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Abstract

Data publicizing pose a threat of disclosing data subjects associating
them to their personal sensitive information. k-anonymization is a prac-
tical method used to anonymize datasets to be made publicly available.
The k-anonymization hides identities of data subjects by ensuring that
every record of a publicized dataset has at least k − 1 (k being a natu-
ral number) other records similar to it with respect to a set of attributes
called quasi-identifiers. To minimize information loss, a clustering tech-
nique is often used to group similar records before k-anonymization is
applied. Processing both the clustering and the k-anonymization us-
ing current algorithms is computationally expensive. It is within this
framework that this research focuses on parallel implementation of the
k-anonymization algorithm which incorporates clustering to achieve time
effective computations.
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Chapter 1

Introduction

This section presents the background, problem statement, research aims, objectives
and limitations of this research.

1.1 Background

Due to recent developments of large quantity of data being collected and stored
each day by private and public organizations as well as the realization of the value
of data, there arises a demand for data sharing from one organization to another.
Analyzing shared data can help to reveal patterns and trends for these organiza-
tions gain. For instance, organizations can gain insights on how to improve service
delivery by analyzing shared data [3, 5, 20, 23]. Part of a rise in demand for data
sharing is coming from a demand of data for research purposes. Research derives
innovations such as developing new business ideas as well as advancing medicine
and technology. For instance, sharing of a hospital’s medical records to the public
could help researchers to discover a new effective cure for a long-lasting disease or
possibly find a way to prevent such disease in its early stages. [3, 4, 27].

There is more good that could come out of meeting the demand for data shar-
ing, but there are concerns relating to privacy. Sharing data concerning individuals
threatens to disclose sensitive information [10]. For instance, medical records on
a database of a hospital may contain sensitive information that an individual may
not want everyone else to know, such as their decision concerning cosmetic surgery
or receiving psychiatric services [7, 10]. Organizations are not willing to share their
databases for four reasons. Firstly, these organizations value data they possess. Sec-
ondly, sharing original data may put them in a position which does not allow them
for future data collection even if disclosed information is not considered sensitive
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[15]. Thirdly, these organizations could be sued for violating agreements of protect-
ing personal information that they have put forward during data collection. Lastly,
these organizations are required to conform with regulations and legislations that
govern data sharing such as the Protection of Personal Information Act (POPI Act)
of South Africa [7] or the General Data Protection Regulation (GDPR) of the Euro-
pean Union [30], the European Data Protection Law and Restrictions on Interna-
tional Data Flows [29] and the Health Information Portability and Accountability
Act (HIPPA) which is a national standard for the privacy of patient medical infor-
mation [9]. So it is in every organization’s interest to protect data in their possession
concerning individuals [4, 15, 7].

This creates a dilemma situation between allowing sharing of original data which
raise concerns relating to privacy and not allowing it which prevent realization of
benefits which could be reaped from sharing data. So organizations would only
publicly share their databases if they have confidence that privacy of individuals
would not be compromised.

There are several techniques which can be applied to transform databases to
protect individuals identities. For instance, a random perturbation technique called
Differential Privacy ensures that a removal or addition of a record from a database
does not change the outcome of analysis, thereby hiding statistical nature of added
or removed record [12]. For instance, a salary bracket of an individual could be
revealed if adding such an individual to a database lead to a higher salary average.
But perturbation techniques produce misreported databases which cannot be used
in applications where data should contain zero false observations such as in med-
ical applications [15, 13, 11]. Also random perturbation techniques are involved
with adding noise to numerical variables which makes them ineffective for cate-
gorical variables [21, 13, 11]. A solution to these problems would be to consider
De-identification techniques that involves generalization and suppression.

De-identification does not produce misreported results as random perturbation
methods does and is applicable to both numerical and categorical variables. But
a naive De-identification of databases is vulnerable to attacks that combines de-
identified databases with other publicly available information (known as linking
attack) to re-identify records, thereby disclosing sensitive information. A solution
to this problem is introducing anonymity to the records of a database using method
proposed in [28] called k-anonymization [28, 4].
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TABLE 1.1: Original data set.

Names Gender Age Zip Code LSPW D S
Edvin Male 40 23051 100 SEK Cancer

Robert Male 32 70825 200 SEK Flu

Alva Female 40 23051 150 SEK Cancer

Eleanor Female 38 23038 170 SEK Typhus

Ebbe Female 29 81307 195 SEK Flu

Signe Female 34 23038 200 SEK Typhus

Axel Male 39 23051 150 SEK Cancer

TABLE 1.2: Anonymized data set.

Gender Age Zip Code LSPW D S
**** [39,40] 23051 100 SEK Cancer

**** [29,32] ***** 200 SEK Flu

**** [39,40] 23051 150 SEK Cancer

Female [34,38] 23038 170 SEK Typhus

**** [29,32] ***** 195 SEK Flu

Female [34,38] 23038 200 SEK Typhus

**** [39,40] 23051 150 SEK Cancer

The k-anonymization method ensures that for every record in the anonymized
data, there are at least k − 1 other records similar to it with respect to a set of at-
tributes called quasi-identifier attributes so that it will be impossible for an attacker
to identify which record(s) belongs to which person(s). For instance, Table 1.2 is
the anonymized version of Table 1.1 satisfying 2-anonymity with respect to Gen-
der, Age and Zip Code attributes. For example, it would be difficult to disclose that
Nash spent R100 per week on lottery even if it is publicly known that he is 40 years
old and that he lives in the area with the Zip Code 23051. This is because there
are three records in Table 1.2 representing Nash, (the first, third and the last record)
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and no one can identify which of the three records belongs to Nash (if the original
database is not shared).

The strength of privacy increases with the parameter k in the k-anonymization
process. This is because no one in the k-anonymized database can be re-identified
with probability greater than 1

k by linking the anonymized data with other publicly
available information alone (linking attack alone) [4].

Quasi-identifier attributes are all variables of a record after removing personally
identifying variables together with sensitive variable(s) such as Diagnosis Status (D
S) in Table 1.1. These are the attributes that have a potential of revealing sensitive
information by combining them with other variables of publicly available informa-
tion (linking attack) and are referred to as public variables in [16] which includes
age, gender, height, weight of individuals. For instance, Gender, Age and Zip Code
in Table 1.1 and Table 1.2 form quasi-identifiers of these two tables. The at least k
records that are similar form a group called an equivalence class [4, 8]. For instance,
the first, third and the last record in Table 1.2 form an equivalence class.

FIGURE 1.1: Education taxonomy tree

1.

2.

3.

∗ ∗ ∗

basic− edu

primary h− school

higher− edu

undergrad postgrad

L 1

L 2

L 3

TABLE 1.3: Original transaction data set

Names Purchased items
Nash Asthma products, Eye products

Pandelani Asthma products, Eye products, Beef

Katlego Eye products, Beef

Dineo Asthma products, Skin products, Beef

Thompho Asthma products, Beef

Risuna Eye products, Bread

Thabang Skin products, Beef



5

TABLE 1.4: Anonymized transaction data set

Purchased items
(Asthma products, Eye products)

(Asthma products, Eye products) (Beef, Bread, Skin products)

(Asthma products, Eye products) (Beef, Bread, Skin products)

(Asthma products, Eye products) (Beef, Bread, Skin products)

(Asthma products, Eye products) (Beef, Bread, Skin products)

(Asthma products, Eye products) (Beef, Bread, Skin products)

(Beef, Bread, Skin products)

The process of k-anonymization involves two operations, data suppression and
generalization. Suppression is a process of removing personally identifying vari-
ables of records such as names, surnames, social security numbers and email ad-
dresses. For instance, Table 1.2 has dropped names from Table 1.1. Other variables
which are not personally identifying could also be suppressed if they threaten a
privacy requirement given. For instance, Gender of some individuals is replaced
with **** from Table 1.1 to Table 1.2. Generalization is a process of changing spe-
cific values to general values. For instance, a specific country in Africa could be
generalized to just Africa or a specific age number could be generalized to an inter-
val. Generalization could follow a hierarchical system such as the one in Figure 1.1.
For instance, h-school could be generalized to basic-edu if the entry h-school threatens
to disclose certain individuals in anonymized database. Hierarchical system such
as the one in Figure 1.1 is referred to as taxonomy tree [8]. Generalization could be
global recoding or local recoding. Every identical value of an attribute would be gen-
eralized to the same value in an anonymized database under global recoding. Global
recoding generally produces anonymized databases with higher information loss.
An identical value would be generalized to different values under local recoding. Lo-
cal recoding produces anonymized databases with less information loss compared
to Local recoding, but it is computationally expensive to achieve.

k-anonymization should produce minimally distorted databases to ensure that
shared databases remain useful. For instance, anonymized medical records should
be able to produce the forecasts that there would be an ebola outbreak in the next
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ten months if an unanonymized version would produce the same forecasts. So there
should be a measurement of the amount of distortion resulting from the anonymiza-
tion. Distortion is measured using an informational loss metric in most research [4,
8, 15, 24, 21, 17].

