. WCGAN-
GP was statistically better than all the SMOTE techniques on the majority of the
data sets.

PDFOS and RWO results were not significantly too dissimilar to SMOTE results
on 3 of the data sets. Thus there were no statistically significant differences be-
tween SMOTE, RWO and PDFOS on 3 of the experimental data sets used. Using
WCGAN-GP, it is possible to create synthetic cases implicitly and this turned out
to offer a significantly better improvement over all SMOTE techniques, across vari-
ous thresholds and on 3 of the data sets used. AUPRC appeared as a more sensible
informative measure to compare the algorithms.

This work has demonstrated the potential for GANSs for data augmentation and
boosting predictive models. There are other useful areas where GANs are becom-

ing more useful such as anomaly detection [2, 154], semi-supervised learning [31,



61

103, 121, 159], domain adaptation [80, 81, 165], time series generation [45, 57], pri-
vacy preservation [13], joint distribution learning [33, 102, 174, 184], reinforcement
learning [158], missing data imputation [97, 155, 176] and many other computer
vision areas [18, 90, 96, 180].

8.2 Limitations

This work considered binary cases whereas other data sets may have multiple classes.
We repeated training and testing of each over-sampling method 30 times to min-
imise stochastic effects - this sample size can be increased for more robustness.
Alternatively a bootstrapping approach can be applied to better understand the
distributional attributes of the model errors.

There were mixed results when using AUC and AUPRC. Existing literature has
no consensus on which metric to prefer, despite most studies using AUC. Other
evaluation metrics exist and these can offer a different and comprehensive perspec-
tive. These include Partial AUC [115], Weighted AUC [171], Discriminative Power
[5], Matthews correlation coefficient (MCC) [39], Gain and Lifts charts [24]. A fur-
ther comprehensive study would be to utilise some of these metrics and statistically

evaluate the performance of the over-sampling methods.

8.3 Future Research

Possible future research to improve this work includes a consideration on other data
sets to apply the same methods, especially complex data sets that include small dis-
juncts, over-lapping, mixed data types and multiple classes. The results could be
repeated by varying the imbalanced ratio to determine which technique performs
the best depending on the extent of imbalance observed in the data set. We could
consider other ML algorithms such as ANN and Gradient Boosting Machines [29].
An empirical comparison of these results with other tabular data sets where GAN
was applied would be useful. New Adam variants were recently proposed called
Rectified Adam (RAdam) [101], AMSGrad [144] and LookAhead or Ranger [181],
which seem to show better results for GAN training. Other loss variants and ad-
vanced architectures such as BEGAN, EBGAN, DRAGAN, LSGAN and VAE-GAN
could be explored for better GAN training.
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