
The Application of Reinforcement Learning and
Signal Processing in Dynamic Investment

Management

Patrick Mthisi

Supervisor(s):

Dr Y Seetharam

A research report submitted in partial fulfillment of the requirements for the degree of Master of
Science in the field of e-Science

in the

School of Computer Science and Applied Mathematics

University of the Witwatersrand, Johannesburg

4 October 2021

i

Declaration

I, Patrick Mthisi, declare that this research report is my own, unaided work. It is being submitted for
the degree of Master of Science in the field of e-Science at the University of the Witwatersrand,
Johannesburg. It has not been submitted for any degree or examination at any other university.

Patrick Mthisi

4 October 2021

ii

“Our theory is thoroughly static. A dynamic theory would unquestionably be more complete and, therefore,
preferable. But there is ample evidence from other branches of science that it is futile to try to build one as long
as the static side is not thoroughly understood...

Our static theory specifies equilibra... A dynamic theory, when one is found- will probably describe the change
in terms of simpler concepts. ”

J. von Neumann

iii

Abstract
An innovative approach is adopted to develop a rigorous active portfolio management
system that explicitly makes investment decisions and processes financial market
information. This approach addresses two unique challenges in portfolio management:
the ability to effectuate market-sensitive asset allocations and alleviate the effects of
financial market uncertainty. These challenges are resolved by utilising Recurrent
Reinforcement Learning (RRL) as a sequential decision-making tool. Additionally, signal
processing is employed to enhance performance stability. The study proposes the
Augmented Recurrent Reinforcement Learning (ARRL), a hybrid portfolio management
system that integrates the RRL and signal processing modules. Using shares from nine
of South Africa’s primary economic sectors, the ARRL system is used to perform
dynamic asset allocation, thereby taking advantage of the changes in the market
opportunity set. The performance of the system is compared to standard passive
portfolio management strategies. ARRL-based strategies outperform standard passive
strategies by a wide margin, according to the findings.

Keywords: Portfolio management, Dynamic asset allocation, Sequential decision making,
Recurrent Reinforcement Learning, Signal processing.

iv

Acknowledgements

I sincerely express my utmost gratitude to my supervisor Dr Y Seetharam for the invaluable guidance
in this research work. His experience in the field of finance and willingness to assist made this work
possible. A special thanks also go to Joel Lejaha and Mahendra Ramlucken for granting me access to
the data used for this work. I would also like to extend my thanks to the DST-CSIR National e-Science
Postgraduate Teaching and Training Platform (NEPTTP) for making it possible for me to pursue this
degree.

v

Contents

Declaration i

Abstract iii

Acknowledgements iv

List of Figures ix

List of Tables x

List of Abbreviations xi

List of Symbols xiii

1 Introduction 1
1.1 Background . 2

1.1.1 Research Area . 2
1.1.2 Research Problem . 2
1.1.3 Prior Literature . 3
1.1.4 Problematising . 5

1.2 Problem Statement . 5
1.3 Research Aims and Objectives . 6

1.3.1 Purpose . 6
1.3.2 Research Question . 6
1.3.3 Research Aims . 7
1.3.4 Objectives . 7

1.4 Assumptions and Definitions . 7
1.5 Limitations . 8
1.6 Contribution . 9
1.7 Outline . 9

2 Portfolio Management 10
2.1 Conceptual Framework . 10

2.1.1 Portfolio Reward and Risk . 10
2.2 Modern Portfolio Theory . 11

vi

2.2.1 Maximise Risk-adjusted Return . 12
2.2.2 Risk Minimisation . 13
2.2.3 Markowitz in Practice: Pros and Cons . 13

2.3 Dynamic Asset Allocation . 14
2.3.1 The Wealth Process . 15
2.3.2 Maximising Expected Utility . 16
2.3.3 Stochastic Control and Bellman Equations . 17
2.3.4 Cox-Huang Approach . 19
2.3.5 Numerical Approach . 19

2.3.5.1 Tree Approaches . 19
2.3.5.2 Lattice Approach . 19

2.4 Summary . 20

3 Reinforcement Learning 21
3.1 Reinforcement Learning Process . 21
3.2 Markov Decision Processes . 22

3.2.1 Definition . 22
3.2.2 Markov Property . 22
3.2.3 Markov Decision Process Algorithm . 23

3.3 A Conceptual Framework . 23
3.3.1 On-Policy State-Value Function . 23
3.3.2 On-Policy State-Action Value Function . 24
3.3.3 Bellman Equations . 24
3.3.4 Bellman Optimality Equations . 24

3.4 Reinforcement Learning Algorithms . 25
3.4.1 Model-based Reinforcement Learning Algorithms 25
3.4.2 Model-free Reinforcement Learning algorithms 25

3.4.2.1 Q-Learning . 25
3.4.2.2 Deep Q-learning . 26
3.4.2.3 Policy Gradient . 27
3.4.2.4 REINFORCE: Monte Carlo PG . 28
3.4.2.5 REINFORCE with Baseline . 28
3.4.2.6 Actor-Critic Methods . 29
3.4.2.7 Deep Deterministic Policy Gradient . 29

3.5 Recurrent Reinforcement Learning . 29
3.6 Summary . 31

4 Signal Processing and Feature Extraction Methods 32
4.1 Singular Spectrum Analysis . 32

4.1.1 General Review of SSA and Usefulness . 33
4.1.2 Details of the SSA algorithm . 33

vii

4.1.2.1 Embedding . 33
4.1.2.2 Singular Value Decomposition . 34
4.1.2.3 Grouping . 34
4.1.2.4 Reconstruction . 34

4.2 Multichannel Singular Spectrum Analysis . 34
4.3 Independent Component Analysis . 35

4.3.1 Details of ICA . 35
4.3.2 ICA Methods . 36

4.3.2.1 Minimising Mutual Information . 36
4.3.2.2 Maximising Non-Gaussianity . 37

4.4 Autoencoders . 38
4.4.1 Details of AE . 38
4.4.2 Stacked Denoising Autoencoder . 39
4.4.3 Convolutional Denoising Autoencoder . 39
4.4.4 Recurrent Denoising Autoencoder . 40

4.5 Summary . 41

5 Research Methodology 42
5.1 Research design . 42

5.1.1 Overview . 42
5.1.2 State Space . 43
5.1.3 Action Space . 43
5.1.4 Reward Function . 44
5.1.5 Feature Learning . 44
5.1.6 ARRL System: Optimal Rebalancing . 44
5.1.7 Policy Search Algorithm . 45

5.2 Data . 46
5.2.1 Data Source . 46
5.2.2 Features . 47
5.2.3 Data Pre-processing . 47

5.2.3.1 Data Scaling . 47
5.2.3.2 Data Stationarity . 47

5.3 Methods . 48
5.3.1 Instruments . 48
5.3.2 Training, Validation and Test Split . 48

5.4 Analysis . 49
5.4.1 Portfolio Strategies . 49
5.4.2 Evaluation Metrics . 50

5.4.2.1 Terminal Portfolio Value . 50
5.4.2.2 Sharpe Ratio . 51
5.4.2.3 Sortino Ratio . 51

viii

5.4.2.4 Maximum Draw-down . 51
5.4.2.5 Information Ratio . 51

6 Results and Discussion 52
6.1 Results and Discussion . 52

6.1.1 Performance Results . 52
6.1.2 Risk Assessement . 53
6.1.3 Asset Allocation and Return Distribution . 54

6.2 Summary . 55

7 Conclusion and Future Work 57
7.1 Conclusion . 57
7.2 Future Work . 57

A Learning Graphics 58
A.1 Augmented Dickey-Fuller Test . 58
A.2 Training Artifical Neural Networks . 58
A.3 Training Results . 59
A.4 Out-of-sample Dynamic Asset Allocation . 63
A.5 Portfolio Return Distribution . 66

Bibliography 67

ix

List of Figures

3.1 A schematic presentation of RL Process . 21
3.2 Deep Q-Network . 26

5.1 Historical time series data . 49

6.1 Out-of-sample: Portfolio performance over time . 53
6.2 Out-of-sample: Portfolio drawdowns over time . 54

A.1 Training curves for ARRL and ARRL-ica . 60
A.2 Training curves for ARRL-mssa and ARRL-sdae . 61
A.3 Training curves for ARRL-cdae and ARRL-lstm-dae . 62
A.4 Dynamic asset allocation for ARRL and ARRL-ica portfolios 63
A.5 Dynamic asset allocation for ARRL-mssa and ARRL-sdae portfolios 64
A.6 Dynamic asset allocation for ARRL-cdae and ARRL-lstm-dae portfolios 65
A.7 Out-of-sample: Portfolio returns distribution . 66

x

List of Tables

5.1 Portfolio stocks and economic sectors . 46
5.2 Features: Financial market technical indicators . 47
5.3 Data preparation: Train, Validation and Test. 48
5.4 Analysis: Portfolio Strategies. 50

6.1 Out-of-sample: Risk-adjusted Return . 52
6.2 Out-of-sample: Maximum Drawdown . 54
6.3 Out-of-sample: Average Asset Allocations . 55
6.4 Out-of-sample: Wilcoxon Signed-Rank Test . 55

A.1 Features: Augmented Dickey-Fuller Unit Root Test . 58
A.2 Confidence Interval of Training Sharpe Ratio (%) . 59

xi

List of Abbreviations

ADF Augmented Dickey Fuller
ANN Artificial Neural Network
AUM Assets Under Management
ARRL Augmented Recurrent Reinforcement Learning
BPTT Back Propagation Through Time
CARA Constant Absolute Risk Aversion
CDAE Convolutional Denoising Auto Encoder
CNN Convolutional Neural Network
CRRA Constant Relative Risk Aversion
CML Capital Market Line
DAE Denoising Autoencoders
EFL Efficient Frontier Line
ELU Expontial Linear Unit
EPS Earnings Per Share
ETF Exchange Traded Fund
EW Equally Weighted
HJB Hamilton Jacobi Bellman
HFT High Frequency Trading
IR Information Ratio
ICA Independent Component Analysis
JSE Johannesburg Stock Exchange
KLD Kullback Leibler Divergence
LSTM Long Short Term Memory
MDD Maximum Drawdown
MDP Markov Decision Process
ML Machine Learning
MSSA Multichannel Singular Spectrum Analysis
MPT Modern Portfolio Theory
OIS Overnight Index Swap
PDE Partial Differential Equation
PPO Proximal Policy Optimization
QL Q-Learning
RDAE Recurrent Denoising Auto Encoder
REIT Real Estate Investment Trust
RL Reinforcement Learning
RRL Recurrent Reinforcement Learning
SDAE Stacked Denoising Autoencoders
SPG Stochastic Policy Gradient
SR Sharpe Ratio
SSA Singular Spectrum Analysis

xii

STR Sortino Ratio
SVD Singular Value Decomposition
TPV Terminal Portfolio Value
VW Value Weighted

xiii

List of Symbols

A class of control policies in Control Theory
a(t) action at time t such that a(t) ∈ A
δ explicit transaction costs
D(Π, T) bequest or scrap function
E| conditional expectation operator
F (t) filtration up to time t
G(t) discounted Cumulative Rewards
γ discount factor in Reinforcement Learning
h(t) vector of portfolio holdings at time t
H hessian or second-order condition
M number of assets in a financial portfolio
µΠ expected reward of the portfolio
∇ gradient or first-order condition
Ω parameter space
P state transition probabilities
πi(t) decision function for asset i at time t
Πθ set of parameterised policies
P physical measure for stochastic processes
qi market order for asset i
µi stock’s daily drift
1 unit vector
r risk-free rate
R reward distribution
ρij correlation between the ith and the jth risky assets
Si(t) price of a financial security i at time t
S set of possible states
σi volatility of risk asset i
σΠ portfolio volatility
Σ variance-covariance matrix
s(t) environment’s state at time t
Θ regression parameter space
θ regression coefficient, θ ∈ Θ
UT terminal value of the objective function
v average daily number of traded shares

1

Chapter 1

Introduction

Portfolio managers are responsible for developing investment strategies aimed at boosting the
financial growth of their clients and the same time, achieve other investment targets within a finite
time frame called an investment horizon. The central question that confronts portfolio managers
across the investment industry is how to allocate Assets Under Management1 (AUM) across
multiple risky financial securities. Given a plethora of asset classes such as stocks, bonds,
commodities, and so forth, a portfolio manager has to decide how best to distribute AUM across an
array of these asset classes to optimise an investment objective subject to different constraints such
as limited capital resources and minimum consumption required for survival [20]. The investment
objective typically involves maximising wealth, economic utility, or risk-adjusted returns. For
portfolio managers to achieve this objective, they are guided by a theory known as Markowitz’s
Modern Portfolio Theory (MPT), an approach that allocates assets according to their expected
returns, standard deviations, and correlations to ensure that the optimal portfolio is located on the
top part of the efficient frontier of feasible portfolio combinations [89].

The main criticism of MPT is that the asset allocations are static, meaning asset allocations that are
implemented at the beginning of the period cannot be revisited until the period ends. Such an
approach is quite problematic as it results in asset allocations that are not reflective of the latest
relative price changes [106]. Financial markets are highly dynamic, so it is probably a lot better to
allow some leeway to recalibrate initial investment decisions. Furthermore, the tools which
portfolio managers have at their disposal are often manual, leaving room for both error and delays
in execution. The instantaneous flow of asset information presents a portfolio manager with Big
Data challenges, and even more so in High-Frequency trading environments. In such situations, the
quicker a portfolio manager can execute decisions in the best interest of the portfolio in the face of
troves of information or high volumes of data, the more likely it is to achieve investment objectives.
In this study, an alternative to static or one-period MPT in the form of a multi-period dynamic asset
allocation is proposed. The dynamic portfolio management process in this study utilises sequential
decision making, an approach that offers a time-adaptive technique for dealing with rapidly
changing financial markets to achieve an overall goal [23, 106]. Reinforcement Learning (RL)

1"Asset Under Management is the overall market value of the assets managed by the fund" [6]

2

provides a vast toolkit of methods that tackle sequential decision-making problems, and it also
presents an opportunity to automate active decision making in asset allocation.

1.1 Background

People make decisions every day, and these decisions have both immediate and long-term effects [53,
118]. Decision-making must not be conducted in isolation. Essentially, to accomplish good overall
success, the interdependence between current and future actions must be taken into consideration
[23]. More precisely, the right course of action is not inherently the one that optimises immediate
utility, but rather the one that optimises overall utility, and in doing so depends on actions that could
be taken in the future [53]. Such a decision-making paradigm is referred to as sequential decision-
making. Sequential decision tasks are characterised by a temporarily ordered set of choices or actions
whose anticipated mutual outcomes can be conveyed in a single utility function [53]. RL can be
applied to solve sequential decision problems using Bellman’s principle of optimality discussed in
Chapter 3. In essence, RL agents learn to orientate their activities in alignment with the environment.
Additionally, RL agents make a sequence of decisions, basing decision d + 1 on what was learned
from decision d and its consequence [37]. The linchpin of RL entails determining a policy or plan of
action that maximises the expected value of cumulative rewards [123, 137].