Producing minimally distorted databases requires a careful consideration of records
before k-anonymization is applied. One way to achieve this is to cluster similar
records together first and anonymize clusters individually. The clusters would then
be merged together to complete a database. There are two types of clustering al-
gorithms, Divisive/ Partitional and Agglomerative algorithms [18]. All records be-
gin in one cluster and are recursively split based on the dissimilarities (top-down)
under Partitional clustering algorithms. Each record starts as a cluster and is recur-
sively merged with other clusters according to the similarities (bottom-up) under
Agglomerative clustering algorithms [18].

1.2 Problem statement

It is computationally expensive to process k-anonymization with clustering. It is
computationally expensive in a sense that processing both the clustering and the k-
anonymization using current algorithms would take long, especially when large
datasets are involved. For instance, the execution time of the k-anonymization
algorithm which incorporates clustering done in [8] is estimated as T = m(m−1)

2

(the proof is done in Section 2.2), where m is a number of records in a data set.
Time efficiency of k-anonymization algorithms with clustering have become es-
sential to operations of many academics, governments and industrial institutions.
Therefore, this research posed a need for developing faster implementation of k-
anonymization algorithms with clustering to improve execution time. This research
managed to achieve estimated time of T = m(m−Nc)

2Nc for the new algorithm where,
Nc is the number of clusters (the proof is presented in Section 3.5).
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1.3 Research Aims and Objectives

1.3.1 Research Aims

This study has aimed to make a significant difference in computational speed. So
that, everyday activities which would make use of transformed data would not be
delayed if time effective computations is achieved. This research was set to find a
way to optimize time computation of the k-anonymization algorithm which incor-
porates clustering done in [8] by introducing parallel implementation. Because, it
is ideal to have more time effective algorithms, so that less time is spent waiting for
anonymized results especially, when dealing with large data sets.

1.3.2 Objectives

The literature review in Section 2 shows that k-anonymization combined with clus-
tering is the ideal way to anonymize data, because of quality results it produces.
The objective of this research was to come up with new k-anonymization algorithm
which incorporates clustering that spends less time processing anonymization. To
achieve the aim, the objective of this research was set to identify sections of current
algorithm which can be processed independently and concurrently. The identified
sections were "parallelly" implemented.

1.4 Research questions

This research sought to address the primary question of what can be done to achieve
time effective computation of the k-anonymization algorithm which incorporates
clustering. The study will sought to answer the following secondary questions

• How could independent sequential implementations of the algorithm done in
[8] be changed to run concurrently in order to optimize computation time?

• How will the new algorithm perform in terms of data quality?

• Will the new implementation of the algorithm outperforms previous imple-
mentation?



8

1.5 Limitations

Parallel implementation of algorithms require a computer with certain hardware
such as Central Processing Unit (CPU) with multiple cores. The higher the number
of cores of CPU the effective will be the parallel implementation. Computers with
multiple cores are very expensive and finding a computer with high number of
cores had limited this research. The resource used to compute the results was a
cluster with a batch partition for general purpose use. Up to 60 nodes each with an
i7 7700 CPU, and 16GB of RAM and the ha partition for high priority runs when
you anticipate load shedding may affect your work. Up to 10 nodes each with an i7
7700 CPU, and 16GB of RAM. The nodes of this cluster were configured on a first
come, first served basis with a time limit on running the jobs submitted. However,
a student could only take a maximum of 10 nodes at a time. The number of nodes
that were used on average was five. There is also an issue of CPU overhead which
measures the amount of work a computer’s CPU can process. This means that
even a computer with multiple cores has a limit on how far it can go in terms of the
amount of work it can do. For instance, running the new algorithm to process 30 000
records when privacy parameter equals 50 would require 600 processes to be run
concurrently which may or may not be possible depending a computer hardware.
It is like when you run a parallel computer program, and a computer prompts that
it requires an additional CPU core to run that program. [26].



9

Chapter 2

Literature Review

There are several publications of papers on k-anonymization method. The k-anonymization
algorithms which incorporate clustering has been done in [8, 15, 24, 21, 17, 22, 19,
2]. This section reviews some of these algorithms.

2.1 The k-anonymization with clustering review

The k-anonymization algorithm incorporating clustering, which allow for a wide
range of privacy requirements that a data owner may have, is done in [15] and
applied on a transaction database, such as the one shown in Table 1.3. A trans-
action database is a database which contains a collection of items associated to an
individual. The flexibility to allow different privacy requirements helps to avoid
unnecessary information loss. Protecting only the items that needs to be protected
from disclosure would preserve more information.
For instance, suppose that an attacker only knows that Dineo has bought Asthma
products and Skin products which would form privacy requirement p = {Asthma
products, Skin products} in case of Table 1.3. Suppose that k parameter equals 4,
this means that at least 4 transaction records of the anonymized Table 1.4 should be
associated with both Asthma products and Skin products. The algorithm was used
to anonymize the transaction data set in [15] to quality results because it allows
users to control generalizations over the items which needed to be generalized.
Therefore, avoiding over-generalization [15].
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Definition 1 Attribute Diversity:

An attribute diversity of Va1 , represented by ad (Va1) is defined as

ad (Va1) =


max(Va1)−min(Va1)
max(Da1)−min(Da1)

interval values

|distinct(Va1)|
|Da1 |

discrete values

where a1 is an attribute with a domain Da1 and Va1 ⊆ Da1 is a subset of values of an
attribute a1 and max (Va1), min (Va1), max (Da1), min (Da1) represents maximum
and minimum value of Va1 and Da1 respectively. |distinct (Va1) | is the count of
unique values in Va1 and |Da1 | is the size of the domain Da1 [24].

Definition 2 Records Diversity:

Given a set of recordsR ⊆ D (D being the original database) over a set of attributes
A = {a1, a2, . . . , am}, the records diversity of R over A, represented by rd (R, A) is
defined as

rd (R, A) =
m

∑
i=1

ad (πai (R))

where πai (R) represents a projection ofR on attribute ai [24, 25].

Definition 3 Usefulness:

Assume that records of a database D are clustered into a set of clusters C = {c1, c2, . . . , ch}
such that |ci| ≥ k, i ∈ [1, h] and the records of ci will have equal values of quasi-
identifier set after anonymization. The usefulness of the database D under the clus-
tering C is defined as

use f ulness = avg (rd (c1, QID) , . . . , rd (ch, QID))

where rd (ci, QID) represents records diversity of clusters ci, i ∈ [1, h] with respect
to the set of quasi-identifier (QID) [24].
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Definition 4 Protection:

Assume that records of a database D are clustered into a set of clusters C = {c1, c2, . . . , ch}
such that |ci| ≥ k, i ∈ [1, h] and the records of ci will have equal values of quasi-
identifier set after anonymization. The protection of the database D under the clus-
tering C is defined as

protection = avg
(

1
rd (c1, SA)

, . . . ,
1

rd (ch, SA)

)
where rd (ci, SA) represents records diversity of clusters ci, i ∈ [1, h] with respect to
the set of sensitive attributes (SA) [24, 25].
The usefulness of a database D is measured by the average of the records diver-
sity of all clusters over a set of quasi-identifier (QID). The lower the value of
usefulness the closer are the records of a cluster ci, i ∈ [1, h] on the values of quasi-
identifier attributes. Therefore, there would be little modification needed to achieve
k-anonymity. Hence, an anonymization of a database D would preserve more infor-
mation. The protection of a database D is measured by the average of the inverse of
records diversity of all clusters over a set of sensitive attributes (SA). The lower the
value of protection the further apart are the values of records on sensitive attributes.
Therefore, it would imply that sensitive attributes are highly protected in the sense
of diversity [24].
The results of anonymizing Table 1.1 to form Table 1.2 had only managed to protect
disclosure of the first sensitive attribute Lottery Spendings Per Week (LSPW), it did
not protect Diagnosis Status (DS) of any of the persons whose age is either 39 or
40 (Nash, Katlego and Thabang) if an attacker knows their age. This is because
each of the members in the equivalence class {****, [39,40], 23051} corresponding
to Gender, Age and Zip Code is diagnosed with cancer which makes it obvious
to deduce their status. This is because the attribute DS lacks diversity. To guard
against this kind of threat of disclosing sensitive information, [24] has introduced a
metric which measure diversity in the set of sensitive attributes and is provided in
Definition 4. Suppression of the Zip Codes of Pandelani and Thompho has made
their individual records useless for applications which would require zip codes to
be meaningful. So [24] also suggested a metric to control against sharing databases
that contain suppressed attributes which are required to be meaningful in analysis,
and it is provided in Definition 3. An algorithm in [24] was built around these
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two metrics to generate clusters, grouping records simultaneously with respect to
similarities of quasi-identifier attributes and dissimilarity of records with respect to
sensitive attribute values [24].

Definition 5 Weighted Hierarchical Distance:

Let h be the height of a hierarchical system such as the height of education domain
in Figure 1.1 and let 1, 2, . . . , h− 1, h be domain levels from the most general to the
most specific level, respectively. For instance, level one (L1) is the most general level
domain and level 3 (L3) is the most specific level domain of education in Figure 1.1.
Let the weight between two domain levels i and i − 1, i ∈ [2, h] be represented by
ωi,i−1. The weighted hierarchical distance of a generalization is defined as

WHD (p, q) =
∑

p
i=q+1 ωi,i−1

∑
p
i=2 ωi,i−1

when an attribute value is generalized from level p to q, where p > q [21]. The two
different weights (ωi,i−1), the uniform weight and the height weight are well discussed
in [21]. The uniform weight is shown to have a shortcoming, failing to capture that
generalizations near or at root node has a higher distortion of information than
generalizations near or at leaves nodes. This is because it assigns equal weights
to all generalization levels, irrespective of whether it is near a root node or near a
leaf node. The height weight is capable of capturing a difference in distortion across
different levels of generalization [21].
The height weight is given by

ωi,i−1 =
1

(i− 1)β

where i ∈ [2, h] and β ≥ 1 is a real number that would be given by a user. It is clear
to see that the height weight would be able to capture the difference in distortion
across different levels. This is because the lower the level (near or at the root node),
the higher the value of the height weight would be. Conversely the higher the level
(near or at the leaf node), the lower would be the value of the height weight [21].
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Definition 6 Distortions of Generalizations of Records:

Let r = {a1, a2, . . . , am} be a record with attributes a1 to am and r′ = {a′1, a′2, . . . , a′m}
be a generalized record of r. Let a level of an attribute domain of ai, i ∈ [1, m] in a
hierarchical system such as the one in Figure 1.1, be represented by level (ai) , i ∈
[1, m]. The distortion of a generalization is defined as

distort
(
r, r′
)
=

m

∑
i=1

WHD
(
level (ai) , level

(
a′i
))

.

For instance, suppose that hierarchical system of Gender, Age and Zip Code in Ta-
ble 1.1 follows {Male or Female, ∗ ∗ ∗∗}, {DD, [DD, DD], ∗∗} and {DDDDD, DDDD∗, DDD ∗
∗, DD ∗ ∗∗, D ∗ ∗ ∗ ∗, ∗ ∗ ∗ ∗ ∗} repectively. Given that β = 1, distortion of the first
record from Table 1.1 to Table 1.2 on Gender, Age and Zip Code attributes would
be WHD = 1.00, WHD = 0.67 and WHD = 0 respectively. Therefore, distortion
of the generalization of the first record from Table 1.1 to Table 1.2 is 1.67. Distortion
of an anonymized database D̃ of D would be a summation over a distortion of all
records between the two databases [21].

Definition 7 Closest Common Generalization:

Let r1 = {a1, a2, . . . , am} and r2 = {a1, a2, . . . , am} be two different records of a
database D. Suppose r12 is the closest common generalization of r1 and r2. Then r12

is defined as

ri
12 =

ai
1 if ai

1 = ai
2

the value of the closest common ancestor otherwise

where ai
1, ai

2 and ri
12 are the values of the i-th attribute in the records r1, r2 and r12 re-

spectively. For instance, the value of the closest common ancestor in the education
attribute of two different records, one taking a value of undergrad and the other tak-
ing a value of postgrad would be higher-edu if the two records follow a hierarchical
system in Figure 1.1 [21].
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Definition 8 Distance Between Two Records:

Let r1 = {a1, a2, . . . , am} and r2 = {a1, a2, . . . , am} be two different records of a
database D and r12 be a closest common generalization of r1 and r2. Then distance
between the two records is defined as

dist (r1, r2) = distort (r1, r12) + distort (r2, r12) .

For instance, suppose that hierarchical system of Gender, Age and Zip Code in Ta-
ble 1.1 follows {Male or Female, ∗ ∗ ∗∗}, {DD, [DD, DD], ∗∗} and {DDDDD, DDDD∗, DDD ∗
∗, DD ∗ ∗∗, D ∗ ∗ ∗ ∗, ∗ ∗ ∗ ∗ ∗} respectively. Now, the closest common generaliza-
tion of the first and the second would be a record r = {****, 40, 23051} on Gender,
Age and Zip Code respectively. Therefore, the distance between these two records
would be 1 given that β = 1 on the height weight. This is because distortion only
happened on the Gender attribute, since Age and Zip Code values would be kept
intact [21].

Definition 9 Distance Between Two Clusters:

Let c1 be a cluster containing n1 identical records r1 and c2 be another cluster con-
taining n2 identical records r2 and r12 be a closest common generalization of r1 and
r2. Then the distance between the two clusters is defined as

dist (c1, c2) = n1 × distort (r1, r12) + n2 × distort (r2, r12) .

This is a metric which controls whether two clusters should be merged. Two clus-
ters would only be merged if a record r12 to which the two clusters are going to be
generalized to gives a minimal distance from their original clusters [21].

Definition 10 Stub and Trunk of a Cluster:

Suppose a small cluster c1 needs to be generalized with a large cluster c2 to achieve
k-anonymity. A cluster c2 needs to be divided into two divisions, a stub and a trunk,
if |c1| < k and |c1|+ |c2| ≥ 2k. A stub would contain a number of records needed
by c1 to satisfy k-anonymity, which is k − |c1| records. A trunk would contain the
remaining number of records |c2| − k + |c1|, which also satisfy k-anonymity with
no need of generalization. It should be noted that there would be no stub or a trunk
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if |c1| + |c2| < 2k in which case all the records from two clusters would just be
generalized together to achieve k-anonymity. There are two cases in which distance
between two clusters would be calculated to see if merging the two clusters would
result in minimal information loss [21].

If |c1|+ |c2| < 2k use Definition 9

If |c1|+ |c2| ≥ 2k distance between c1 and stub of c2.

Now [21] developed an algorithm to process k-anonymization to ensure that quality
anonymized databases are produced. The distance metric in Definition 9 was used
to control merging of clusters [21]. The distance would be calculated based on a
hierarchical system such as the one shown in Figure 1.1 and it would ensure that a
cluster is merged to a cluster which introduces minimal distortion. Incorporating
a clustering technique helps to keep some records intact, and avoids unnecessary
information loss [21].

Definition 11 Distance Between Two Numeric Values:

LetD be a domain of a numerical attribute of a database. The distance between two
numerical values v1, v2 ∈ D is defined as

disN (v1, v2) =
|v1 − v2|
|D|

where |D| is the size of the domainD, calculated by a difference between maximum
and minimum value of D.
A database can also contain attributes which are not numerical and which cannot
be ordered to any specific order [8]. A distance between two categorical attribute
values which has hierarchical relation can be calculated as in Definition 8, except
that it can also be evaluated without a weight function defined.
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Definition 12 Distance Between Two Categorical Values:

Let D be a domain of categorical attribute of a database and TD be a hierarchical
system (taxonomy tree) like the one in Figure 1.1. Then a distance between two cate-
gorical values v1, v2 ∈ D is defined as

disC (v1, v2) =
H (∧ (v1, v2))

H (TD)

where ∧ (v1, v2) is the subtree of a full taxonomy tree rooted at a common ancestry
of v1 and v2 and H measures the height of a given tree. For instance, the distance
between undergrad and postgrad in Figure 1.1 would be 1

2 and 1 for distance between
primary and undergrad [8].