1.1.1 Research Area

The study focuses primarily on applying Machine Learning (ML) and Big Data paradigms to active
investing. Active investing takes a hands-on approach to portfolio management and requires a
portfolio manager to earn returns above the average market returns by exploiting short-term asset
price fluctuations. A dynamic portfolio management system is designed using ML algorithms and
Big Data solutions. The system not only automates portfolio rebalancing by automatically pivoting
in and out of stocks but also handles high information flow.

1.1.2 Research Problem

The study detailed in this report looks at mitigating problems associated with the one-period MPT;
primarily, transitioning from passive investing to active investing that constitutes dynamic asset
allocation. A setting for dynamic asset allocation typically involves a portfolio manager exploiting
the prevailing trend of financial assets to achieve returns that exceed a targeted benchmark.
Different sectors of the economy behave differently, and dynamic asset allocation ensures that AUM
is allocated to top-performing stocks, thereby guaranteeing that portfolios have the highest
exposure to stock price inertia. As a result, if the trend sustains, the strategy will generate profits by
increasing position to top-performing stocks and vice-versa for worst-performing stocks while
remaining diversified across several economic sectors. Unlike classical one-period MP punctuated
by infrequent reviews, dynamic asset allocation continuously re-balances portfolio allocations over
multiple periods. The result is a sequence of investment decisions made at specific time points in
response to financial markets’ dynamics, and the resulting profit and losses are path-dependent.

3

Dynamic investing in this study is configured as a sequential decision task, and RL is used to find
an optimal investment strategy by maximising a specified utility function. This study proposes a
hybrid RL and signal processing dynamic asset-allocation system. We call it the Augmented
Recurrent Reinforcement Learning (ARRL) system. This dual-purpose system automates asset
allocation while also performing feature learning to improve the quality of inputs.

1.1.3 Prior Literature

Single period theories, starting with Markowitz’s work and studies by Sharpe [131], and Ross [124],
share one common thread: there is a single time horizon, and an investment strategy is based on
return and risk estimates across that time horizon. One of the inherent hazards of investing in
financial markets is exposure to changes in the market opportunity set, which can be gradual or
precipitate as a sudden large shock [78]. The primary disadvantage of portfolio strategies under
single-period theories is that they are only reviewed at the end of the investment horizon, thus fail
to safeguard the portfolio against changes in the market opportunity set. The multi-period
approach, particularly dynamic investment strategies, entails an investment strategy or policy that
changes over time, allowing for risk management throughout the investment horizon [57]. The
dynamic investment problem has remained a major topic in financial theory, dating back to Merton
[91, 90] in its contemporary form. Dynamic asset allocation is motivated by the need to assist
long-term investors or fund managers in their risk management efforts by providing means to
implement periodic portfolio reviews. In addition, dynamic asset allocation exploits market
opportunities whenever they arise and adjust the asset allocations accordingly. RL offers a way to
implement unsupervised optimal multi-period asset allocations. Its advantage lies in the fact that it
is not bounded by restrictive assumptions such as those under Merton’s studies.

Neuneier was one of the leading proponents of applying RL to portfolio management in his 1996
paper titled "Optimal Asset Allocation using Dynamic Programming" [104]. In the said paper, the
asset allocation problem is presented as a Markov Decision Process (MDP) 2. More specifically, an
RL-based algorithm called Q-learning 3 is used to solve portfolio optimisation. A Q-learning-based
portfolio gave an outstanding performance in the testing period compared to a passive investing
strategy. Furthermore, if there was no noticeable trend to follow, and also if there was too much
uncertainty in the stock market, the portfolio strategy kept a neutral position in the market.

Subsequently, Moody et al [99, 100] pioneered the Recurrent Reinforcement Learning (RRL)
approach, an adaptive policy search algorithm that finds approximates solutions to the field of
portfolio management. The term "Recurrent" means that previous outputs form part of the inputs
[99]. More notably, studies by Moody et al and Du et al [36] compared Q-learning to RRL and noted
that Q-learning-based portfolios did not perform as well as RRL-based portfolios. That is because
Q-learning suffers from Bellman’s curse of dimensionality from large state and action spaces [130].
Additionally, Q-learning is more sensitive to value function selection, causing it to have unstable

2A mathematical framework for decision-making [137].
3Q-learning refers to an algorithm used to estimate reinforcement functions [96, 137].

4

performance, further exacerbated by non-ergodicity in financial markets. Furthermore, the RRL
framework allows a simple representation of asset allocation problems than search algorithms
based on value functions and also avoids Bellman’s curse of dimensionality [36].

The groundbreaking idea from the study by Moody et al is the use of Sharpe Ratio and its differential
as objective functions [99]. RRL is different from the Temporal Difference learning (TD-learning)
approaches such as Q-learning that estimate a value function of the control problem. RRL provides
more flexibility in the choice of objective functions. This novel idea propelled further interest in RRL
and motivated other researchers to try-out a myriad of objective functions. A study by Almahdi et al
[4] looks at alternative performance measures such as the Sterling ratio, Calmar ratio, and so forth,
as well as implementing dynamic stop-loss as a risk management add-on. The resulting portfolios
delivered superior returns that surpassed most hedge fund indices.

Studies that are discussed up to this point do not guide how RRL-based portfolios could be
configured to handle portfolios consisting of two or more risky assets. Jiang et al [58] pioneered a
topology called the Ensemble of Identical Independent Evaluator (EIIE). The EIIE topology
evaluates one risky asset at a time for multi-asset portfolios and outputs a scalar or weight to denote
its inclination to invest in that risky asset. Portfolio weights are computed by applying the softmax
function to the scalars [58, 99]. EIIE topology is recurrent by design because portfolio weights from
previous trading periods form part of the input; thus EIIE topology is a natural extension to RRL for
multi-asset portfolios. This topology has some crucial benefits that include portfolio scalability,
data-use efficiency, and asset collection plasticity. Liang et al [73] use the EIIE topology for
adversarial training that involves adding random noise to market prices of five randomly chosen
Chinese stocks to dampen the signal-to-noise ratio 4 and assess the performance of the portfolio
constructed using that data. An important take away from this study is performance instability due
to a low signal-to-noise ratio [73, 74].

Several methods are implemented to improve the performance stability of RRL-based portfolios.
Maringer et al [88] augment the existing RRL with regime switching properties to account for
non-linearities in financial data. The regime-switching model explicitly defines different regimes
and assumes that the dynamics of economic variables are regime dependent. Gold [40] and Lu [81]
introduce hierarchical feature learning using Deep Learning (DL) to enable RL agents to create their
information and learn it directly from raw inputs. Deep Artificial Neural Networks (DNNs) are
combined with RRL to perform hierarchical feature learning. Deng et al [30] incorporate DL into a
typical RRL framework, thereby creating a deep RRL (DRRL) architecture. Also, fuzzy-learning is
incorporated into the DRRL model to reduce instability in the initial time series. Combined with
fuzzy-learning, the DRRL method is very stable under various market conditions and produces
reliable profits during experimentation.

Other works include using value-based approaches such as Deep Q-Network (DQN) by El-Saawy
et al [59] that make use of DNNs to estimate state-action value functions used to infer an optimal

4Signal-to-noise ratio is the ratio between the desired information versus background noise [67].

5

investment strategy. Alternatively, policy gradient-based methods such as Deep Deterministic Policy
Gradient (DDPG) and Proximal Policy Optimization (PPO) are used by [61, 73, 130].

1.1.4 Problematising

The most glaring problem with prior literature on portfolio management using RL is lack of clarity
concerning the type and quality of information used as inputs. In most literature, inputs are limited
only to either k most recent risky asset returns [99, 100] or to stock prices and volume traded [58]. As
part of the study, our input space is expanded and includes other features from technical analysis.

Another contentious issue is that there is an overreliance on feed-forward DNNs for feature learning
and value-function approximation or a combination of both. Using feed-forward DNNs potentially
impair the efficacy of a trading or portfolio management system. DNNs often require long
computational time and cause out-of-memory issues during training. Also, feed-forward DNNs
pose more challenges during deployment as they are viewed as black-box algorithms due to their
opaqueness. DL algorithms sift through millions of data points to find trends and connections that
are often overlooked by human experts. However, the decisions they make based on these results
often confound even the engineers who develop them. Thus mistakes could go undetected for long
periods and compound losses, leading to serious financial repercussions. In this study, relatively
simple and more computational efficient signal processing methods are employed, namely:

1. Multichannel Singular Spectrum Analysis (MSSA): is a model-free approach for the recognition
and identification of time series structures [41].

2. Independent Component Analysis (ICA): this is an efficient statistical signal processing
technique that is used to identify independent components from the observed data [80].

3. Denoising Autoencoders (DAE): these are unsupervised artificial neural networks (ANNs) that
learn dense representations of perturbed input data called latent representations or codings [69,
105, 155].

1.2 Problem Statement

In Finance, MPT is the most prominent and widely adopted portfolio management technique
despite its shortcomings [84, 89]. This study entails using RRL to dynamically inform asset
allocation decisions to maximise a given investment objective. RRL agents do not only identify a
locus of points that signals to buy, hold or sell a stock on a given stock price trajectory but also
provide prescriptive portfolio allocations across multiple periods [157]. Thus RRL can essentially be
used to actively and automatically allocate scarce capital resources to achieve an investment goal,
and in doing so, automates portfolio management.

Data obtained from financial markets is limited only to stock prices as well as volume traded. In
this study, additional features from technical analysis [102] are used to expand the input domain to
improve the learning process of RRL. Also, signal-processing techniques mentioned in Section 1.1.4
are employed in our study due to their simplicity and transparency.

6

1.3 Research Aims and Objectives

1.3.1 Purpose

The primary goal of this study is to develop an integrated RRL and signal-processing portfolio
management system. The system is applied to solve dynamic decision-making tasks pertinent to
dynamic asset allocation. The benefits associated with this approach over theories such as
Markowitz’s MPT include:

1. There are cost-saving implications of delegating investment decision making to RRL agents
while freeing up human attention to focus on higher-end tasks such as due diligence, company
analysis, and investment research.

2. The integrated portfolio management system in this study can learn and distill useful
information from the financial markets using novel signal processing methods.

3. Using RRL to automate asset allocation dynamically unlocks efficiency gains due to the
lightning speed execution of investment decisions without much need for human
intervention.

Given the above-mentioned benefits of our integrated approach, the likelihood of achieving
investment objectives is higher. Furthermore, the portfolio’s composition and a reactive portfolio
management process can safeguard investors’ wealth quicker against adverse market movements.

1.3.2 Research Question

This study covers two specific research questions, namely:

1. Which signal-processing approaches can be utilised to enhance the signal-to-noise ratio in
financial data?
Financial markets are quite versatile and non-stationary. A good signal processor ensures that
only intrinsic information is utilised, thereby ensuring robustness against environment
uncertainty. The expectation is an improvement in the portfolio’s performance since only
relevant information pertinent to the stock’s dynamics will be used to inform asset allocation
decisions.

2. How good is the performance and risk profile of the proposed ARRL system as an active
investing tool relative to passive investing strategies?
Active investing is costly because constant buying and selling of stocks attract high
transaction costs that lower profit margins. Furthermore, active fund managers have more
discretion to take positions in any investment they believe would yield high returns.
However, this freedom adds an extra risk dimension called active risk whose consequences
are dire should fund managers get their investment decisions wrong. Wrong investment
decisions lead to suboptimal asset allocations that put a fund in an untenable position.

7

1.3.3 Research Aims

This study addresses the following research aims:

1. Probe the efficacy of the proposed ARRL system for a multi-asset portfolio.
2. Improve performance and robustness of the proposed ARRL dynamic asset-allocation system.
3. Achieve sustained performance and fulfill the active investing mandate of generating returns

that exceed the benchmark.

1.3.4 Objectives

The following are carried out to achieve our research aims:

1. Assess efficacy of the ARRL system for a multi-asset portfolio of stocks from nine major
economic sectors in South African.

2. Use signal-processing methods to improve the quality of inputs presented to the proposed
portfolio management system 5.

3. Expand the input space beyond the generic and readily available financial market data
variables.

1.4 Assumptions and Definitions

The experiments that are carried out as part of our study are performed under the following
assumptions:

1. The fund managed by the portfolio manager is small to medium-sized: the amount of AUM
falls within reasonable bounds that do not trigger significant market impact (MI). MI is
defined as a change in stock price relative to a reference price caused by a transaction [65]. MI
is calculated as follows:

MI = ±κσ
(q

v

)λ
,

where σ is stock price’s daily volatility, q denotes volume of the executed transaction, v is
average daily number of traded shares of stock, while κ and λ are numerical constants that can
be estimated from a sample of historical transactions [65]. For small to medium-sized funds,
the magnitude of q is minute compared to v, thus the quotient q

v ≈ 0. This assumption
eliminates any tendency of potential herding behaviour which can artificially increase or
decrease stock prices.

2. The financial market has high liquidity: trades are immediately executed at the latest bid and
ask6 prices, thereby eliminating slippage. Let Sbid and Sask be the stock’s bid price and ask price,
respectively, then the bid-ask spread at time t is calculated as:

s(ba)(t) = Sbid(t)− Sask(t).
5This addresses the garbage in, garbage out (GIGO) principle, a colloquial recognition of poor quality inputs leading to

unreliable output.
6A bid price is a maximum price a buyer of an asset is prepared to pay, and the minimum price that a seller is prepared

to accept is called ask price [34].

8

Slippage occurs when s(ba)(t) varies between a time t when a market order is initiated and
time t + η when the order is completed. Frequent buying and selling of financial securities in a
highly liquid market ensure that η is minimal, thus slippage is negligible in such cases.

3. Transaction costs, denoted by c, are a substantial component of realistic models of stock
market’s microstructure [65]. Sources of transaction costs include commissions (and similar
explicit transaction charges - denoted by δ), MI and s(ba). Following a definition by [21, 65],
transaction costs can be calculated as:

c = δ +
s(ba)

2
+ MI = δ +

s(ba)

2
+

1
1 + λ

σ
(q

v

)λ
.

The amount of money paid by a buyer is given by Sq (1 + c), and the amount received by a
stock seller is calculated as Sq (1− c) where S is stock price [65]. Notice that transaction costs
are a portion of the market order that is paid by buyers of financial assets but not received by
sellers. By the earlier assumptions, we can set slippage to be approximately equal to 0 and the
quotient q

v ≈ 0 thereby making transaction costs ≈ δ. It is important to note that δ denote
explicit costs of trading and are not sources of financial risk. Any indirect or implicit costs
associated with loss of capital during the investment period are not included in δ.

1.5 Limitations

1. Inputs are limited to the stock price, the volume traded, and technical analysis variables.
Limiting inputs to said features assume that all the available information is reflected in these
variables and that portfolio managers act only based on that information. In practice, portfolio
managers would explore other data sources such as data from sentiment analysis and
fundamental data.