Definition 13 Distance Between Two Records In Absence Of Weight Function:

Let QID = {n1, . . . , nm, c1, . . . , cn} be quasi-identifiers set. The ni, i ∈ [1, m] rep-
resenting numerical attributes and cj, j ∈ [1, n] representing categorical attributes.
Then a distance between two records r1 amd r2 denoted by5 (r1, r2) is defined as

5 (r1, r2) =
m

∑
i=1

disN (r1[ni], r2[ni]) +
n

∑
j=1

disC
(
r1[cj], r2[cj]

)
where r1[Atr] represents a value of r1 in attribute Atr [8].

Definition 14 Information Loss:

Let c = {r1, r2, . . . , rk} be a cluster of records with quasi-identifiers set QID =

{n1, . . . , nm, c1, . . . , cn}. The ni, i ∈ [1, m] representing numerical attributes and
cj, j ∈ [1, n] representing categorical attributes. Let TCj represent a taxonomy tree
for categorical attributes cj, j ∈ [1, n]. Let Maxni and Minni represent maximum
and minimum value in cluster c with respect to attribute ni, i ∈ [1, m] and let ∪cj be
a union of values in c with respect to attribute cj, j ∈ [1, n]. Then information loss
that would result from generalizing c, represented by IL (c) is defined as

IL (c) = |c| ×

 m

∑
i=1

Maxni −Minni

|ni|
+

n

∑
j=1

H
(
∧
(
∪cj

))
H
(
TCj

)

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where |c| is the number of records in c, |ni| is the domain size of an attribute, ∧
(
∪cj

)
is a subtree at a lowest common ancestor of every value in ∪cj and H

(
TCj

)
is the

height of the taxonomy tree with respect to attribute cj, j ∈ [1, n] [8].

Definition 15 Total Information Loss:

Let C = {s1, s2, . . . , sh} be a set of equivalence classes resulting from anonymizing
database D to a database D̃. Then total information loss of D̃ is defined as

Total_IL
(

D̃
)
=

h

∑
i=1

IL (si) .

The k-anonymization algorithm done in [22] is an improvement of the algorithm
done in [8] regarding how to handle outlier records. The algorithm in [8] would
randomly select a record from a database D to form a cluster and select a furthest
record from the randomly selected record to form a second cluster, and so forth.
The furthest record would most likely be an outlier record if a database D contains
outliers. The clusters formed on outliers would incur maximal information loss.
The algorithm in [22] would randomly select K = b |D|k c from sorted D by quasi-
identifiers to form clusters ci, i ∈ [1, K]. Then a first record from the remaining
records of D would be removed and allocated to a cluster that gives minimal dis-
tance each time as long as D still contains records. Building a cluster on an outlier
record to contain k records would be impossible since the distance metric would
not allow it. Clusters would need to be adjusted after all records are removed from
D. There would be clusters with more than k records and others with less than k
records. The records out of clusters which have more than k and which are further
from the centroid of the cluster than the rest of the records would be removed from
that cluster and be donated to closer clusters which have less records. However,
outlier clusters would need to be deleted in the end if it is not worth to merge them
with the donated records [22]. This algorithm would produce quality anonymized
databases, but suppression of the outlier cluster should also be considered as a loss
of information.
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2.1.1 Algorithm targeted for improvement

Algorithm 1 Greedy k-member clustering
Input: Database D and a parameter k
Output: An anonymized database D̃ .

1: if (|D| ≤ k) then
2: return D
3: else
4: D̃ = {}
5: R = randomly selected record from D
6: while (|D| > k) do
7: r = furthest record from R
8: c = r
9: D = D− {r}

10: while (|c| ≤ k) do
11: r = f ind_best_record (D, c)
12: c = c ∪ {r}
13: D = D− {r}
14: end while
15: D̃ = D̃ ∪ c
16: end while
17: while (|D| 6= 0) do
18: r = randomly selected record from D
19: c = f ind_best_cluster

(
D̃, r

)
20: c = c ∪ {r}
21: D = D− {r}
22: end while
23: D̃ = ∪c∈D̃H (c)
24: return D̃
25: end if

Now [8] did the clustering Algorithm 1 for anonymization of data in order to min-
imize information loss defined in Definition 14 & 15 of an anonymized database
D̃ resulting from D. Algorithm 1 check if the number of records in a database D
is less or equal to a parameter k from which it would return a database D intact in
line 2. Otherwise, the algorithm would randomly select a record R from D in line
5 and then find a furthest record from R based on distance Definitions 11, 12 & 13
in line 7. A record in line 7 would become the only member of a cluster c in line 8
and it would then be removed from database D in line 9. Thereafter, records that
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introduce minimal information loss to a cluster c would be found one by one based
on the information loss Definitions 14 & 15 in line 11. A record r in line 11 would
be inserted to a cluster c in line 12 each time it is found and removed from database
D in line 13. The algorithm would then insert a cluster c to a database D̃ once it
contain k number of records in line 15. The process from line 7 to line 15 would be
repeated until a database D is remaining with records less or equal to k at which
point a record r would be randomly selected in line 18. Then a close cluster to a
record r in line 18 would be found in line 19 according to Definitions 14 & 15 to be
inserted to that cluster in line 20 and the record r in line 18 would be removed from
a database D each time in line 21. The process from line 18 to 21 would be repeated
until a database D is empty. The clusters in D̃ would then be generalized by a func-
tion H in 23 if clustering alone is not sufficient to satisfy k-anonymity per cluster.
Then the algorithm would return anonymized database D̃ in line 24. It is easy to see
in Algorithm 1 that using clustering before generalization would produce quality
anonymized databases [8].

2.2 Estimation of execution time of the old algorithm

The observation is that algorithm 1 spends most of its time selecting a record from
the data set D of size m, one at a time until it reaches |D| = k. The execution time
T, as the data set size |D| decreases by one record every iteration is estimated as

T = (m− 1) + (m− 2) + . . . . . . + k.

Considering the worst case scenario (when k = 1), the execution time is given by

T = (m− 1) + (m− 2) + (m− 3) + . . . . . . + 3 + 2 + 1 (2.1)

and rearranging is also true, that is

T = 1 + 2 + 3 + . . . . . . + (m− 3) + (m− 2) + (m− 1) (2.2)

adding (2.1) to (2.2) gives

2T = m + m + m + m + . . . . . . + m (m− 1) times
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and the execution time T solves to

T =
m (m− 1)

2
(2.3)

which is an estimation of the execution time of the algorithm 1.
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Chapter 3

Research Methodology

This section outlines the methodology used in producing the results. A descrip-
tion of research design is given, including data collection, and data splitting which
forms part of preprocessing. The parallel implemented algorithm is described as
well as the description of metrics to measure quality of transformed data. The com-
putational time of the proposed algorithm is estimated.

3.1 Research design

This research outlines a way to optimize computational time of the algorithm done
in [8]. The main focus is to find sequential sections of the algorithm which has
processes that can be computed independently and make them run concurrently
in parallel. The algorithm under discussion is algorithm 1 in this research report.
Algorithm 1 finds a record which becomes a cluster and append that cluster until it
contains k records. It repeats this process until no further clusters can be generated.
This research proposed to find K = bn

k c (n = |D|, the data size of D data set and k
being a privacy parameter) records of a data set which have maximal distances be-
tween each other and those records would form bases for all clusters which could
be generated. The bases would be appended simultaneously until each cluster con-
tains k records. For instance, suppose that a database D contains 200 records and
that a parameter k equals 7, then the algorithm would find 28 records from D that
have maximal distance between each other. Then, the 28 records would form 28
clusters to be appended simultaneously until each cluster contains k records. There-
after, any remaining records would be appended to clusters that introduce minimal
information loss when merged together. The results of the algorithm in [8] will be
compared to the results of the newly proposed algorithm in Section 3.4.
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3.2 Data and data preprocessing

The data sets used for running the experiments of this research was the Adult data
set from UC Irvine Machine Learning Repository [6] and the Restaurant Scores-
Lives Standard data set from https://healthdata.gov/search/type/dataset. The
Adult data set is considered the most suitable data set for evaluating k-anonymization
algorithms performance. The algorithms were used on only the nine attributes used
in [8] in the Adult data set. The attributes used in [8] were age, work class, education,
marital status, occupation, race, gender and native country including the sensitive at-
tribute salary. The first eight attributes chosen are the quasi-identifiers, they were
chosen because they can be used to link individuals to their sensitive attributes
(salary in this case) when combined together. Only five attributes were selected for
the same reason from the Restaurant Scores data set, business name, business postal
code, inspection score, inspection type including the sensitive attribute risk category.
Both data sets had to be cleaned, removing records with missing values and con-
verting some attributes to an easy to work with data type.

Finding the centroids of clusters using the new algorithm 2 in Section 3.4 by the tra-
ditional way of using distance metric had proven to take longer. This is because
the algorithm would have to go through every record of the remaining records of
a data set each time, to find a furthest record from the already generated centroids.
This was a drawback in time efficiency. This problem was resolved by splitting
the data sets into different groups containing similar records before the algorithm
was applied, so that the algorithm would only calculate the distance between the
already generated centroids and one record per those groups of records to find a
new centroid (see Figure 3.1 for more details). A viable option was to combine the
use of k-means and k-modes clustering [1] to perform data splitting since the data
set had both numerical and categorical variables. The k-means clustering was used
to split the data along numerical variables and the k-modes was used along cate-
gorical variables [1]. The k-means clustering randomly select data points which are
used as the beginning centres for all the clusters to be generated and then perform
a repetitive process of optimizing distances between the centres of the clusters until
the centres are stabilized [14]. Each data point out of the remaining ones will be
allocated to a closer centre, and a new centre for each cluster will be the average of
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all the points in a cluster taken along attributes. This process will be repeated until
there is no change in allocation of data points to centres [14]. The k-modes cluster-
ing uses the same idea except that the centres are determined by modes along each
attribute of a data point, but the process is the same.

3.3 Methods

The results in this report were obtained using a cluster with the specifications de-
scribed in Section 1.5. The algorithms were implemented and run in Python 3 plat-
form, version 3.7.3. Five nodes were chosen each time a code of new algorithm was
run.
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3.4 Proposed algorithm

Algorithm 2 Greedy k-member clustering with parallelism
Input: Splitted data set D and a parameter k
Output: An anonymized database D̃ .

1: if (|D| ≤ k) then
2: return D
3: else
4: D̃ = {}, C̃ = {}
5: m = |D|, Nc = bm

k c . Nc is the number of clusters to be generated
6: r1, r2, . . . , rNc = f ind_Nc_records (D, Nc) . with maximal distances from each other
7: C = a list of clusters c1, c2, . . . , cNc formed on r1, r2, . . . , rNc

8: D = D \ {r1, r2, . . . , rNc}
9: while (|D| ≥ k) do

10: while
(

∑|C|i=1 |ci|ci∈C < |C| × k
)

do
11: C, records = f ind_and_append_best_records (D, C) . simultaneously
12: D = D \ records
13: for c in C do
14: if |c| = k then
15: C̃ . append (c) , C . remove (c)
16: end if
17: end for
18: end while
19: end while
20: while (|D| 6= 0) do
21: n = |D|
22: allocate the n records in D to {r1, r2, . . . , rn}
23: C′ = f ind_best_clusters

(
C̃, {r1, r2, . . . , rn}

)
. simultaneously

24: append ci ∈ C̃, ∀i ∈ C′ with the corresponding r ∈ {r1, r2, . . . , rn}
25: D = D \ {r1, r2, . . . , rn}
26: end while
27: D̃ = ∪i∈C̃ Anonymize (i)
28: return D̃
29: end if
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Function f ind_Nc_records (D, Nc)

Input : D, a set of groups of similar records and a parameter Nc (# of clusters to be found)

Output : a set of records with maximal distances between each other

1. records = [ ] an empty list

2. records . append (randomly selected record r in D), D = D \ {r}

3. while(|records| < Nc) do
q = |records|
rec = r from any of the groups in D s.t. ∑

q
i=15 (r, ri) is maximal

where ri ∈ records and5 is given by definition 13 in Section 2.1

records . append(rec), D = D \ {rec}
end while
NB :∑

q
i=15 (r, ri) is computed as a pool in parallel

4. return records

Function f ind_and_append_best_records (D, C)
Input : a set of records D and a list of clusters C
Output : updated set of clusters and a set of records appended to clusters

1. best = empty array of size Nc

2. ∀ j, i in zip (C, 1 : Nc)

3. best[i] = (j, r ∈ D s.t. IL (ci ∪ r) is minimal) simultaneously computed

4. rec = unique pairs (cluster, record) taken from best along the 2nd coordinate.

5. append the records in rec to their corresponding clusters in C (only once).

records = a list of all records in rec taken along the 2nd coordinate.

6. return C, records

Function f ind_best_clusters (C, {r1, r2, . . . , rn})
Input : a set of clusters C and a set of records {r1, r2, . . . , rn}
Output : a set of clusters indices C′ of size n such that ∀ i in C′

IL (ci ∪ r) is minimal, r ∈ {r1, r2, . . . , rn}.

1. best = empty array of size n

2. ∀ i in 1 : n

3. best[i] = c.index(), c ∈ C s.t. IL (c ∪ ri) is minimal, ri ∈ {r1, r2, . . . , rn}

4. return best

FIGURE 3.1: Functions in new algorithm explained
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The following box explains some of the lines in the new algorithm.

• Line 12: D = D \ records, (this line is executed efficiently as follows)
index = DataFrame (records) .index () index () is a built-in function for
pandas DataFrame to collect indexes.
D = np.delete (D, index, axis = 0)
NB: All the records are deleted together at once. The same applies to Line
8.

• The reason Lines 20 to 26 were included in the algorithm
These lines are there to ensure that the resulting anonymized table has a
minimal information loss so far as possible. For instance, appending all the
remaining records to one cluster could cause that particular cluster to be
fully suppressed when anonymization is applied especially, if the attributes
of the added records are too dissimilar to the existing records.

• Line 27 the function Anonymize
This function is used to anonymize a given cluster by applying generaliza-
tion and/or suppression.

FIGURE 3.2: Lines in new algorithm explained

From the last two functions in the previous page, two algorithms can be developed
based on how the information loss is calculated. If the algorithm is run with the
classification metric described in Section 3.6.3, the algorithm becomes greedy k mem-
ber with cm and greedy k member otherwise.
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3.5 Estimation of execution time of the new algorithm

The observation is that algorithm 2 spends most of its time selecting Nc (the number
of clusters to be generated) records from dataset D at a time for bm

k c iterations (m
being the number of records in D and k being a privacy parameter) until D contains
less than Nc records. The execution time of algorithm 2 is estimated as

T = (m− Nc) + (m− 2Nc) + (m− 3Nc) + (m− 4Nc) (3.1)

the sequence going for b m
Nc
c terms in above series in (3.1). Applying the arithmetic

series formula
n

∑
k=1

(a + (k− 1) d) =
n
2
(2a + (n− 1) d)

to (3.1) with a = m− Nc, d = −Nc and n = m
Nc would give

T =
m (m− Nc)

2Nc
. (3.2)

3.6 Analysis

3.6.1 Distance metric

Distance between two records was computed using the distance metric used in [8],
given by

5 (r1, r2) =
m

∑
i=1

disN (r1[ni], r2[ni]) +
n

∑
j=1

disC
(
r1[cj], r2[cj]

)
where distN is defined in Definition 11, distC is defined in Definition 12, and ri[Atr]
represents a value of a record ri with respect to the attribute Atr. This metric is used
in line 6 to find records with maximal distances between each other (the centroids)
and to find a furthest record to form a new cluster in the serial Algorithm 1. The
new algorithm 2 would randomly selects a record from a data set D to form a basis
for a first cluster and finds a record furthest from the first cluster to form a second
cluster. Thereafter it finds a furthest record from the first two clusters formed. A
record to form a basis for a third cluster in the proposed algorithm is computed
simultaneously. That is, the algorithm would go through the records of data set D
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one by one. Thereby, calculating the distances between a record picked from D and
the two clusters already formed simultaneously. Thereafter, taking a sum of those
distances and a record that gives highest sum of distances will be a basis for a third
cluster and so on. This process will be repeated until Nc records having maximal
distances between each other are found.