2. Another setback comes from the assumption concerning fund size. Funds are assumed to range
from small to medium-sized. The assumption is ideal for retail investors but not for corporate
or institutional investors who can influence the market price. The assumption limits the scope
of our study. Successful portfolio managers tend to acquire significant AUM that causes their
market orders to have a highly significant market impact. To allow for market impact, further
adjustments that are beyond the scope of this study would have to be employed.

3. The ARRL system is tested using nine tickers. The JSE floats 350 shares, of which the top 100
by market capitalisation are liquid enough to be considered investable. Limiting the portfolio
to only nine stocks hinders the ability to move across shares within an available investable
universe, thus exposing the portfolio to concentration risk.

4. Portfolio stocks are selected based on historical performance. As a result, only the winners
are taken into account, whilst the losers are not considered, thus placing the winners at the
forefront as a representative and comprehensive sample. This is known as survivorship bias,
and it has the effect of skewing the fund’s average results upwards.

Despite these limitations, the experimentation carried out in our study is still viable and provides a
template for further work that could incorporate the limitations stated above.

9

1.6 Contribution

1. This study can be applied to other domains that call for innovative methods of learning
decision-making policies. Such domains include autonomous driving [110, 117] as well as in
the field of Medicine such as learning correlative and adverse interactions between medicines
[146].

2. The signal processors used in our study are relatively easier to deploy in production and
produce highly tractable outputs. They can be applied to the analysis of seasonality for
inventory sales or consumer credit behaviour since they are capable of extracting the
underlying factors in time series data.

3. The combination of signal-processing and RRL results in a hybrid dual-purpose module. This
module capable of siphoning out relevant information and making critical decisions. The
approach can be applied to many disciplines where automation is a requirement. The result is
cost-savings and operational efficiency.

1.7 Outline

This work has the following outline:

• Chapter 2: Reviews portfolio management literature and provides a formulation of dynamic
asset allocation as a stochastic optimal control problem.

• Chapter 3: Provides a discussion of RL approaches and RRL.
• Chapter 4: Outlines and discusses signal processors used in the study.
• Chapter 5: Describes the methodology, data preparation, and analytical metrics used.
• Chapter 6: Presents results and summary.
• Chapter 7: Concludes the study, and gives thoughts and ideas for future work.

10

Chapter 2

Portfolio Management

Fund managers buy and sell financial assets with the intent to generate returns in excess of a
benchmark rate of return, such as the risk-free return or the bank’s rate of return for cash deposits
[152]. Portfolio management is concerned with optimising portfolio selection to get the best value
for money. This section provides a concise portfolio management formulation that extends MPT to
dynamic asset allocation using the groundbreaking work by Merton [90, 91, 92] and Ziemba [158].
Markowitz’s MPT is also referred to as one-period, static, or do-nothing portfolio management
theory because portfolio allocations are carried out at the beginning of the investment period and
remain static until the end of that period [27, 89, 120]. Regardless of what happens to relative asset
values, portfolio allocations are not rebalanced during the investment tenor [115]. In practice, fund
managers recalibrate their initial investment decision according to the way the future unveils itself
[93, 152]. That is precisely what dynamic asset allocation entails.

2.1 Conceptual Framework

2.1.1 Portfolio Reward and Risk

This section relates the parameters of constituent portfolio assets to the expected rewards and
volatility of a portfolio. Consider a portfolio consisting of M ≥ 1 risky assets. The values today of
the ith risky asset is denoted by Si, and its random return is given by ri over a finite investment
horizon T. The random return ri is assumed be elliptically distributed [52, 89, 109]. The Gaussian
distribution is the widely accepted distribution for ri:

ri ∼ N(µiT, σ2
i T).

The correlation between the returns on the ith and jth risky assets is given by ρij. The parameters µi,
σi and ρij correspond to the drift, volatility and correlation, respectively [52]. Let Wi be the number of
shares or amount of risky asset i in the portfolio. The value of a portfolio comprised of M ≥ 1 risky
assets is given by:

Π =
M

∑
i=1

WiSi.

11

The terminal portfolio value after horizon T is obtained by:

Π + ∆Π =
M

∑
i=1

WiSi(1 + ri).

The holding period return is given by:

∆Π
Π

=
M

∑
i=1

(
WiSi

∑M
i=1 WiSi

)
ri =

M

∑
i=1

hiri, (2.1)

where hi is the fraction of the fund’s initial AUM allocated to risky asset i. The set {hi, . . . , hM}
uniquely determines the probability distribution of the terminal portfolio value [93]. The expected
reward on a portfolio is a function of individual asset’s drift, and it is calculated as:

µΠ =
1
T
E

[
∆Π
Π

]
=

M

∑
i=1

hiµi = h>µ, (2.2)

where h = (h1, . . . , hM) and µ = (µ1, . . . , µM) are vectors of portfolio allocations and their drifts,
respectively. The portfolio’s standard deviation is also a function of asset allocations and their
variance-covariance, and it is given by:

σΠ =
1√
T

√
var

(
δΠ
Π

)
=

√√√√ M

∑
i=1

M

∑
j=1

hihjρijσiσj =

(h1, . . . , hM)>

σ2

1 . . . σ1M
...

. . .
...

σM1 . . . σ2
M

 (h1, . . . , hM)

1
2

=
{

h>Σh
} 1

2 ,

where Σ is the variance-covariance matrix given by:

Σ = (σij)
M,M
i,j=1 ∈ <

M×M.

The covariance between the ith and jth risky assets is given by σij = ρijσiσj, while the diagonal entries
of Σ are individual volatilities of the risky assets [89, 120]. Given that the risky asset’s random return
ri has a Gaussian distribution, the portfolio’s return which is a linear combination of risky assets’
returns (as shown by Equation 2.1) has a Gaussian distribution given by:

∆Π
Π
∼ N

(
h>µ, h>Σh

)
.

2.2 Modern Portfolio Theory

In 1952, Nobel Laureate Markowitz [89] pioneered the Modern Portfolio Theory (MPT), a practical
guide that defines efficient portfolios. An efficient portfolio is a portfolio with the highest reward for
a given level of risk, or the lowest risk for a given reward [84, 120]. Efficient portfolios are situated
along a risk-reward semi-parabola called the efficient frontier line (EFL) [89]. Successful portfolio
optimisation using the reward versus risk paradigm places a portfolio along EFL [120, 158]. In
practice, not only do portfolio managers buy and short risky assets in the financial market, but they
can borrow or lend money in the money or cash market, as noted by Tobin’s separation theorem
[142]. Tobin’s separation theorem, which is a special case of the n-fund mutual fund theorem,

12

asserts that an optimal portfolio is made up of a risk-free asset and an efficient portfolio comprised
entirely of risky assets [56, 125, 142]. Short-term securities sold in the money market (referred to as
risk-free assets) serve as investment vehicles for low-cost capital for a short time. These risk-free
assets are highly liquid and have maturities ranging from one day to one-year [71, 85]. Examples of
short-term securities include short-term instruments such as the 91-day South African Reserve Bank
treasury bill (T-bill), overnight repurchase agreement, commercial paper, swaps, or certificates of
deposits. These securities are guaranteed to earn a risk-free rate of return denoted by r f [83]. The
risk-free rate of return could either be the overnight index swap rate (OIS), repo rate, or the money
market Rate. The inclusion of a risk-free asset into a portfolio leads to a new efficient frontier called
the capital market line (CML) [125, 142]. The point at which CML is tangent to EFL is called the
market portfolio, or tangency portfolio [120].

Let h0 be the weight of a risk-free asset which is defined as the weight of a portfolio that remains once
allocation to risky assets is complete [125, 142]. The inclusion of a risk-free asset results in a budget
equation given by:

h0 + h>1 = 1 ; h0 ≡ 1− h>1. (2.3)

Using Tobin’s separation theorem, the expected return on a portfolio in Equation 2.2 can be re-written
to include a risk-free asset as:

µΠ = h0r f + h>µ =
(

1− h>1
)

r f + h>µ = r f + h>
(

µ− r f I
)

.

2.2.1 Maximise Risk-adjusted Return

Mean-variance optimisation criterion, first proposed by Markowitz, corresponds to finding asset
allocation h that maximises expected return subject to a penalty related to the variance of portfolio
returns [84, 89, 120], and it is given by:

max
h

J(h) = r f + h>
(

µ− r f1
)
− λ

2

(
h>Σh

)
, (2.4)

where λ > 0 is a penalty term that portrays a level of risk aversion. The optimization is quadratic
with respect to the decision variable h, and there are no constraints [89, 152]. The candidate solution
is derived from the gradient or the first-order condition given by:

∇J(h) =
∂V
∂h

(h) =
(
µ− r f1

)
− λΣh = 0,

which can be solved analytically to give a candidate solution:

h∗ =
1
λ

Σ−1
(

µ− r f1
)

. (2.5)

Calculating the Hessian or second-order condition yields the candidate solution, which is a unique
maximiser. The second-order condition of J(h) is given by:

HJ(h) =
∂2 J
∂h2 (h) = −λΣ < 0,

thus, confirming that J(h) attains its maximum value at h∗.

13

2.2.2 Risk Minimisation

The portfolio selection problem can be formulated as a risk minimisation optimisation problem [94].
The constraint is typically a portfolio return set to equal a prespecified value denoted by m. Portfolio
risk is easier to control than portfolio return, thus portfolio risk minimisation is more extensively
applied than expected portfolio return maximisation [152]. The formulation of MPT as portfolio risk
minimisation is given by:

min
h

1
2

h>Σh,

subject to: r f + h>
(

µ− r f1
)
= m.

(2.6)

The optimisation problem in Equation 2.6 has equality constraints, therefore by applying the
Lagrange method, the unconstrained minimisation is obtained by using the Lagrange function:

min
h

L(h, λ) =
1
2

h>Σh + λ
(

m− r f − h>(µ− r f1)
)

, (2.7)

where λ is a Lagrange multiplier. Equation 2.7 is unconstrained, thus we can proceed to calculate
∇L(h, λ) to obtain the first-order condition:

∇L(h, λ) =
∂L
∂h

(h, λ) = Σh− λ(µ− r f1) = 0,

andHL(h, λ) to obtain the second-order condition:

HL(h, λ) =
∂2L
∂h2 (h, λ) = Σ > 0.

The second-order condition is equal to the variance-covariance matrix, which is positive definite. The
optimal weight is computed analytically as:

h∗ = λΣ−1 (µ− r f1
)

By substituting h∗ into the constraint in Equation 2.6, λ is given by:

λ =
m− r f

(µ− r f1)>Σ−1(µ− r f1)

Finally, the optimal asset allocation h∗ is calculated as:

h∗ =
(m− r f)Σ−1(µ− r f1)

(µ− r f1)>Σ−1(µ− r f1)
(2.8)

2.2.3 Markowitz in Practice: Pros and Cons

Optimal portfolio allocations in Equation 2.5 and Equation 2.8 are equivalent in that they sweep out
the same efficient frontier of portfolios that are mean-variance efficient. In a single period, this
works well, and the joint normality assumption discussed in Section 2.1 implies that the risk/return
trade-offs give identical frontier portfolios. The Markowitz MPT, because it is a single period
approach, is based on the assumption that fund managers cannot change their minds later, therefore
asset allocations, once set, are not re-visited until at the end investment horizon. Essentially,

14

regardless of the relative asset values, portfolio rebalancing is not performed [115]. The
single-period method is ideal for fund managers that focus on the short term. The strategy will only
evolve when another investment review takes. The result is a portfolio management strategy that
does not protect from adverse price fluctuations or adjust to changes in the market opportunity set.

2.3 Dynamic Asset Allocation

Capital markets are dynamic; they are affected by constant shifts of supply and demand. For
instance, the resignation of well-famed personnel, technological advancement, or social perceptions
may generate shocks or disequilibria in supply and demand, altering the relative values of financial
instruments. Stock portfolios in these markets often require constant monitoring and rebalancing to
capture fluctuations in value caused by transient forces that misalign supply and demand from their
equilibrium levels [120]. Dynamic asset allocation is an active investing strategy that entails
multi-period deployment of AUM among a mix of risky assets in an optimal way in order to
maximise the fund’s value, or utility [29, 157]. The portfolio asset mix is constantly adjusted to align
to the changes of the market opportunity set, and it typically involves the selling of assets that are in
decline and buying assets that are increasing in value in order to capture positive returns wherever
and whenever they exist in the financial market [115]. Once implemented, dynamic asset allocation
uses scientific methods to inform portfolio rebalancing based on empirical observations of the
objective data. Unlike passive or one-period investing, dynamic asset allocation provides an
opportunity to recalibrate initial investment decisions across multi-periods [106, 152]. The result is a
sequence of actions that determine a portfolio’s asset mix, and ultimately, its performance. The
portfolio manager is mandated to devise a portfolio rebalancing plan to suit prevailing economic
conditions and investors’ goals.

One of the most critical considerations a fund manager must make is which strategy to employ. In
Section 2.2.3, we remarked that if the short-term dominates, MPT works quite well, and the fund
manager typically considers assets that perform well in the short-term such as T-bills and bonds.
Staunton et al [31] demonstrate that in the long run, equity investments have grown at a faster rate
than T-bill, bonds, and inflation. Thus, the fund manager can no longer rely on a short-term
approach for equity investments because the impact of changes in the market opportunity set and
market risk becomes more significant the longer the investment horizon becomes [57]. A prudent
fund manager should rebalance asset allocations optimally and periodically to align investor’s risk
tolerance, time horizon, and investment objectives with market dynamics. Rather than having a
single efficient frontier, as the single period approach suggests, a multi-period framework
establishes efficient frontiers for various rebalancing frequencies. Furthermore, in a multi-period
setting, the joint-normality assumption that results in a single efficient frontier no longer holds. In a
multi-period context, joint-lognormality is the obvious choice. In a continuous-time dimension, this
results in a multivariate Brownian motion with constant drift and covariance (see Section 2.3.1) [57].

In perspective, dynamic asset allocation encapsulates theories from discrete or continuous-time
financial models and optimal multi-period portfolio rebalancing. In this section, we layout

15

theoretical groundwork for dynamic asset allocation using novel ideas by Davis et al [29], Merton
[91, 93] and Ziemba [158]. A review of the commonly used dynamic asset allocation approaches is
also included.

2.3.1 The Wealth Process

Adopting the notation already introduced in Section 2.1, the portfolio is assumed to comprise of
M ≥ 1 risky assets and a risk-free asset. The risky asset i = 1, . . . , M is presumed to follow a
Geometric Brownian Motion (GBM) satisfying a stochastic differential equation (SDE) of the form:

dSi(t)
Si(t)

= µidt +
M

∑
j=1

σijdWj(t)

= µidt +
M

∑
j=1

σijΦ
√

dt ; Φ ∼ N(0, 1) ; Si(0) = si(0),

(2.9)

where Wi(t) ∼ N(0, t) is a Brownian motion process on a probability space given by {Ω,F (t), P}
[52, 93]. The underlying filtration given by F (t) coincides with the sigma-field given by
σ (W(s) : 0 ≤ s ≤ t) [103]. Similarly, a money market instrument given by B has a price evolution
process satisfying:

dB(t)
B(t)

= r f dt ; B(0) = 1.