3.6.2 Information loss metric

Information loss which would result from generalizing a formed cluster is given in
Definition 14 [8] and defined by

IL (c) = |c| ×

 m

∑
i=1

Maxni −Minni

|ni|
+

n

∑
j=1

H
(
∧
(
∪cj

))
H
(
TCj

)


where IL (c) is defined and explained in Definition 14.

3.6.3 Classification metric

The k anonymization method is mostly focused on the quasi-identifier attributes,
forgetting that correlation between quasi-identifier variables and the target variables
(sensitive attributes) needs to be preserved as well. Considering the correlation be-
tween quasi-identifier variables and the target variables can ensure that classification
models trained on the transformed data performs better. So, it is important that the
anonymization process does not lose the discrimination of sensitive variables using
quasi-identifier variables. All this can be controlled using the Classification metric
(CM) defined by

CM =
m

∑
i=1

penalty (row i)
m

where m is the number of records and penalty (row i) = 1 if row i is completely
suppressed or if the target value of row i is different from the majority target value
in the equivalence class [8].



29

The information loss metric in line 3 of the last two functions in Figure 3.1 are eval-
uated in the following way when CM is applied

if majority class of target value in c == class of row r:
IL = IL (c ∪ r)

else:
IL = IL (c ∪ r) + class penalty

NB : The class penalty above is not entirely CM (defined in the previous
page), CM is calculated for all the records in an equivalence class whereas the
class penalty is the penalty given if the sensitive value of a record to be added to
a cluster is not equal to majority sensitive value in the cluster or if the new record
would cause the cluster’s records to be suppressed when k-anonymization is ap-
plied.

3.6.4 Discernibility metric

The quality of transformed data can also be measured based on the size of each
equivalence class generated [4]. This quality measure is done based on the indistin-
guishability of records with each other in a equivalence class. Every unsuppressed
record in the equivalence class of size i will get a penalty of i and every suppressed
record will get a penalty of the size of the data set D, |D|. This is to represent that
a suppressed record cannot be distinguished from any other record in the data set,
hence the penalty of |D|. The discernibility metric is defined by

DM = ∑
∀ c s.t. |c|≥k

|c|2 + ∑
∀ c s.t. |c|<k

|c||D|

where c is an equivalence class produced by anonymization, k is privacy parameter
and D represents data set [4].
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Chapter 4

Results and Discussion

This section presents the core findings of this research derived from the methods
and techniques provided in the methodology section (in Section 2). The results and
corresponding discussions are presented in separate sub sections.

4.1 Time complexity of the algorithms

TABLE 4.1: Time complexity of the old and new algorithms respec-
tively

Old algorithms estimated time New algorithms estimated time
T = m(m−1)

2 T = m(m−Nc)
2Nc

Table 4.1 shows that time complexity of the old and of new algorithms is the same,
that is, O

(
m2). It can be observed nonetheless, that there is a significant improve-

ment in computational time from the old to the new algorithm. The time that the
new algorithm spends processing k-anonymization depends on the size of data as
well as, number of clusters (Nc) to be generated. It is clear that, the higher the num-
ber of clusters to be generated, the lower the numerator expression of the estimated
time for the new algorithm. It can also be seen that the denominator will be high
when the number of cluster to be generated (Nc) increases. So a decrease in the
numerator coupled with an increase in the denominator of the time complexity of
the new algorithm will result in shorter time for the new algorithm. Let us do more
mathematical analysis of the time complexity of the new algorithm by taking a limit
as Nc→ m, a data set size.
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lim
Nc→m

T = lim
Nc→m

m (m− Nc)
2Nc

= 0 (4.1)

therefore, as Nc → m, the time complexity will be in O (0). This means that time
for the new algorithm follows a linear relation as Nc → m. It should be noted that
this can only be achieved if we have an unlimited number of CPU cores and before
CPU overhead kicks in. Nonetheless, these are good results.

4.2 Data quality results

4.2.1 Information loss results

This section reports on the results of information loss against different k values for
the old and new algorithm. Both results of algorithms have two parts, one imple-
mented with classification penalty to reduce classification error and the other with-
out the penalty. As Figure 4.1 illustrates, the results of the new algorithm are close
to those of the old algorithm even though all the centroids of the new algorithm are
estimated before the anonymization process is carried out.

FIGURE 4.1: New vs old algorithms, 2000 records used. k-
anonymization on the Adult data set.
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FIGURE 4.2: New vs old algorithms, 2000 records used. k-
anonymization on the Restaurant Scores data set.

The two graphs in Figures 4.1 and 4.2 shows an expected trend of the resulting infor-
mation loss. It is expected that information loss will decrease when the k parameter
is increased. This is because more records will be required to form an equivalence
class. As more records are required per an equivalence class, the chance of finding
the records to be similar will decrease. Figure 4.1 shows that the new algorithms are
considerably performing the same as the old algorithms when the Adult data set is
used. However, Figure 4.2 indicates that the new algorithms produce less quality
anonymized data sets when Restaurant Scores data set is used. This could have
been caused by the presence of outlier records in the Restaurant Scores data set.
The new algorithms could have also contributed to higher information loss. This
is because they do not go through every record of a data set to determine a cluster.
Thus, it could have found similar records to be bases for clusters because it finds
bases for clusters on the group level of the pre-processed groups of records. There
is a significant gap between the new algorithms and old algorithms, however, the
results of the new algorithms could be improved when Restaurant Scores data set
is increased.
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FIGURE 4.3: New vs old algorithms, k = 15. k-anonymization on the
Adult data set.

Figure 4.3 shows that the new algorithms have under performed across all differ-
ent data sizes. The resulting information loss from the new algorithms is looking
high compared to old algorithms. This is because the new algorithms do not go
through all the records of a data set to find a set of records with maximal distances
in between. The new algorithms search through clusters of records already formed
during the preprocessing stages of data, evaluating a distance of just one record in
a cluster (centroid of a cluster) from the already formed clusters to form a basis for a
new cluster. That is how records with maximal records are found and it could hap-
pen that some of the clusters formed are not that far apart from each other. Thus
maximal distance is determined on the group level across all groups, not on the
record level. This should not just rule out the new algorithms because the maxi-
mum number of records used here was just 2000 records. The results could change
when more records are used, thereby increasing a chance of picking records which
indeed have maximal distances between them. So the new algorithms could still
be a way to go when faced with large data sets. The old algorithm with cm also
shows an unexpected trend, whereby the information loss drastically increase as
data size increases. However, this only occurred with the old algorithm with clas-
sification error penalty. The trend with the algorithm without classification error
penalty gradually decrease as data sizes increase as expected. Figure 4.3 shows the
increase of information loss between data sizes 1200 and 1800. This could have
happened because the increased data sets also included the outlier records. This
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means that different results can be seen with the increase of the data size as it it
seen when the data size reached 2000 records. Similarly both of the new algorithms
displayed an increase information loss when data size increased from 800 records
to 1600 records. Again, this could be because the additional records are not similar
enough to reduce information loss.

4.2.2 Classification results

This section reports on the results implemented according to the classification error
defined in Section 3.6.3 against different k values for the old and new algorithm.

FIGURE 4.4: New vs old algorithms, 2000 records used. k-
anonymization on the Adult data set.

Figure 4.4 illustrates the results of classification error in the anonymized data sets.
This is done to determine if the correlation between the quasi-identifier attributes
and sensitive attributes is preserved after the anonymization. That is to ensure that
any model fitted on an anonymized data set does not misinterprets the association
between features and target values because the anonymization had misrepresented
them. It is expected that greedy k member with cm algorithms will show a smaller
classification errors than that of without cm algorithms. This is because the algo-
rithms with cm ensures that the records that will preserve a correlation between
quasi-identifier attributes and sensitive attributes are grouped in the same cluster to
ensure less classification error of the anonymization process. Figure 4.4 confirms
the expectations, greedy k member with cm is mostly under greedy k member without



35

cm in the old algorithms and the same is seen for the new algorithms. The graphs
representing new algorithms look as if there were just translated from those rep-
resenting the old ones. The new algorithms could have a factor of records per an
equivalence class penalized for having a class not belonging to the majority class.
This gap between the old algorithms and new algorithm could the solved by run-
ning the new algorithms when the Adult data set is increased.

4.2.3 Discernibility results

This section reports on the results implemented according to the discernibility penalty
defined in Section 3.6.4 against different k values for the old and new algorithm.
Figure 4.5 shows that the new algorithms are producing equivalence classes with
just slightly a higher generalization than the old algorithms.

FIGURE 4.5: New vs old algorithms, 2000 records used. k-
anonymization on the Adult data set.



36

FIGURE 4.6: New vs old algorithms, 2000 records used. k-
anonymization on the Restaurant Scores data set.

It is expected that the discernibility penalty will increase with an increase in k pa-
rameter. This is because a higher k value means more records will be contained
in an equivalence class. As the k parameter increases the chance of finding those
many similar records to avoid the discernibility penalty will decrease. Hence, more
records will be suppressed during the anonymization which causes a higher dis-
cernibility penalty. All the algorithms are doing almost equally the same. There is
no big gap between the old algorithms and the new algorithms. The discerninility
substantiate in favour of choosing to use new algorithms provided they are faster,
since there is no much difference between the old and new algorithms. The old
algorithms formed a sharp straight line just after k equals 10 until k equals 50. This
indicates consistency in the old algorithms. There has been slight ups and downs in
the discernibility trend of the new algorithms. They are not perfectly consistence.
However, the new algorithms performed considerably good compared to the old
ones. This phenomenon is displayed in the both data sets (the Adult and Restau-
rant Scores data sets used to produce Figure 4.5 and 4.6).

4.2.4 Execution efficiency results

This section reports on the results of execution efficiency for the old and new al-
gorithm. Figure 4.7 illustrates the results of execution efficiency against different
privacy parameter k values and Figure 4.9 shows the results of execution efficiency
against increasing data sizes.
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FIGURE 4.7: New vs old algorithms, 2000 records used. k-
anonymization on the Adult data set.

FIGURE 4.8: New vs old algorithms, 2000 records used. k-
anonymization on the Restaurant data set.

Figure 4.7 shows the results of execution time of both the old and new algorithms.
The results are indicating that the old algorithms time is increasing slightly as k
values increase. The opposite would have been expected, since increasing k values
imply less number of clusters are going to be generated as more records would be
contained per cluster. The execution time of the old algorithms should have been
decreasing because the old algorithms would have not been run a higher number
of times trying to find furthest records to form bases for clusters. However, this
should not be much of a time cost since the execution time increases slightly. For
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the new algorithms, expectations are vice versa based on Section 4.1, only increased
number of clusters to be processed should speed up the process. Thus increasing
k values keep a data size constant should lead to a slower process. This is not
quite the case in Figure 4.7. This could be because the CPUs reached maximum
capacity when k = 50 and it becomes beyond the capacity when k < 50. That
could be the why execution time decrease towards k = 50. This is an indication that
better performance of parallel algorithms is on the expense of more hardware. More
spending is needed to achieve these better results. Despite all these, new algorithms
are worth considering if the resources needed for parallel implementations can be
afforded. The similar results are shown when the algorithms are applied to the
Restaurant Scores data set. There is a surprising gap in the new algorithms between
greedy k member with cm and greedy k member without . The greedy k member with cm
is below the greedy k member without cm from about k equals 15 to k equals 50. This
is not expected at all. It could be easily explained if it was the other way around.
Thus, the greedy k member with cm would have been spending longer time trying to
find records with less classification error. However, this is not a big gap, the results
are still acceptable.

TABLE 4.2: The k parameters, data sizes, number of processes in par-
allel for new algorithm, time (in seconds) of old and new algorithms
with cm and speedup of the algorithms using the Adult data set re-

spectively.

k Data size In parallel Old cm New cm Speedup
5 2000 400 571.181705 329.113756 1.735515

10 2000 200 636.358030 291.385797 2.183902

15 2000 133 672.798351 281.731618 2.388083

20 2000 100 693.001153 276.130467 2.509687

25 2000 80 708.888634 275.010510 2.577678

30 2000 66 749.562634 260.007537 2.882850

35 2000 57 759.993992 228.311315 3.328762

40 2000 50 766.133721 222.213255 3.447741

45 2000 44 800.671835 223.388243 3.584217

50 2000 40 812.734867 209.599446 3.877562
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TABLE 4.3: The k parameters, data sizes, number of processes in par-
allel for new algorithm, time (in seconds) of old and new algorithms
without cm and speedup of the algorithms using the Adult data set

respectively.

k Data size In parallel Old cm New cm Speedup
5 2000 400 576.273045 330.678345 1.742700

10 2000 200 637.002202 292.500321 2.177783

15 2000 133 673.332521 283.543891 2.374703

20 2000 100 688.696373 277.199234 2.484482

25 2000 80 707.219636 277.003489 2.553107

30 2000 66 732.685907 261.996731 2.796546

35 2000 57 752.772049 230.557809 3.265003

40 2000 50 772.561507 222.563217 3.471200

45 2000 44 784.700247 225.000896 3.487543

50 2000 40 817.692189 210.400257 3.886365

TABLE 4.4: The k parameters, data sizes, number of processes in par-
allel for new algorithm, time (in seconds) of old and new algorithms
with cm and speedup of the algorithms using the Restaurant data set

respectively.

k Data size In parallel Old cm New cm Speedup
5 2000 400 8136.705367 4610.843100 1.764689

10 2000 200 8979.413684 4492.804740 1.998621

15 2000 133 9385.222571 4472.443350 2.098455

20 2000 100 9509.750844 3814.56077 2.493013

25 2000 80 9669.319397 3836.138090 2.520587

30 2000 66 9668.179233 3435.548820 2.814159

35 2000 57 9780.571090 3130.927080 3.123858

40 2000 50 9786.024261 2958.794650 3.307436

45 2000 44 9801.639511 2887.651210 3.394329

50 2000 40 9855.907436 2672.054780 3.688512
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TABLE 4.5: The k parameters, data sizes, number of processes in par-
allel for new algorithm, time (in seconds) of old and new algorithms
without cm and speedup of the algorithms using the Restaurant data

set respectively.

k Data size In parallel Old cm New cm Speedup
5 2000 400 7969.051421 4277.715080 1.862922

10 2000 200 9010.103295 4724.961240 1.906916

15 2000 133 9275.896900 4616.808680 2.009158

20 2000 100 9581.877943 4631.601920 2.068804

25 2000 80 9598.860974 4389.635910 2.186710

30 2000 66 9760.922584 4242.380020 2.300813

35 2000 57 9752.753864 4013.043650 2.430264

40 2000 50 9781.843643 3805.587140 2.570390

45 2000 44 9891.562376 3639.966360 2.717487

50 2000 40 9925.304324 3510.391560 2.827407

Now it is time to analyze what happens when the algorithms are run with different
number of clusters to be generated, represented by a column In parallel in Table 4.2
and 4.3. These results are performed when data size is kept fixed at 2000 records,
just changing the k values. The speedup column in both tables represent the time
spent by an old algorithm in seconds divided by the time spent by a new algorithm.
The results would indicate that the new algorithm performed better if the resulting
speedup is greater than 1.0. A speedup less than 1.0 would indicate the otherwise.
Both the algorithms started by running 400 processes in parallel while the old al-
gorithms run single processes in sequential order. The speedup there was close to
2 on both tables (one for the algorithms with and the other without classification
penalty) which implies that new algorithms performed about two times better than
the old algorithms. As k increases the speedup started to increase. An increase in
speedup as k increases could be influenced by CPUs computational capacity. Per-
forming 400 tasks in parallel with a limited number of CPU cores could put a strain
on CPUs performing ability. Hence parallel implementation is only able to dou-
ble the performance. But the new algorithms begin to speed up as the number of
tasks to be performed in parallel decreases. The speedup increased to close to 4
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with 40 processes in parallel in both tables. This implies that new algorithms per-
formed about four times better than old algorithms. The number of records used
were 2000, and this size would be considered not enough to make conclusions.
However, the algorithm used is scalable and deterministic. Therefore, these results
could be considered good. Similar results are displayed when the algorithms are
run on Restaurant Scores data set. Those results are presented in Table 4.4 and 4.5.