Let ∑M
i=1 hi(t) be the total allocation to risky assets at time t. The allocation to the money market

instrument B is given by h0(t) = 1−∑M
i=1 hi(t). Thus, at any given time t ≤ T, the budget equation

is given by:

h0(t) +
M

∑
i=1

hi(t) =
M

∑
i=0

hi(t) ≡t 1. (2.10)

Unlike the budget equation given by Equation 2.3 in which asset allocations are static, dynamic asset
allocation is a multi-period portfolio management process where portfolio rebalancing is performed
throughout the investment horizon.

Using the guideline from Merton [90, 92], we now derive the wealth process of a portfolio at time t.
Let Π(t) be the fund value or wealth at time t. Considering a time interval of length η, define C(t) to
be consumption at time t where t = t0 + η. The total wealth at time t is given by:

Π(t) =

[
h0(t0)

B(t)
B(t0)

+
M

∑
i=1

hi(t0)
Si(t)
Si(t0)

]
[Π(t0)− C(t0)η] . (2.11)

16

By subtracting Π(t0) on both sides of Equation 2.11 and using the budget equation given by Equation
2.10, the discrete time intertemporal wealth process is given by:

∆Π(t0, t) = ∆Π(t0, t) = Π(t)−Π(t0)

=

[
h0(t0)

∆B(t0, t)
B(t0)

+
M

∑
i=1

hi(t0)
∆Si(t0, t)

Si(t0)

]
[Π(t0)− C(t0)η]− C(t0)η

=

[
h0(t0) (e

ηr f − 1) +
M

∑
i=1

hi(t0)
(

eri(t0)η − 1
)]

[Π(t0)− C(t0)η]− C(t0)η

=

[
h0(t0)e

ηr f +
M

∑
i=1

hi(t0)eri(t0)η −
(

h0(t0) +
M

∑
i=1

hi(t0)

)]
[Π(t0)− C(t0)η]− C(t0)η

=

[
h0(t0)e

ηr f +
M

∑
i=1

hi(t0)eri(t0)η − 1

]
[Π(t0)− C(t0)η]− C(t0)η

=

[(
1−

M

∑
i=1

hi(t0)

)
eηr f +

M

∑
i=1

hi(t0)eri(t0)η − 1

]
[Π(t0)− C(t0)η]− C(t0)η

=

[
eηr f +

M

∑
i=1

hi(t0)
(

eri(t0)η − eηr f
)
− 1

]
[Π(t0)− C(t0)η]− C(t0)η,

where ri(t0)η = log Si(t)
Si(t0)

=
(
µi − 1

2 σ2
i
)

η + ∑M
j=1 σijΦ

√
η 1 is the rate of return for risky asset i =

1, . . . , M for the period η [91, 92, 93]. By applying a limit to ∆Π(t0, t) as η → 0 and the Maclaurin
series of an exponential function, Merton et al [93] demonstrate that the continuous-time portfolio
wealth process, dΠ(t), on the probability space {Ω,F (t), P} is a limiting case of the discrete-time
intertemporal wealth process:

dΠ(t) =

[(
r f +

M

∑
i=1

hi(t)(µi − r f)

)
Π(t)− C(t)

]
dt + Π(t)

M

∑
i=1

M

∑
j=1

σijhi(t)Φ
√

dt

=
[(

r f + h(t)>(µ− r f1)
)

Π(t)− C(t)
]

dt + Π(t)h(t)>Σh(t)dW(t)

= Π(t)µ (C(t), h(t, Π(t)) + Π(t)σ (h(t, Π(t)) dW(t).

2.3.2 Maximising Expected Utility

The MPT framework relies on variance as a measure of an investor’s risk preference. In the short
period, it is adequate since outcomes are assumed to be normally distributed. However, dynamic
asset allocation often results in option-like payoffs [57]. As a result, using the variance in a
multi-period setting may distort results. Alternatively, overall portfolio value or wealth from a
particular strategy could be taken into account. However, standard economic theory states that
wealth is generally not a good indicator of investors’ satisfaction since it assumes that investors are
insensitive to risk [29, 99, 120]. Instead of considering wealth, which ignores risk or variance that
does not account for asymmetrical outcomes, a utility function that incorporates a degree of
satisfaction investors derive from their invested wealth often is utilised.

1This rate of return is called logarithmic rate of return, and it is distributed as ri(t0)η ∼ N(
(

µi − 1
2 σ2

i

)
η, σ2

i η) [52]. The
risky asset value is Log-Normally distributed.

17

Utility functions offer a way to rank possible sets of outcomes, such as values that arise from multi-
period portfolio rebalancing [57, 78]. A common approach is to consider expected utility of wealth,
denoted by E[U(Πt)]. Therefore, in a dynamic setting, portfolio maximisation is given by:

max E[U(Πt)]. (2.12)

The maximisation in Equation 2.12 is very basic. Alternatively, the utility could be combined with
risk measures such as volatility or tail losses subject to a cap on the variance of outcomes or tail losses,
resulting in a function that focuses on the desired outcomes and tolerance for risk. In Section 2.3.3,
we will give a brief discussion of common types of utility functions.

2.3.3 Stochastic Control and Bellman Equations

In 1967, Merton [91] proposed a formulation for multi-period asset allocation in continuous time as
a stochastic optimal control problem where the principal goal is to maximise the utility of wealth.
Essentially, the problem of choosing an optimal asset allocation and consumption rules boils down
to choosing h(t) and C(t) optimally [152]. One way of doing this is to maximise expected utility
given by:

max
C,h

E|0
[∫ T

0
e−ρtU(C(τ))dτ + D (Π, T)

]
subject to: C(t) ≥ 0, Π(t) > 0, Π(0) = Π0 > 0,

(2.13)

where E|0 is a conditional expectation operator given that Π(0) = Π0 is known at inception. The
expectation in Equation 2.13 is in two parts. The first part denotes the utility of consumption
function U(C(t)) over the investment horizon. The utility function is assumed to be strictly
concave2 [93]. Widely used utility functions include the Constant Relative Risk Aversion (CRRA)
[89, 130] or the Constant Absolute Risk Aversion (CARA) [14, 77]. Both of these utility functions are
based on the assumption of time homogeneity [78]. This means that maximising expected utility
over adjacent periods separately should have the same result as maximizing over the entire period,
at least if the two subperiods are independent and identically distributed [57]. The utility function is
discounted at a rate of ρ which measures investors’ patience and choice for current consumption
versus future consumption [152]. The second part given by D(Π, T) is called the bequest valuation
function or scrap function, and it measures satisfaction derived from having wealth leftover at time
T [93]. The maximisation formulation given by Equation 2.13 improves portfolio management in
the sense that portfolio managers take into consideration investors’ consumption needs in the
portfolio selection process. In growth models where the objective is to maximise long-term growth,
there is no consumption, therefore C(t) = 0 ∀t = 0, . . . , T. All investment proceeds are reinvested
back into the portfolio [152].

Bellman’s dynamic programming principle [17] is still at the heart of control theory [13]; it is used
to derive Bellman equations in discrete time [32] and Hamilton-Jacobi-Bellman partial differential
equations (HJB PDE) in continuous time [112, 113]. In order to derive optimality equations, Equation

2Strictly concave functions ensure that U
′
(C) > 0; U

′′
(C) < 0 [152].

18

2.13 is restated in a dynamic programming format so that the Bellman principle of optimality can be
applied [17, 93, 158]. Let the discrete-time value function be:

J(Π, t) = max
C,h

E|t
[∫ T

t
e−ρtU(C(τ))dτ + D (Π, T)

]
, (2.14)

over control h ∈ A and C ∈ C. By considering time t
′
= t + η, where η is the length of time interval

between periods and an unknown portfolio value Π
′

at t
′
, the discrete-time value function J(Π, t)

can be re-written as recursive equation given by:

J(Π, t) = max
C,h

E|t

[∫ t
′

t
e−ρtU(C(τ))dτ +

∫ T

t′
e−ρtU(C(τ))dτ + D (Π, T)

]

= max
C,h

E|t

[∫ t
′

t
e−ρtU(C(τ))dτ + J(Π

′
, t
′
)

]
.

(2.15)

The value J(Π
′
, t
′
) depends on the state at time t

′
. The recursive approach then implies the decision

problem at time t amounts to finding a policy that maximises the expected value of J(Π
′
, t
′
) [57].

Note that decisions are taken one at time, and the aim is to maximise some objective prospectively.
Taking the limit as η → 0 and applying some stochastic calculus, Merton et al [93] and Davis et al
[29] show that the continuous-time value function is given by:

J(Π, t) = max
C,h

E|t
[∫ t+dt

t
e−ρtU(C(τ))dτ + J(Π + dΠ, t + dt)

]
= max

C,h
E|t

[
e−ρtU(C(t))dt + J(Π, t) +

∂J
∂t

dt +
∂J
∂Π

dΠ +
1
2

M

∑
i=1

M

∑
j=1

σijhihjΠ2 ∂2 J
∂Π2 dt

]
.

Finally, after subtracting J(Π, t) from both sides, taking expectation and dividing by dt, we obtain
continuous-time HJB PDE given by:

0 =
∂J
∂t

+ max
C,h

[
e−ρtU(C) +

{(
r f +

M

∑
i=1

(µi − r f)hi

)
Π− C

}
∂J
∂Π

+
1
2

M

∑
i=1

M

∑
j=1

σijhihjΠ2 ∂2 J
∂Π2

]

=
∂J
∂t

+ max
C,h

[
e−ρtU(C) +

{(
r f + h>(µ− r f1)

)
Π− C

} ∂J
∂Π

+
1
2

h>ΣhΠ2 ∂2 J
∂Π2

]
.

Optimising over consumption at time t yields:

e−ρtU
′
(C) =

∂J
∂Π

.

Optimising over h at time t yields the optimal asset allocation given by 3:

h∗ = −
∂J
∂Π

Π ∂2 J
∂Π2

Σ−1 (µ− r f1
)

.

In summary, portfolio asset allocation h is defined by a M-dimensional stochastic process, where the
ith component of h, given by hi(t), is equal to a fraction of AUM invested in the ith risky asset at time
t ≤ T, ∀i = 1, . . . , M [29].

3We have conveniently dropped time indexing in all the equations to make the equation neater, that is, hi ≡ hi(t).

19

2.3.4 Cox-Huang Approach

One of the daunting tasks in Merton’s solution is determining the value of J(Π, t) analytically. The
Cox-Huang technique, commonly known as the martingale strategy, was developed by Cox et al [28]
and Karatzas et al [62]. Instead of concentrating on each decision, the focus is on the end result,
which is a collection of consumption amounts {c(t)}T−1

t=0 and the final wealth Π(T). This method
draws heavily from option pricing theory, in which the value of these "payoffs" at t = 0 equals the
current wealth. Subject to this constraint, payoffs that maximise the expected payoff in Equation
2.13 can be sought. As a result, the task boils down to finding a strategy {hi(t)}T−1

t=0 that, when
combined with consumption policies, generates these payoffs. The discounted value of the payoff
is a martingale from a probabilistic standpoint. The martingale representation theorem ensures the
existence of a strategy that supports this value. From an economic perspective, this strategy delta
hedges the discounted value at each point in time. In this respect, Bellman’s value function, J(Π, t),
can be replaced by the value of the future portion of the optimal payoff [57].

2.3.5 Numerical Approach

The recursive form of Bellman’s equation (see Equation 2.15) makes it well-suited for numerical
approximation and optimisation. At each time step, an estimate of the value function can be made,
allowing a solution to evolve by going backward in time while taking portfolio constraints into
account. An approximation methodology is required for generating function estimations. Tree and
lattices are the most prevalent variations in finance.

2.3.5.1 Tree Approaches

The tree encodes a simplified set of future paths of asset prices, starting with the current prices. The
tree can be as basic as a recombining binomial tree where asset prices, after a one-time step, either
go up or down [28, 57]. After n time steps, there are 2n possible paths for asset prices. The tree
can be non-recombining or even allow for three possible states in trinomial trees. Standard arbitrage
arguments can then be used to price any stochastic payoff at time n∆t, that is, price is given by
working backwards, one step at a time. Provided that the price at the final nodes is known, the price
one step back is given by constructing an appropriate hedge portfolio for the payoff at each note and
then valuing the hedge portfolio. Iterating this procedure produces price at the initial node, that is, at
time t = 0. According to the central limit theorem, the binomial tree approaches the continuous-time
model as the step size approaches zero.

2.3.5.2 Lattice Approach

An SDE for asset classes, such as the one illustrated in Equation 2.9, can be written down as a partial
differential equation (PDE) that determines the price evolution over time. The generic form of the
PDE is given by:

∂S
∂t

(x, t) = a + b
∂S
∂x

(x, t) + c
∂2S
∂x2 (x, t),

20

where a, b, and c are functions. The purpose of the lattice approach is to find an approximation
to the solution of this PDE, rather than building a tree and arguing that the tree is a reasonable
approximation to the continuous limit [57]. The full specifics of this approach, and other approaches
such as the combined lattice/tree approach, are outside the scope of our study.

The highlighted strategies have one thing in common: dynamic optimisation may be broken down
into individual decision components. Note that the goal is to optimise a function of a strategy that
consists of asset allocations at each possible future path. The curse of dimensionality is a major
drawback of these techniques, casting doubt on their scalability [57]. In other words, as the number
of assets in the portfolio grows, so does the number of states and parameters that must be estimated,
resulting in unacceptably long computer run times. To overcome this problem, several approaches
have been offered, including employing the Fokker-Planck equation. However, restrictive
assumptions, such as constant drifts or a constant variance-covariance matrix, are set, which may
not be practical in realistic circumstances.

2.4 Summary

In this chapter, we demystified the theory behind one-period optimal asset allocation guided by
Markowitz’s MPT. In addition, we also looked at dynamic asset allocation and why it is necessary as
the investment horizon increase, primarily focusing on why the normality assumption pertinent to
one-period investing no longer applies in multiperiod portfolio rebalancing settings. We also
explained why symmetrical risk measurements like variance are inadequate in dynamic asset
allocation, thus paving the way to introduce utility functions. A review of the common types of
dynamic asset allocation strategies was provided in the chapter. Dynamic asset allocation was
presented as a stochastic optimal control problem that can be solved to yield an optimal control
policy based on the innovative work of Davis et al [29], Merton et al [91, 90, 92, 93], and Ziemba
[158]. In portfolio management, the stochastic optimal control problem aims to identify a portfolio
allocation strategy, {hi(t)}T−1

t=0 , that maximises a specified value function. The estimation of the
value function is the obvious flaw in this approach. The Cox-Huang approach proposed by Cox et
al [28] and Karatzas et al [62] was presented, and it offers a way to approximate value functions.
Finally, numerical techniques that use trees and lattices were reviewed as well as the Fokker-Planck
equation to handle the curse of dimensionality. Dynamic asset allocation is, without a doubt, a
significant improvement over Markowitz’s one-period MPT for the reasons mentioned in the text.
However, the common approaches presented have their own set of issues: the curse of
dimensionality plagues these approaches. In addition, assumptions of constant drifts and
variance-covariance matrices might not generalise quite well in real-world situations. Furthermore,
while covariance-variance matrices are relatively stable over time, asset drifts are difficult to
estimate. In reality, financial markets are complex adaptive systems where market dynamics can be
challenging to model, making RL a viable option to explore.

21

Chapter 3

Reinforcement Learning

RL is a biology-inspired paradigm that lends itself as a learning problem as well as an ML subfield
[61]. As a learning task, it simply means learning to assign states of a system to actions to maximise
numerical rewards [81, 137]. The learner has to decide which actions offer the highest pay-off. The
learner learns from experience since information about an optimal course of action to take is not
availed to the learner [137]. The primary elements of RL are the agent and the environment it interacts
with [137]. In this chapter, a brief theoretical framework of RL is discussed as well as a review of
subclasses RL algorithms fall into. Finally, Recurrent Reinforce Learning (RRL) pioneered by Moody
et al [99, 100] is discussed and its application to solve multi-period portfolio allocation.

3.1 Reinforcement Learning Process

An RL agent engages with the environment on a constant basis. More specifically, the agent is
presented with a situation that it has to act on and then the environment responds to that action by
sending out a reward signal, and at the same time presents the agent with new situations in
subsequent phases. A reward signal is a special numerical value that the agent tries to optimize by
choosing the right action(s). Figure 3.1 illustrates how the agents interacts with the environment:

FIGURE 3.1: A schematic presentation of RL Process [137]

Let A and S denote a set of possible actions and a set of possible states, respectively. Figure 3.1
shows that at each discrete time step t, the agent receives some presentation of a state of the
environment s(t) ∈ S . The agent decides on an action a(t) ∈ A to take for which it receives an
immediate reward signal R(t) ∈ R ⊂ <. The environment then presents a new state s(t + 1) at time

22

step t + 1. The agent receives a reward of R(t + 1) at that subsequent time step as consequence of its
actions. The process continues until the environment gives a terminal state which ends the episode.

An RL problem is typically formulated as a Markov Decision Process (MDP), a basic mathematical
paradigm for the task of learning to accomplish a goal by engaging with the environment [137]. To
act optimally, RL agents learn the parameters of the MDP using observations from the environment.
RL agents face a trade-off between exploration and exploitation. Exploration entails gathering more
experimental data about the consequences of the actions, while exploitation involves acting
consistently with past observation to maximise the rewards [8].

3.2 Markov Decision Processes

3.2.1 Definition

An MDP is a discrete-time stochastic control process that provides a basis for decision making in
circumstances where outcomes are partly unpredictable and partly under the influence of a decision-
maker [137].

MDPs are ideally characterised as a five-tuple (S ,A,R,P , γ) where:

• S : denotes a collection of possible states s(t) endowed with σ-field S .
• A: denotes a set of possible actions a(t) endowed with σ-field A.
• R: is a reward distribution for state-action pairs (s(t), a(t)) ∈ D ⊂ S × A where D is

measurable with respect to σ-field (S ∪A).
• P : denotes state transition probabilities denoted by:

p(s(t + 1) = s
′ |s(t) = s, a(t) = a) = p(s

′ |s, a).

• γ ∈ (0, 1]: denotes a discount factor that measures relative value of deferred versus imminent
rewards. This is parallel to how ρ is defined in Section 2.3.2.

An MDP is a way of describing the environment’s dynamics. Collectively, R and P define a model
of the environment.

3.2.2 Markov Property

State transition probabilities P satisfy the Markov property [137, 138]. A stochastic process {s(t)}t≥1

has a Markovian property if ∀(k + 1)-tuples (t1, t2, . . . , tk+1) with t1 < t2 < · · · < tk+1:

p(s(tk+1) ∈ S|F (tk)) = p(s(tk+1) ∈ S|s(tk) ∈ S),

where F (tk) = {s(ti) ∈ S}k
i=1 is filtration up to tk of a stochastic process {s(t)}t≥1 [15, 139]. Markov

property is often interchangeably referred to as a memoryless property in Financial models in the
sense only a current state is relevant in determining statistics about the future [52]. To that effect,
MDPs, which by definition, satisfy a Markov property, are viewed as extensions of Markov chains.
The main difference from generic Markov chains is that MDPs include choices and their
corresponding rewards [18, 137].

23

3.2.3 Markov Decision Process Algorithm

An MDP provides a setting for a decision-making problem and a solution to the problem is called a
policy. The primary task of a decision-maker is to learn a policy denoted by a mapping given by:

π : S → A.

In essence, given a current state s(t) ∈ S at time t, a policy maps s(t) to an action a(t) ∈ A [96].
A policy fully defines the behaviour of an agent. Policy functions can be either be deterministic
where given a current state of the environment, a policy function outputs an action as given by
π(s(t)) = a(t) or stochastic, where for a probability distribution over actions, denoted by pπ, the
policy function becomes π(a(t) = a|s(t) = s) = pπ(a|s) which allows for exploration in the state
space [1, 96, 137]. RL is used to search for optimal policies that solve MDP-styled problems. An
RL agent has some latitude to sift through different choices to come out with an optimal policy that
results in maximum cumulative discounted rewards given by:

G(t) = R(t) + γR(t + 1) + γ2R(t + 2) + · · · = ∑
k≥0

γkR(t + k). (3.1)

In essence, an optimal policy is a policy that, if pursued, would cause an agent to receive the highest
amount of long-term rewards. Algorithm 1 shows how an MDP operates:

Algorithm 1 Markov Decision Process

1: s(0) ∼ p(s(0)), . Environment samples an initial state.
2: while t < T do
3: s(t)← s(t + 1) ∼ p(·|s(t), a(t)), . Environment samples next state s(t + 1).
4: a(t)← a(t + 1) ∈ A, . Agent selects action a(t + 1) given s(t + 1).
5: R(t)← R(t + 1) ∼ R(·|s(t), a(t)), . Reward signal R(t + 1), ∀(s(t), a(t)) ∈ D.
6: return τ = {s(t), a(t), R(t)}T

t≥0. . Trajectory τ until end of MDP episode.

Due to randomness in the initial state and transition probability as shown in Algorithm 1, the
environment is non-deterministic [96]. As a result, an optimal policy, denoted by π∗, is obtained by
maximising the expected sum of long-run rewards which averages out the randomness:

π∗ = arg max
π
E [G(t)|π] ; s(0) ∼ p(s(0)), a(t) ∼ π(·|s(t)), s(t + 1) ∼ p(·|s(t), a(t)).

3.3 A Conceptual Framework

3.3.1 On-Policy State-Value Function

In Algorithm 1, following a policy produces a sample of trajectories given by:

τ = {s(t), a(t), R(t)}t≥0.

An on-policy state-value function is defined as the expected accumulated rewards when starting in
s ∈ S and following π, and it is given by:

Vπ(s) := Eπ [G(t)|s(t) = s] = Eπ

[
∑
k≥0

γkR(t + k)|s(t) = s

]
.

24

An RL agent evaluates all s ∈ S and a state-value function determines how good a state s is [96]. The
optimal on-policy state-value function is the maximum state-value function given by:

V∗(s) = max
π

Vπ(s)

3.3.2 On-Policy State-Action Value Function

Q-values are used to evaluate the quality of state-action pairs (at, st) ∈ D. An on-policy Q-value
is defined as the expected cumulative rewards from taking action a ∈ A in state s ∈ S and then
following policy π thereafter [61, 96], and it is computed as:

Qπ(s, a) := Eπ [G(t)|s(t) = s, a(t) = a] = Eπ

[
∑
k≥0

γkR(t + k)|s(t) = s, a(t) = a

]
. (3.2)

Among all policies, an optimal Q-value function is the maximum state-action value function
calculated as:

Q∗(s, a) = max
π

Qπ(s, a).

3.3.3 Bellman Equations

Bellman equations (BE) refer to recursive equations that decompose value functions into a sum of
immediate rewards and discounted future values [96]. According to Sutton et al [137], for any policy
π and any state s, a consistency condition holds between the value of s and values of the possible
successor states s

′
, and it is given by:

Vπ(s) = ∑
a∈A

π(a|s)

R(s, a) + γ ∑
s′∈S

p(s
′ |s, a)Vπ(s

′
)

 = Ea∼π,s′∼P

[
R(s, a) + γVπ(s

′
)
]

.

A corresponding BE for an on-policy Q-value function is similarly obtained by:

Qπ(s, a) = ∑
s′∈S

p(s
′ |s, a)

R(s, a) + γ ∑
a′∈A

π(a
′ |s′)Qπ(s

′
, a
′
)

 = Es′∼P

[
R(s, a) + γEa′∼π

[Qπ(s
′
, a
′
)]
]

.

3.3.4 Bellman Optimality Equations

According to Mitchell et al [96] and Sutton et al [137], a value function linked to an optimal policy for
an MDP satisfies Bellman optimality equation given by:

V∗(s) = max
a∈A

Es′∼P

[
R(s, a) + γV∗(s

′
)
]

. (3.3)

A corresponding Bellman-style optimality condition for a Q-value is given by:

Q∗(s, a) = Es′∼P

[
R(s, a) + γ max

a′∈A
Q∗(s

′
, a
′
)

]
. (3.4)

The intuition behind Bellman’s optimality equations is that if an optimal value function is known,
then an optimal strategy is inferred from the optimal value function. The presence of "max" over the
actions as shown in Equation 3.3 and Equation 3.4 conveys the idea that an agent selects an action
that leads to the highest value in any situation when it has to choose an action [61].

25

3.4 Reinforcement Learning Algorithms

RL algorithms based on asynchronous dynamic programming and stochastic approximation were
developed to solve MDP problems [22]. RL algorithms are categorised depending on whether a
model of the environment is available to an RL agent.

3.4.1 Model-based Reinforcement Learning Algorithms

A model of the environment is specified explicitly in model-based MDPs. Specification of a model
of the environment allows agents to have complete knowledge, thereby enabling them to plan
prospectively using perfect information, observe the impact for a range of possible options, and
explicitly decide an action plan. The results of prospective planning can then be distilled into a
learned policy. The specified reward function and state transitions are fully exploited to retrieve an
optimal policy using dynamic programming algorithms [137]. Bellman optimality equations can be
solved using the recursive backward value iteration method of dynamic programming. The biggest
drawback is that the environment’s ground-truth model is generally not readily accessible to an RL
agent [61].

3.4.2 Model-free Reinforcement Learning algorithms

In model-free RL algorithms, an RL agent does not attempt to understand the environment. These
algorithms overlook the model of the environment, thus operate as trial-and-error algorithms. The
agent has incomplete information [137]. In this section, a more detailed discussion of widely used
model-free RL algorithms is provided.

3.4.2.1 Q-Learning

An optimal policy can be solved by applying the Q-learning algorithm, an off-policy temporal
difference (TD) control algorithm that uses BE to iteratively update the state-action value function
[137, 147]. The iterative update process is given by:

Qt+1(s, a) = E

[
R(s, a) + γ max

a′
Qt(s

′
, a
′
)|s, a

]
.

Q-learning refines the policy greedily with respect to action values by the "max" operator as:

Algorithm 2 Q-learning Algorithm [137]:
1: Initialize Q-value arbitrarily, with the learning rate given by η,
2: for each episode do
3: initialize state s,
4: for each step of episode, state s is not terminal do
5: a← action for s derived by Q, receive r, s

′
,

6: Q(s, a)← Q(s, a) + η

[
r + max

a′
Q(s

′
, a
′
)−Q(s, a))

]
,

7: end
8: end

26

Q-learning given by Algorithm 2 relies on TD-error and also on the fact that lim
t→∞

Qt = Q∗. Problems
start to be more apparent as the state and action spaces become large or continuous, leading to
scalability issues. Q-learning which requires the computation of Q(s, a) for every state-action pair
becomes more computationally demanding, and in some cases, impractical. The phenomenon is
referred to as Bellman’s curse of dimensionality [73, 100]. However, a function approximator given
by Q(s, a; θ) can be used to estimate the Q-value function as:

Q(s, a; Θ) ≈ Q∗(s, a), (3.5)

where θ ∈ Θ are weight parameters [148].

3.4.2.2 Deep Q-learning

Large applications of RL require the use of function approximators such as DNNs, decision trees, or
instance-based methods [138]. A function approximation given by Equation 3.5 aims to generalise
from examples of a function to construct an approximation of an entire function [72]. Figure 3.2
shows a Deep Q-Network (DQN) which combines Q-learning and a DNN, with the latter used as a
function approximator [59, 72, 73].

FIGURE 3.2: Deep Q-Network [87]

An algorithm for DQN is given by:

Algorithm 3 Deep Q-learning adapted from [72]
1: Learning rate: η,
2: Initialize θ = (θ1, . . . , θi−1, θi, θi+1, . . .) ∈ Θ, . Initialize parameters.

3: yi := Es′∼ε

[
r + γmax

a′
Q(s

′
, a
′
; θi−1)|s, a)

]
,

4: Li(θi) := Es,a∼ρ(·)
[
(yi −Q(s, a; θi))

2], . Loss function in a forward pass.
5: ∇θi Li(θi) = E,a∼ρ(·);s′∼ε

[
(yi −Q(s, a : θi))∇θi Q(s, a; θi)

]
, . Gradient.

6: while θ not converged do
7: i← i + 1 . Get gradients at step i,
8: gi ← ∇θi Li(θi),
9: θi ← θi−1 − η · gi, . Update parameters using Gradient Descent.

10: return θ∗ ∈ Θ.

Parameters θ ∈ Θ are weights in the DNN. For both Q-learning and DQN, an optimal policy is
inferred from Q-values as:

π∗ = arg max
π

Q∗(s, a).

27

Algorithm 3 has its setbacks: the first problem is that the learning process is inefficient since samples
are correlated. Furthermore, current parameters determine subsequent training examples, leading
to feedback loops. These problems can be solved by incorporating experience replays that have the
primary function of stabilising the training process. During Q-learning updates, samples are drawn
at random from replay memory [1]. In other words, experience replays ensure that more important
experience transitions can be replayed more frequently to learn more efficiently [72].

3.4.2.3 Policy Gradient

The RL approaches in Section 3.4.2.1 and 3.4.2.2 fall under critic or action-value methods. They
entail estimating action-values then selecting actions based on the learned values of actions. Policy
gradient (PG) methods are a subclass of policy-based algorithms that learn a parameterised policy
that can select actions without consulting a value function [138].