FIGURE 4.9: New vs old algorithms, k = 15. k-anonymization on the
Adult data set.

FIGURE 4.10: New vs old algorithms, k = 15. k-anonymization on the
Restaurant Scores data set.

Figure 4.9 shows the results of performing k-anonymization using different data
sizes when the privacy parameter k is kept constant at k = 15. The new algorithms
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clearly performed better than the old algorithms. The old algorithms computational
time increased significantly as data size increases whereas, the new algorithms ex-
ecution time increased linearly as the data size increases. This confirms the result
of the analysis given in Section 4.1, that the execution time of the new algorithm
follows a linear relation. This is because of keeping the privacy parameter constant
and increasing data sizes which imply that the number of clusters to be generated
(Nc) would increase when data size increase. Hence, the linear relation being dis-
played coinciding with the phenomenon shown in Section 4.1. The new algorithms,
the one with classification metric embedded in calculating information loss and the
one without classification metric, only spent a longest time of 100 seconds as data
size increased. On the other hand, the old algorithms processing time increased
to over 600 seconds as data size increased. This shows that the new algorithms
are a good alternative considering execution time efficiency. Similar results are dis-
played when the algorithms are run on Restaurant Scores data set. Those results
are presented in Figure 4.10.
Now it is time to analyze what happens when the algorithms are run with different
number of clusters to be generated, represented by a column In parallel in Table 4.6
and 4.7. This has been done when keeping k constant, increasing data size thereby,
increasing the number of clusters to be generated ( number of processes to be per-
formed in parallel). Table 4.6 and Table 4.7 shows the results obtained for the algo-
rithms with and without classification metric respectively. The speedup columns of
both tables were obtained through dividing the time spent (in seconds) of the old al-
gorithms with the time spent (also in seconds) by the new algorithms. This implies
that the results of a speedup greater than 1.0 indicates that a new algorithm has
done better than the old algorithm with time and a speedup less than 1.0 indicates
that a new algorithm has been outperformed by an old algorithm in computational
time. A speedup much greater than one indicates that a new algorithm has done
much much better compared to an old algorithm whereas, a speedup less than one
and much closer to zero indicates that an old algorithm has done better compared
to new algorithm. The speedup started with about 5 for both the algorithms with
cm and without cm when the number of clusters to be generated was 26. This indi-
cates that the new algorithms performed five times better than the old algorithms.
The results became much better for the new algorithms as the number of clusters to
be generated increased through 53 to 80 ,and the speedup increased to about 8. The
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new algorithms were performing eight times better than the old algorithms right
there.

TABLE 4.6: The k parameter, data sizes, number of processes in par-
allel for new algorithm, time (in seconds) of old and new algorithms
with cm and time ratios of the algorithms using the Adult data set re-

spectively.

k Data size In parallel Old cm New cm Speedup
15 400 26 26.381023 5.410331 4.876046

15 800 53 103.127995 15.286600 6.746300

15 1200 80 232.296105 29.093985 7.984334

15 1600 106 413.582887 52.469085 7.882411

15 2000 133 642.453671 88.919717 7.225098

TABLE 4.7: The k parameter, data sizes, number of processes in par-
allel for new algorithm, time (in seconds) of old and new algorithms
without cm and time ratios of the algorithms using the Adult data set

respectively.

k Data size In parallel Old New Speedup
15 400 26 25.921747 5.660250 4.579612

15 800 53 103.395834 12.261554 8.432523

15 1200 80 231.997544 29.164813 7.954707

15 1600 106 408.435670 52.240755 7.818334

15 2000 133 656.272815 90.049173 7.287938

But the speedup started to decrease slightly when the number of clusters to be gen-
erated started to increase to 106 through to 133. This could be explained by being
limited with the number of CPU cores and by the CPUs reaching maximum capac-
ity (CPU overhead). The number of records considered here were only 2000 records,
but the algorithm is scalable and deterministic. So overall perspective, the results
show that the new algorithms are the better options when the efficiency is to be
considered.
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TABLE 4.8: The k parameter, data sizes, number of processes in parallel
for new algorithm, time (in seconds) of old and new algorithms with
cm and time ratios of the algorithms using Restaurant Scores data set

respectively.

k Data size In parallel Old cm New cm Speedup
15 400 26 393.142198 117.091113 3.357575

15 800 53 1563.985791 262.597906 5.955820

15 1200 80 3612.160354 541.899908 6.665733

15 1600 106 6282.018567 871.950459 7.204559

15 2000 133 9776.940818 1352.463780 7.228985

TABLE 4.9: The k parameter, data sizes, number of processes in par-
allel for new algorithm, time (in seconds) of old and new algorithms
without cm and time ratios of the algorithms using Restaurant Scores

data set respectively.

k Data size In parallel Old New Speedup
15 400 26 406.946638 113.498638 3.585476

15 800 53 1583.327386 253.101216 6.255708

15 1200 80 3535.046209 545.111196 6.485000

15 1600 106 6245.738673 869.069553 7.186696

15 2000 133 9929.466668 1392.329680 7.131549

Similar results are displayed when the algorithms are run on Restaurant Scores data
set. Those results are presented in Table 4.8 and 4.9.
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4.3 Summary

Parallel implementation of k-anonymization incorporating clustering algorithms
was designed in Section 3 to cut on computational time of running anonymiza-
tion, at the same time maintaining quality anonymized data sets. This section pre-
sented the results of running the experiments, testing old algorithms against new
algorithms. Section 4.1 illustrated the mathematical results of time efficiency of the
new and the old algorithms. The results had shown that time complexity of the
new algorithms is the same as that of the old algorithms. Nonetheless, the new
algorithms have improved the execution efficiency (the results are shown in Table
4.1). There is also an aggregation step in line 12 in the new algorithm where the
records appended to the clusters are deleted. However, this step can be considered
insignificant because it can be executed efficiently (with little time, see Figure 3.2).
It has been shown that the new algorithms follow a linear relation as the number of
clusters (Nc) to be generated approach a data set size. Sections 4.2.1, 4.2.2 and 4.2.3
presented the results of data quality of the anonymized data sets of new algorithms
against old algorithms. The results between the old and new algorithms were simi-
lar in some cases, but the old algorithms performed better that the new algorithms.
However, the new algorithms could still produce good results when data sets are
very large, meaning a higher chance of find similar records. Section 4.2.4 presented
the results of computational time. The number of records used were 2000 which
could be considered not enough to draw conclusions however, the algorithms are
scalable and deterministic. Therefore, it can be concluded that the new algorithms
vastly out performed the old algorithms especially, when CPU overhead was not
an issue.



46

Chapter 5

Conclusions and Future Work

5.1 Conclusions

Given that data publicizing raises concerns relating to privacy of disclosing per-
sonal sensitive information of data subjects through association techniques, litera-
ture has indicated that k-anonymization method can be used to ensure that data
subjects cannot be re-identified. However, k-anonymization incurs information
loss, which is why clustering of similar records is performed before anonymization
is applied. Processing both the clustering and k-anonymization using current al-
gorithms is computationally expensive. This research provided a solution of intro-
ducing parallel implementation to the algorithms done in [8] to solve the problem.
The new algorithms were out performed by the old algorithms when it comes to
data quality of anonymized data, however, the results of the new algorithms were
still acceptable. The new algorithms performed considerably faster when it comes
to execution efficiency (the number of records used were 2000, but the algorithms
are scalable and deterministic which means resource can be scaled up when more
records are added, the results will be similar), but there was always an issue of CPU
overhead which limited the new algorithms. The new algorithms were found to be
reliable when it comes to execution efficiency. It is safe to say that the new algo-
rithms performed better with computational time, except when the performance
slowed down due to CPUs overhead.
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5.2 Future Work

This research was implemented on a cluster computer. This research can be ex-
tended to

• be implemented on a distributed system to see if it will further improve the
results.

• explore a better way to handle outlier records.

• run k-anonymization over the internet in cloud.

• run the implementation on much larger data sets.
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