Define class of parameterised policies as:

ΠΘ = {π(a|s, θ) : θ ∈ Θ ⊂ <k},

where π(a|s, θ) = Pr{a(t) = a|s(t) = s, θ(t) = θ}. The policy is never deterministic since πθ(a|s) ∈
(0, 1) ∀s, a, θ thereby ensuring exploration [137]. The gradient of a scalar performance metric J(θ) is
used during the policy parameters’ learning process. The objective is to determine an optimal policy
π(a|s, θ∗) where θ∗ = arg max

θ
J(θ). According to Williams [151], parameters θ∗ ∈ Θ are estimated

through stochastic gradient ascent:
∆θt = η∇θ J(θt), (3.6)

where η is positive-definite step size [137]. Assuming every episode starts at state s0, and for ease of
exposition, define the performance measure in the episodic case as J(θ) = Vπθ (s0). Noting that:

∇Vπ(s) = ∑
s′∈S

∞

∑
k=0

Pr(s→ s
′
, k, π)∑

a
∇π(a|s′)Qπ(s

′
, a),

where Pr(s→ s
′
, k, π) denotes the probability of transitioning from state s to state s

′
in k steps under

policy π, an analytic expression for ∇θ J(θ) is given as a proportionality expression by the Policy
Gradient Theorem (PGT) as:

∇θ J(θ) = ∇Vπ(s0) = ∑
s

(
∞

∑
k=0

Pr(s→ s
′
, k, π)

)
∑
a
∇π(a|s′ , θ)Qπ(s

′
, a)

= ∑
s

φ(s)∑
a
∇π(a|s′ , θ)Qπ(s

′
, a)

= ∑
s′

φ(s
′
)∑

s

φ(s)
∑s′ φ(s′) ∑

a
∇π(a|s′ , θ)Qπ(s

′
, a)

= ∑
s′

φ(s
′
)∑

s
α(s)∑

a
∇π(a|s′ , θ)Qπ(s

′
, a)

∝ ∑
s

α(s)∑
a
∇π(a|s′ , θ)Qπ(s

′
, a),

(3.7)

where α(s) is the on-policy distribution under π [130, 137]. Equation 3.7 does not depend on state
transition probabilities or the derivative of the state distribution [137]. PG approaches have many

28

benefits, including the ability to learn precise probabilities for actions to be taken [138]. Moreover,
they can learn sufficient exploration levels and asymptotically approach deterministic policies [130].
Furthermore, they can handle spaces of continuous motion [73, 137].

3.4.2.4 REINFORCE: Monte Carlo PG

For the weight update in Equation 3.6 to be correct, sampling must be carried out in a manner that
ensures that the sample gradient’s expectation is proportional to the actual gradient of J(θ) [138].
Using PGT in Equation 3.7, following a policy π ensures that:

∇θ J(θ) ∝ ∑
s

α(s)∑
a
∇π(a|s, θ)Qπ(s, a) = Eπ

[
∑
a
∇π(a|s(t), θ)Qπ(s, a)

]
. (3.8)

REINFORCE algorithm, put forward by Williams [151], is classical a PG method whose update at
time t involves a(t) and sampling the expectation. A weighting is introduced without changing the
equality in Equation 3.8; a is replaced by the sample a(t) ∼ π and using Equation 3.2:

∇θ J(θ) = Eπ

[
∑
a

π(a|s(t), θ)Qπ(s(t), a)
∇π(a|s(t), θ)

π(a|s(t), θ)

]

= Eπ

[
Qπ(s(t), a(t))

∇π(a|s(t), θ)

π(a|s(t), θ)

]
= Eπ

[
G(t)

∇π(a|s(t), θ)

π(a|s(t), θ)

]
= Eπ [G(t)∇ log (π(a|s(t), θ))] ,

(3.9)

where G(t) is given by Equation 3.1 [138, 151]. The final expression in Equation 3.9 is a quantity that
is sampled at each time step, and its expectation is equal to∇θ J(θ) [137], thus giving the REINFORCE
update:

∆θt = ηG(t)∇ log (π(a(t)|s(t), θt)) .

Beginning at time t, all possible rewards for the whole episode are included, so in this sense,
REINFORCE is a Monte Carlo algorithm [137]. REINFORCE algorithm works by pushing up the
probabilities of actions seen when G(t) is high and does the opposite when G(t) is low [151].

3.4.2.5 REINFORCE with Baseline

Being a Monte Carlo technique, REINFORCE usually has high variance that delays convergence,
thus slowing the learning process [137]. One of the variance reduction methods involves introducing
an arbitrary baseline function, denoted by b(s), that depends on the state [138]. In that case, PGT
becomes:

∇θ J(θ) ∝ ∑
s

α(s)∑
a
(Qπ(s, a)− b(s))∇π(a|s, θ). (3.10)

Any arbitrary function that does not vary with a can be used as a baseline [137]. Note that PGT’s
validity still holds since the quantity subtracted is zero:

∑
a

b(s)∇π(a|s, θ) = b(s)∇1 = 0.

29

The update rule for REINFORCE that includes a general baseline is:

∆θt = η (G(t)− b(s(t)))∇ log (π(a(t)|s(t), θt)) .

3.4.2.6 Actor-Critic Methods

Intuitively, action a(t) in a state s(t) is highly desirable if the advantage function, given by:

Aπ (s(t), a(t)) = Qπ (s(t), a(t))−Vπ(s(t)),

is large. For Actor-Critic methods, PGT becomes:

∇θ J(θ) ∝ ∑
s

α(s)∑
a
(Qπ(s, a)−Vπ(s(t)))∇π(a|s, θ)

= ∑
s

α(s)∑
a
(Aπ (s(t), a(t)))∇π(a|s, θ).

(3.11)

The difference between Equation 3.10 and Equation 3.11 is quite subtle; the value-function is only
used as a baseline to stabilise the learning process by the former, while in the latter, it acts as a critic
[137, 138]. Actor-Critic methods combine PG and TD-learning by training both an actor (the policy)
and a critic (the Q-function) [66]. Effectively, the actor decides which action to take, and the critic
tells the actor how good its action is and how it should adjust [137]. The bias introduced by TD-
learning and dependence on state representations is advantageous because variance is minimised
and learning is accelerated [137]. REINFORCE with the baseline is unbiased and converges to a local
minimum, but it tends to learn slowly and is inconvenient to apply online since it is a Monte Carlo
method [137, 138].

3.4.2.7 Deep Deterministic Policy Gradient

Deep Deterministic Policy Gradient (DDPG) is an off-policy method that chains together
value-based DQN and Deterministic Policy Gradient (DPG) for large continuous domains [73]. PG
methods discussed up to this point are referred to as Stochastic Policy Gradient (SPG) methods. As
shown by the PGT in Equation 3.7, the summation (or integration) is over both the state and the
action spaces. On the contrary, DPG integrates only over the state space. DDPG addresses
continuous control problems by using the DPG method that entails utilising an actor to
continuously output continuous actions [76]. A critic in the form of the Q-value would then
evaluate and improve the policy [3, 73]. The algorithm trades off variance reduced by DPG with
bias introduced from Q-learning.

3.5 Recurrent Reinforcement Learning

Trading systems form part of the active portfolio management process. Placing trading orders is a
systematic task that takes into account several practical factors [30]. An active portfolio’s
performance is dependent on progressions of interconnected investment decisions and is thus
path-dependent [99]. Historic actions and the corresponding positions need to be explicitly
modelled in the policy learning component [30]. Furthermore, active portfolio managers typically

30

set up optimal portfolios that satisfy immediate targets. Portfolio rebalancing is performed at
subsequent periods as the future unveils itself [4]. Multi-period rebalancing inevitably incurs
transaction costs associated with the buying and selling of stocks, market impact, and taxes, thus
knowledge of internal state information is a prerequisite [30, 40, 99]. An active portfolio
management system must be recurrent, that is, the prior output needs to be incorporated as input to
preserve internal state information.

Moody et al [99, 100] put forward the Recurrent Reinforce Learning (RRL) approach to find
approximate solutions in the field of portfolio management. RRL is an adaptive policy search
algorithm that uses previous output as input for sequential decision making in portfolio
optimisation [36, 81, 100]. RRL is guided by the RL algorithms discussed in Section 3.4.2, more
particularly, leaning towards the PG approach. For ease of exposition, assume a portfolio consisting
of a single risky asset and a money market instrument. Define a decision function for a risky asset
by:

π(t) = φ(θ; π(t− 1), I(t)) = φ (b + uπ(t− 1) + θ I(t)) , (3.12)

where I(t) is the information set and θ ∈ Θ = {b, u, θ} denotes system parameters of the regression
[99, 100]. Equation 3.12 is recurrent because the output of the prior decision is part of the input for the
current decision [30]. Incorporating πi(t− 1) into the regression deters changing trading positions
too frequently, thus avoid incurring heavy transaction costs [30, 59, 81, 99]. Similarly, let the decision
function for a money market instrument be π0(t). For a portfolio that allows long, neutral, or short
positions, the decision space follows a stochastic process given by:

(π(t), π0(t)) ∈ [−1, 1]×<. (3.13)

Note that π(t) and π0(t) in Equation 3.13 are allocations to a risky asset and risk-free asset,
respectively, for the simplified portfolio [36, 98]. The reward signal realised at the end of time
interval (t− 1, t] is given by:

R(t) = π(t− 1)r(t)− δ|π(t)− π(t− 1)|, (3.14)

where r(t) is the risky asset return at time t and δ are mandatory transaction costs incurred when
flipping positions due to rebalancing [4, 30]. Position π(t) is established at time t for the interval
(t− 1, t], and its re-evaluation occurs at t + 1 in the subsequent period (t, t + 1] [100]. Transactions
costs δ penalise excessive portfolio rebalancing. A reward signal R(t) that scores the action at time
t is received from the environment by the control system. The overall portfolio performance can be
expressed as a function of a sequence of portfolio rewards throughout the whole training period,
denoted by T, as:

U(T|θ) = U(R(1), . . . , R(T)|θ). (3.15)

RRL is set up as a PG method, with U(T|θ) being the performance function [4]. In a manner similar
to Section 3.4.2.3, let ΠΘ = {π : θ ∈ <} be a class of parameterised policies. The optimal policy given
by π∗θ is obtained when θ∗ = arg max

θ
U(T|θ). Optimal parameters θ∗ ∈ θ are estimated by stochastic

gradient ascent given by:
∆θt = η∇θU(T|θ).

31

The maximisation for an entire sequence of T trades is performed via the batch-version of RRL [99].
Using the chain rule of differentiation, gradient ∇θU(T|θ) is obtained by:

∇θU(T|θ) =
T

∑
t=1

dU(T|θ)
dR(t)

{
dR(t)
dπ(t)

dπ(t)
dθ

+
dR(t)

dπ(t− 1)
dπ(t− 1)

dθ

}
. (3.16)

RRL is generally stable due to its recurrent nature and the fact that it is not a Monte Carlo-based
approach, a baseline function is typically not considered. Note that dπ(t)

dθ is a total derivative that
depends on the entire sequence of previous trades due to the rebalancing action [99]. The gradient
∇θU(T|θ) can be computed using Backpropagation Through Time (BPTT) [46, 149] or dynamic
backpropagation [75] to account for temporal dependencies [30, 99]. Moody et al [99, 100] uses the
Sharpe Ratio and its differential as performance functions for the batch version of RRL and the
online version, respectively. Almahdi et al [4] uses other performance measures such as the Calmar
Ratio [2], while Deng et al [30] uses cumulative profits. Ratios such as the Sharpe Ratio and the
Calmar Ratio are called safety-first ratios, and are typically used as risk-sensitive performance
measures, while total or cumulative profit is a risk insensitive performance measure [4, 30].

The online RRL version considers only the terms that depend on the most recently realised portfolio
return during a forward pass through the data as given by:

dU(t|θ)
dθ

=
dU(t|θ)
dR(t)

{
dR(t)
dπ(t)

dπ(t)
dθ

+
dR(t)

dπ(t− 1)
dπ(t− 1)

dθ

}
. (3.17)

The terms in the curly brackets in Equation 3.16 and Equation 3.17 are computed as:

dπ(t)
dθ

=
d
dθ

(φ(b + θ I(t) + uπ(t− 1)) = φ′
(

I(t) + u
dπ(t− 1)

dθ

)
,

dR(t)
dπ(t)

= −δ sign (π(t)− π(t− 1)) ,

dR(t)
dπ(t− 1)

= r(t)− δ sign (π(t)− π(t− 1)) ,

where φ′ is a first derivative of the function φ in Equation 3.12 [4, 98].

3.6 Summary

The universe of RL algorithms is quite vast, and it is still under intense study. This chapter provides
a discussion of MDP-based RL algorithms. MDP-based RL algorithms fall into two broad classes,
namely, model-based versus model-free. Model-free RL algorithms also fall into two classes,
namely, value-based and policy-based. As highlighted, the former suffers from Bellman’s curse of
dimensionality, making their application to portfolio management less popular. The chapter
concludes with a discussion of RRL, a policy-based technique pioneered by Moody et al [99] to
approximate solutions in the field of portfolio management. Note that the decision function in
Equation 3.12 includes an information set, denoted by I, containing state representations of the
environment. Another imperative of this study is to improve decision-making by engineering the
quality of the information contained in the information set I. Chapter 4 looks at some of those
engineering or signal processing methods proposed in the study.

32

Chapter 4

Signal Processing and Feature Extraction
Methods

Temporary disequilibrium in supply and demand and the resulting corrections introduce noise that
has the effect of obscuring genuine underlying patterns in financial markets. Moreover, financial
markets are highly susceptible to unanticipated shocks and market contagion that manifest from
to time, causing stock prices to deviate from their fundamental values [11, 16]. Noise in financial
markets is attributed to the level of liquidity as noted by Hu et al [51], financial and business cycles as
discussed by the Financial Instability Hypothesis by Minsky [95], or perceptions regarding earnings
which shift investor preference as discussed by Taylor et al [140]. The objective of our study is to
attenuate the impact of market disturbance and noise on equity portfolios.

This chapter discusses candidate methods used to improve the quality of information used to inform
decision-making in portfolio management. These methods cover a broad spectrum; they include
algorithms that isolate trends, harmonic patterns, and noise to algorithms that extract latent features
from financial time series data. The objective of these methods is to increase the signal-to-noise ratio,
thereby impacting decision-making in asset allocations. Improving the signal-to-noise ratio mitigates
the risk of making erroneous decisions that lead to suboptimal asset allocations. The consequences
of suboptimal asset allocations are dire and directly affect profit margins, increase drawdowns, and
ultimately lead to the failure of a fund.

4.1 Singular Spectrum Analysis

Singular Spectrum Analysis (SSA) is a model-free algorithm that involves decomposing time series
data into components that can be analysed by economic reasoning [141]. It is a non-parametric time
series analysis technique that combines classical analysis, dynamical systems, signal processing, and
multivariate geometry [48].

33

4.1.1 General Review of SSA and Usefulness

The SSA algorithm decomposes a given univariate time series data s into m additive, independent
and interpretable components as:

s =
m

∑
i=1

s̃i.

Examples of such components include slowly-varying trend, harmonic components, and
structureless noise [41, 47, 48]. SSA solves numerous problems that include time series
decomposition, trend extraction, periodicity detection and extraction, the revelation of data
structure, signal extraction, denoising, filtering, forecasting, missing data imputation, change point
detection and so forth [42, 47]. SSA has proven to be very powerful and has already become a
predominant approach for climatic, geophysical, and meteorological time series data analysis [41].

4.1.2 Details of the SSA algorithm

This section gives a detailed summary of the main steps of the SSA algorithm. For a much more
extensive exposition, the reader is referred to [41] by Golyandina et al or to [47, 48] by Hassani et al.
SSA algorithm is summarised by two complementary stages [48, 141]:

1. Decomposition: two step process involving Embedding and Singular Value Decomposition
(SVD).

2. Reconstruction: incorporates Grouping and Hankelization.

This section details four steps of SSA in chronological order for univariate time series data. The
multivariate variate version proposed in the study is discussed later in the chapter.

4.1.2.1 Embedding

Consider univariate time series data of length T given by s = (s0, . . . , sT). Define an embedding
function T that maps s to a sequence of multidimensional L-lagged vectors denoted by E1, . . . , EK

where Ei = (si, . . . , si+L−1)
> and K = T − L + 1 for a window length L such that 2 < L < T. A

trajectory matrix defined by E = [E1 : . . . : EK] is given by:

E = T (s) = (eij)
L,K
i,j=1 =

s1 s2 . . . sK

s2 s3 . . . sK+1

s3 s4 . . . sK+2
...

...
. . .

...
sL sL+1 . . . sT

, (4.1)

where eij = si+j−1. The mapping function T is such that T : s 7→ E ∈ M(H)
L,K where M(H)

L,K is a
space of structured Hankel-like matrices, that is, E has equal entries in the diagonal, thus i + j = c, a
constant [41, 47]. In embedding, the only parameter is window length, denoted by L, which reflects
the resolution of the method. The larger the window, the more detailed the decomposition is [133].

34

4.1.2.2 Singular Value Decomposition

This stage decomposes trajectory matrix the E in Equation 4.1 using SVD into a sum of unit rank
bi-orthogonal elementary matrices [47]. Let W = EE>, then the eigenvalues of W in decreasing order
of magnitude are λ1 ≥ . . . ≥ λL ≥ 0. Similarly, eigenvectors corresponding to the eigenvalues are
denoted by an orthonormal system {Ui}L

i=1. Let Vi = E> Ui√
λi
∀i = 1, . . . , r, then the SVD of trajectory

matrix E is given by:

E =
r

∑
i=1

Ei =
r

∑
i=1

√
λiUiV>i , (4.2)

where r = max (i : λi > 0) = rank E [41]. The matrices Ei have unit rank, therefore they are
elementary matrices. The collection

(√
λi, Ui, Vi

)
is called an ith eigentriple of the SVD [41]. A set

{
√

λi}r
i=1 which consists of singular values of matrix E is an orthonormal basis of columns of E, and

it is referred to as the spectrum of matrix E [47, 48, 133]. A final point to note is that the SVD that is
performed is optimal, meaning that ∀ E(l) of rank l < r, matrix E(l) = ∑l

i=1 Ei provides the best
approximations to the trajectory matrix E, that is, ‖E− E(l)‖ is minimum [47].

4.1.2.3 Grouping

This step involves partitioning elementary matrices {Ei}r
i=1 into several groups and summing

matrices within each group [47]. The set of indices from the expansion in Equation 4.2 are
partitioned in to m disjoint subsets, that is, {1, . . . , r} =

⊔m
i=1 Ii where grouping with Ii = {i} is

called elementary [133]. Let I = {i1, . . . , ip} be a group of indices within i1, . . . , ip, then the resulting
matrix EI corresponding to group I is defined as EI = ∑

p
j=1 Eij [41]. These matrices are computed for

I = I1, . . . , Im and the expansion from Equation 4.2 leads to a decomposition given by:

E =
m

∑
i=1

EIi . (4.3)

A procedure of choosing sets I1, . . . , Im is called eigentriple grouping [41, 47].

4.1.2.4 Reconstruction

This last step of SSA transforms each matrix of the grouped decomposition in Equation 4.3 into a
new series of length T. More specifically, the initial time series s becomes a sum of m time series data
of length T given by:

s =
m

∑
i=1

s̃i ; s̃i = T −1H(EIi),

where H is an operator called diagonal averaging or Hankelization [41, 48, 133].

4.2 Multichannel Singular Spectrum Analysis

For multivariate time series financial data, the decomposition and reconstruction procedures
discussed in section 4.1.2 are applied simultaneously to a collection of time series time data. This
method is called Multichannel SSA (MSSA) [48, 135]. Let

{
s(k) = (s(k)j)Tk

j=1 , k = 1, . . . , m
}

be a

35

collection of m time series data of length Tk [42]. In order to cater for multivariate time series data,
the range for the window length is modified to 2 < L < min (TK , k = 1, . . . , m) [42, 135]. The rest of
the algorithm is similar to the univariate time series case in Section 4.1.2. In this context, the study
explores the applicability and robustness of MSSA in finding structure in financial market data and
enhancing the signal-to-noise ratio via data denoising.

4.3 Independent Component Analysis

Independent Component Analysis (ICA) is a novel statistical signal processing tool designed to find
independent latent source signals from observed mixture signals without prior knowledge of the
mixing mechanism [80]. ICA assumes a generative model by which the observed signals are
instantaneous linear mixtures of independent source signals or underlying factors [55, 107]. The
goal of ICA is to extract independent sources signals, as well as the mixing process [9]. Doing so
helps to reveal the driving mechanism that otherwise remains hidden [107].

4.3.1 Details of ICA

Consider an observed m-dimensional original signal denoted by s which is a collection of{
s(k) = (s(k)j)T

j=1 , k = 1, . . . , m
}

. Assuming the multivariate signal s is linearly transformed to an
n-dimensional signal υ such that m > n as:

υ = Ls, (4.4)

where L is a compression linear transform such as Karhunen-Loeve Transform [107]. Principal
Component Analysis (PCA) utilises such a transform to extract latent variables using second-order
statistics [25, 80]. More specifically, rows of L denoted by `j for j = 1, . . . , n are orthonormal
eigenvectors of the covariance matrix Σ = E

[
ss>
]
. The multivariate time series s is assumed to be

stationary and E[s] = 0. The latent variables, denoted by {υj}n
j=1 called Principal Components, are

uncorrelated, and the generative model in Equation 4.4 uses second-order statistics of the original
multivariate time series s [10, 54, 55]. In general, PCA projects data to an orthogonal space, and the
projections point towards a direction that gives maximum variance [9].

Back et al [9, 10] notes that ICA uses higher-order statistics to reveal high-level transients. These high-
level transients reveal more useful information or hidden data structures that are not immediately
observable when using PCA, thus making ICA more appropriate for multivariate time series analysis
[25]. The observed multidimensional signal is assumed to be driven by the generative model:

s = Aυ = ∑ ajυj, (4.5)

where A is mixing matrix which is unknown, and υ = {υj}n
j=1 are independent source signals [9,

10, 25]. A key assumption is that an observed signal s reflects a reaction of a system to independent
source signals, and these source signals are not immediately observable since they are buried within
the observed signal as well as noise [9]. The goal of ICA is to determine a linear transform by which

36

the {υj}n
j=1 are statistically independent [9, 25]. A solution is sought of the form:

υ̂ = y = Ws, (4.6)

where W is the separating or un-mixing matrix that causes elements of y to be statistically
independent [107]. Latent variables given by y = {yj}n

j=1 are an approximation of independent
source signals υ = {υj}n

j=1, and are referred to as Independent Components [9, 107]. From
Equations 4.5 and 4.6, perfect separation is achieved when A = W−1 [9].

4.3.2 ICA Methods

ICA methods are set up as optimization problems. A measure of the independence of latent variables
{yj}n

j=1 is defined and used as an objective function. The optimisation techniques involve solving for
the separating matrix W that maximises a given measure of independence [80]. Despite there being
several functions in literature used to measure independence, the resulting separating matrices do
not differ significantly [49, 70].

4.3.2.1 Minimising Mutual Information

Oja et al [107] formulates entropy H(y) as:

H(y) = −
∫

f (y) log f (y)dy = −E[log f (y)],

where f (y) is a probability density function of y. The Kullback-Leibler Divergence or Mutual
Information between joint density function f (y) and a product of its marginal densities
f (yj) , j = 1, . . . , n is given by:

I(y1, . . . , yn) = H(y)−
n

∑
i=1

H(yi),

where {H(yi)}n
i=1 are marginal entropies of the outputs. Mutual Information is interpreted as a

measure of reduction in uncertainty [70]. It is strictly positive and will equal zero when {yj}n
j=1 are

independent [55, 107].

Amari et al [5] proposes the INFOMAX algorithm, an iterative procedure that computes the
separating matrix W for which Mutual Information is zero. The details of the algorithm are:

Algorithm 4 INFOMAX algorithm [70]

1: initialize W(0),
2: while W(t) not converged do
3: t← t + 1, . time step for approximation.
4: W(t) = W(t− 1) + η(t− 1)

(
1− f (y)y>

)
W(t− 1),

5: return W(t).

where η(t) is a function that determines magnitude of the steps for the separating matrix updates
and f (y) is a nonlinear function [70]. In summary, the INFOMAX algorithm finds a separating
matrix that minimizes Mutual Information, which in a sense, is equivalent to searching for latent
variables that are maximally independent [70].

37

4.3.2.2 Maximising Non-Gaussianity

Another way to estimate independent components is by focusing on quantifying non-Gaussianity
[70, 107]. Independent components with a non-Gaussian distribution imply statistical independence
[80]. According to Hyvärinen et al [54], negentropy, denoted by N(y), is calculated as:

N(y) = H(yG)− H(y), (4.7)

where yG is a random vector from a Gaussian distribution that has the same covariance as that of y.
The negentropy in Equation 4.7 is effectively measuring the degree of non-Gaussianity of y. Gaussian
distributions have the maximum entropy for any given covariance matrix, thus negentropy, N(y), is
strictly positive and will equal to zero when y has a Gaussian distribution [80]. The objective of an
ICA algorithm is to estimate W such that y = Ws maximises negentropy, that is, finding a y that is as
much different as possible from yG [55, 107]. In most cases, the density function f (y) is not known,
thereby making negentropy difficult to determine [54, 80, 107]. A classical method of estimating
negentropy involves using higher-order moments such as kurtosis as given by:

H(y) ≈ 1
12
E[y3]2 +

1
48

kurt(y)2,

where is y is a random variable having a mean of zero and a variance of one [60, 107]. However,
such an approximation suffers from non-robustness associated with kurtosis. To avoid this issue, an
approximation for negentropy, given by:

N(y) ≈ {E[φ(y)]−E[φ(Φ)]}2 ,

is used, where Φ is standardized Gaussian variable and φ(.) is a non-quadratic function such as

φ1(y) = a−1 log cosh (ay) where a ∈ [1, 2] or φ2(y) = e−
y2
2 [55, 70, 80].

The FastICA algorithm developed by Hyvärinen et al [54, 55, 107] relies on a fixed point iteration
scheme for finding an optimal y as:

y∗ = arg max
y
{E[φ(y)]−E[φ(Φ)]}2 .

Algorithm 5 summarises the FastICA algorithm:

Algorithm 5 FastICA algorithm [54]
1: initialize wi,
2: w+

i = E

[
φ
′
(w>i s)wi

]
−E

[
sφ(w>i s)

]
,

3: wi =
w+

i
‖w+

i ‖
, . wi is a column-vector of the separating matrix W.

4: while wi not converged do
5: i← i + 1,
6: w+

i = wi −∑i−1
j=1 w>i wjwJ ,

7: wi =
w+

i
‖w+

i ‖
,

8: return wi.

38

where w+
i is a temporary variable used to calculate wi and φ′(.) is the derivative of φ(.) [54, 70, 107].

The study proposes the FASTICA algorithm because of its possible parallel implementation as well
as its quick convergence [128].

4.4 Autoencoders

An Autoencoder (AE) is an ANN capable of learning dense representations of input data, called
latent features or codings, without any supervision [39]. Given an unlabeled training example set
s ∈ <m, an AE tries to learn an approximation to an identity function using backpropagation by
setting target values to equal inputs as:

ŝ = fW(s) ≈ s, (4.8)

where fW(s) is the approximation to an identity function parameterised by W so that the output ŝ is
similar to input s [43]. Learning an identity function seems trivial. However, by placing constraints
on the network, a crucial structure in the data is unveiled [39, 105]. Codings typically have much
lower dimensionality than the input data [39]; hence they can be interpreted as a compressed
representation of the original input [114]. Moreover, codings supposedly capture stable structures in
the form of dependency and regularity characteristics of the unknown distribution of the observed
input data [144, 145].

4.4.1 Details of AE

A vanilla AE is a three-layer symmetrical feed-forward ANN that constraints its output to equal
to its input as shown by Equation 4.8 [50]. An AE learns features by first encoding its input then
reconstructing or decoding them [35]. Given an input vector s ∈ <m, an AE maps s onto a latent
representation z ∈ <n with m > n through a nonlinear mapping given by:

z = gW1(s) = gW1(Θ1s + b1),

where Θ1 is a parameter vector to be learned, and b1 is a bias vector that adjusts the activation of
neural units. The coding vector z is then mapped back to a reconstructed vector ŝ via backward
mapping as:

ŝ = fW2(z) = fW2(Θ2z + b2).

The parameter matrix Θ2 of the reverse mapping may optimally be constrained by Θ2 = ΘT
1 in

the case of tied weights [39, 144]. Reconstructions, denoted by ŝ ∈ <m, are constrained such that
ŝ ≈ s. Each training example s(i) is mapped to a corresponding z(i) and a reconstruction ŝ(i) [145]. A
reconstruction error, denoted by LW1,W2(s, ŝ), is computed as:

LW1,W2(s, ŝ) = ‖s− ŝ‖2,

AE parameters W1 = {Θ1, b1} and W1 = {Θ2, b2} are optimised by minimising average the
reconstruction error as given by:

W∗1 , W∗2 = arg min
W1,W2

1
T

T

∑
i=1
L
(

s(i), ŝ(i)
)
= arg min

W1,W2

1
T

T

∑
i=1
L
(

s(i), fW2(gW1(s
(i)))

)
.

39

The optimization is done via stochastic gradient descent (SGD) which iteratively updates parameters
W1 and W2 until the average reconstruction error reaches a global minimum. The parameter update
is given by:

θ
(t+1)
i ← θ

(t)
i − η

∂L
∂θi

; θi ∈Wi = {Θi, bi} ; i = 1, 2,

where η denotes the learning rate [39, 145]. The reminder of this section discusses different types of
AEs that are implemented in the study.

4.4.2 Stacked Denoising Autoencoder

A Stacked Denoising AE (SDAE) stacks shallow AEs, partially corrupts or add perturbations to the
input, and then attempts to reconstruct the original input from its partially corrupted version [12,
38, 155]. The corrupting process makes SDAEs more robust to noise or large variation, thereby
encouraging them to capture statistical dependencies between inputs [35, 119]. Also, stacking
shallow AEs creates a deep neural network that helps SDAEs learn hierarchical features from
complicated input [43]. The input s is perturbed using a stochastic mapping given by:

s̃ ∼ φ(s̃|s),

where φ is a distribution determined by the original distribution of s and the random noise added
to it [35]. The random noise could either be pure Gaussian noise or randomly switched-off inputs
using Dropout [39, 145]. For instance, an SDAE applying Dropout takes input vector s and partially
occludes it with a certain probability, denoted by ρ, to create s̃ using a stochastic mapping given by:

s̃ ∼ φD(s̃|s, ρ) (4.9)

SDAEs are forced to predict missing or corrupted values from randomly selected subsets of missing
patterns, thereby making SDAEs robust to partial destruction of the input vector [144]. After the
corruption process, SDAEs operate like conventional AEs, with the usual mapping of s̃ to a latent
vector representation z using a deterministic function g as given by:

z = gΘ,β(s̃) = g(Θs̃ + β).

4.4.3 Convolutional Denoising Autoencoder

Convolutional Neural Networks (CNNs) emerged from studies centered on determining how a
brain perceives images [39]. CNNs are used primarily in computer vision problems due to their
ability to extract high-level features using local receptive fields or input patches [26]. However,
CNNs are not limited to visual perception; they are also applicable to sequential data such as
time-series data [39]. For time-series data, time itself is treated as a spatial dimensional and
receptive fields are characterised by localised time patches or subsequences. These types of CNNs
are called 1D-CNNs [26, 79]. They offer data efficiency benefits in that once a pattern is learned at
certain positions in a sequence, it can later be recognized at a different location, thereby making the
learning process translation-invariant [26]. Moreover, small low-level features in the first hidden
layer are concentrated and assembled to higher-level features in the next hidden layer, and so forth,

40

thereby enhancing representation modularity [26, 39]. Furthermore, convolutional layers typically
have far fewer parameters than dense layers due to sparse communication and weight sharing,
thereby reducing the chance of overfitting [79].

Convolutional Denoising Autoencoders (CDAE) are based on the standard AE architecture but with
convolutional encoding and decoding layers [43]. The input vector is perturbed as shown in
Equation 4.9 but the encoder is now a stacked regular 1D-CNN composed of convolutional and
pooling operations [35, 39]. The convolutional layers consist of a set of filters that extract features
from local patches in the input space as given by:

ol+1
i (j) = W l

i . xl(j) + bl
i ,

where W l
i and bl

i are weights and bias of the ith kernel in the lth layer, respectively, while xl(j)
represents the jth local region of layer l and ol+1

i (j) denotes the output value of convolution
operation [19, 79]. Nonlinearity is imposed to feature maps via activation functions such as the
Rectified Linear Unit (ReLU) given by:

al+1
i = φ(ol+1

i (j)) = max{0, ol+1
i (j)},

where al+1
i represents the activation of ol+1

i (j). Local spatiality is preserved via weight sharing among
all input locations [43]. Pooling operation down-samples the latent representation by a constant
factor, taking either the maximum value computed as:

pl+1
i = max

(i−1)ω+1<k<jω
{vl

i(k)},

or the average value within a certain scope with a reduced dimension as given by

pl+1
i = avg

(i−1)ω+1<k<jω
{vl

i(k)},

where vl
i(k) is a value of the kth neuron in the ith feature map of the lth layer; ω denotes width of the

pooling filter, and pl+1
i corresponds to the value of the l + 1 output from the pooling operation [26,

39, 44, 79]. The decoder performs the reverse by combining up-sampling layers with convolutional
layers [44]. Compared to SDAEs, CDAEs supposedly preserve more structural information [35, 79].

4.4.4 Recurrent Denoising Autoencoder

Recurrent Neural Networks (RNNs) are ANNs that preserve the temporal dimension of sequential
data [38]. Essentially, an RNN adds a loop that connects a neuron to itself, thereby forming a
directed cycle that can retain and leverage past information [26]. By delaying the recurrent signal,
each node can store past information [143]. However, basic RNNs are constrained to only
memorising information that is few steps back due to vanishing and exploding gradient problems
[39]. This hinders their ability to detect long-term patterns in sequential or time-series data [12, 143].
By modifying a memory cell state using forget and update gates, the Long Short Term Memory
(LSTM) cell can process and capture long-term patterns in sequential data, thus providing a solution
to the aforementioned problem [143].

41

An LSTM DAE is just an extension of previous discussions. Its appeal lies in the fact that RNNs are
more reliable for modeling time series sequences and can incorporate past information, effectively
improving the learning process [39, 127]. The operation of LSTM DAEs is similar to what was
discussed in sections above for other AEs except that LSTM DAEs use an LSTM encoder as a
bottleneck layer to learn a compressed latent representation, and an LTSM decoder reconstructs the
sequence as before [39].

4.5 Summary

This chapter provides a discussion of signal processing and feature extraction methods used in this
study. MSSA is a model-free algorithm that decomposes financial time series data into easily
interpretable components. It has been used extensively in finance and economics, quite notably,
Škare et al [135] use MSSA for analysis of financial cycles, Golyandina et al [41] use it for modeling
daily realised futures volatility. ICA is a natural extension to the popular PCA that reveals
high-level transients using high-order statistics of input as shown by Back et al [9, 10] and Lu et al
[80] for financial time-series data. It is used extensively at the signal processing stage in
Electroencephalography [121, 126]. Finally, this chapter gave a brief discussion of AEs and their
variants. Du et al [35] use CDAEs for feature representation. Bao [12] and Sagheer et al [127] use
LSTM-based AE for multivariate time series forecasting.

42

Chapter 5

Research Methodology

This chapter provides a discussion of the methodology used in our study. The goal is to design a
portfolio management system that carries out dynamic asset allocation and generates sustainable
performance. The said system, by design, is reactive to stock price fluctuations and can perform
optimal portfolio rebalancing to suit prevailing market conditions. In Chapter 2 we derived a closed-
form solution for multi-period asset allocation using HJB PDE and several other ideas from Merton
et al [92, 93] and Ziemba et al [158]. The asset price dynamics were assumed to follow the GBM
process. However, due to parameter estimation complexities and the fact that financial markets are
complex systems where price dynamics are arduous to model, we consider exploring model-free RL
as an alternative. Chapter 3 discusses MDP-based RL algorithms and concludes with a review of the
RRL framework put forward by Moody et al [99, 100] specifically tailored to approximate solutions
in the field of portfolio management. In our study, we adopt the RRL framework for the following
reasons:

1. The RRL framework avoids Bellman’s curse of dimensionality and is a policy-based method
applicable to large continuous domains.

2. RRL creates a simple and elegant representation for multi-period optimal portfolio allocation.

3. An RRL’s optimal policy is equivalent to optimal real-valued portfolio weights and offers more
flexibility in choosing an objective function.

4. The framework is easily be adapted online by considering only recently realised portfolio
returns.

5. RRL has a more stable performance compared to Q-learning when exposed to noisy datasets.

5.1 Research design

5.1.1 Overview

This section provides a formulation of the designed ARRL PM system as a portfolio management
system. The system performs feature-learning and multi-period portfolio rebalancing in concert with
stock price fluctuations in order to generate alpha.

43

5.1.2 State Space

The state space is denoted by the information set I shown in the decision function in Equation 3.12.
At time t, the information set is given by:

I(t) = {r(t), r(t− 1), . . . , r(t− k + 1); y(t), y(t− 1), y(t− 2), . . . } , (5.1)

where {r(t− i)}k+1
i=0 is a set of k lagged risky asset log-returns and {y(t − i)}i≥0 is a set which

comprises an arbitrary number of external features. In our study, external features are technical
indicators, and they are a function of stock price and the volume traded. Due to the recurrent nature
of RRL, previous decisions have an influence of the current decision through the dependency of
π(t) and R(t) on π(t − 1) as shown in Equations 3.12 and 3.14, respectively [88, 99, 100]. This
influence is catered for by considering π(t− 1) to be part of the environment [58]. As a result, the
state space is given by:

s(t) = (I(t), π(t− 1)) ∈ S . (5.2)

5.1.3 Action Space

In a portfolio composed of M risky assets, the action space, A, is driven by a stochastic process:

(π(t)) ∈ [−1, 1]M ×< ; π(t) = (π1(t), . . . , πM(t)).

The M-dimensional stochastic process π(t) governs multi-period asset allocation as well as portfolio
rebalancing as discussed in Chapter 3. In our study, the fund manager can buy, maintain neutral
positions, or sell stocks. In order to cater for these action choices, a hyperbolic tangent function is
used as φ in Equation 3.12 [98, 99]. Therefore, ∀i = 1, . . . , M and the parameter space Θ, the decision
function is given by:

πi(t) = φ(s(t)|Θ) = tanh (b + uπi(t− 1) + θ I(t)) ∈ [−1, 1]×<. (5.3)

The choice of training parameters (θ, b, u) ∈ Θ with φ given by the hyperbolic tangent function result
in the actual decision to buy, do-nothing, or sell a particular stock at time t:

ai(t) = sign (πi(t)) ∈ {−1,+1} ∀i = 1, . . . , M,

where -1 and +1 indicates selling and buying of stock i at time t, respectively [36, 40, 81]. The scalar
value of πi(t) denotes the preference or decision score that quantifies the decision or preference to
invest in stock i at time t [58]. According to Almahdi et al [4], for a portfolio consisting of M stocks,
the effective portfolio weights, hi(t) ∀i = 1, . . . , M, are obtained by applying an exponential softmax
function to the preference score as follows:

hi(t) =

(
M

∑
j=1

e(πj(t))

)−1

e(πi(t)) ∈ [0, 1].

The action with the highest preference score in each state s(t) ∈ S gets assigned given the highest
portfolio weight. For the case where the preference score is minute for asset i, the softmax function
will distribute the weight among other assets, thereby effectively shifting weights between assets as

44

we move forward with decisions [4]. Using the softmax function ensures that the budget constraint
is satisfied:

M

∑
i=1

hi(t) = h> · 1 = 1.

The softmax function is recommended for a multi-asset portfolio as discussed by Moody et al [99,
100] and has been used in subsequent studies by Almahdi et al [4] and Jiang et al [58].

5.1.4 Reward Function

The reward signal, Ri(t) ∈ R, is given by Equation 3.14. Transaction costs, given by δ, are assumed
to be fixed at a value of 25 basis points. As discussed in Section 1.4, δ incorporates fixed
commissions or similar explicit transaction charges associated with the buying or selling of stocks.
The assumed value of δ is guided by annual equity brokerage fee publications from Nedbank
Wealth1. The portfolio return at time t is given by:

Rp(t) =
M

∑
i=1

hi(t)Ri(t).

5.1.5 Feature Learning

In Chapter 4, we discussed several signal processing and feature extraction methods. For each asset
i = 1, . . . , M, the state space si(t) ∈ S is given by Equation 5.2. The information set Ii(t) ∈ si(t)
given by Equation 5.1 contains financial market features. Feature learning in our context is focused
on enhancing the signal-to-noise ratio by distilling an asset’s intrinsic information. Improving the
signal-to-noise ratio protects the portfolio from suboptimal investment decisions. A feature learning
algorithm ν is such that:

ν : Ii 7→ Ĩi , ∀i = 1, . . . , M, (5.4)

where Ĩi is the noise-free, compressed, or more informative version of Ii. By incorporating feature
learning methods discussed in Chapter 4, the state space becomes:

s(t) = (ν(I(t)), π(t− 1)) =
(

Ĩ(t), π(t− 1)
)
∈ S . (5.5)

5.1.6 ARRL System: Optimal Rebalancing

The performance or reinforcement function Ui(T|θ) is a function of a sequence of rewards shown as
shown by Equation 3.15. The RRL portfolio optimisation framework is given by:

max
θ∈Θ

Ui (T|θ)

subject to: πi(t) = tanh
(

θ>si(t)
)

Ri(t) = πi(t− 1)ri(t)− δ|πi(t)− πi(t− 1)|.

(5.6)

1https://www.nedbankprivatewealth.co.za/content/private-wealth-sa/south-africa/en/products-and-
services/stockbroking/Ourstockbrokingfees.tmhl

45

In this study, the performance function U(T|θ) is given by the Sharpe Ratio (SR):

SRi(T|θ) =
1
T ∑T

t=1 Ri(t)√
1
T ∑T

t=1 R2
i (t)−

(
1
T ∑T

t=1 Ri(t)
)2

.

SR is an ubiquitous safety-first ratio that measures the risk-adjusted return on a portfolio [2, 33,
132]. We opted for the SR as a performance measure because it is well-reputed and behaves like an
adaptive quadratic utility function such as those discussed in Section 2.3.2 [2, 4, 99].

5.1.7 Policy Search Algorithm

The decision or policy function in Equation 5.3 is parameterised by θ ∈ Θ. Policy parameters are
learned based on the gradient of the scalar performance measure given by SR. The optimal decision
given by πθ∗ is obtained via θ∗ = arg max

θ
SR(T|θ). Parameters θ∗ ∈ Θ are estimated through

stochastic gradient ascend:
∆θi = η∇θSR(T|θ),

where η is the learning rate and ∇θSR(T|θ) is the differential SR [36, 81, 99].

The batch-mode RRL adapted for a multi-asset portfolio is shown in Algorithm 6 as follows:

Algorithm 6 ARRL System: Multi-asset batch-mode adapted from [30, 58, 98, 99].

1: Input: Financial market information: Ĩ(1), . . . , Ĩ(T) . Given by Equation 5.4.
2: for each asset i = 1 to M do
3: Flat transaction costs: δ
4: Learning rate: η
5: Initialise gradient: gi(0) = 0
6: Initialise policy parameters: θi ∈ Θ = {u, b, θ}
7: Initialise policy: πi(0) = 0
8: dπi(0)

dθ = 0
9: si(0) =

(
Ĩi(0), πi(0)

)
. Given by Equation 5.5.

10: while SRi(T|θ) not converged do
11: while t < T do . Loop through the training data.
12: t← t + 1
13: si(t)← si(t + 1) . State s(t) ∈ S .
14: πi(t)← tanh (θ>i si(t)) . Input a hyperbolic tangent policy parameterisation.
15: Ri(t)← πi(t− 1)ri(t)− δ|πi(t)− πi(t− 1)| . Reward signal.
16: dRi(t)

dπi(t)
← −δ sign (πi(t)− πi(t− 1))

17: dR(t)
dπ(t−1) ← ri(t)− δ sign (πi(t)− πi(t− 1))

18: πi(t)
dθ ←

(
1− tanh2 (θ>i si(t))

) (
si(t) + ut

dπi(t−1)
dθ

)
19: ∇θSR(t|θ)← dRi(t)

dπi(t)
dπi(t)

dθ + dRi(t)
dπi(t−1)

dπi(t−1)
dθ

20: gi(t)← gi(t− 1) +∇θSR(t|θ) . Consolidate gradients.
21: return gi(T) = ∇θSRi(T|θ)
22: ∆θi ← η∇θSRi(T|θ) . Update θ iteratively using stochastic gradient ascent.
23: return θ∗i ∈ Θ

24: end

The maximisation displayed in Equation 5.6 is performed using Algorithm 6. Batch-mode RRL for

46

training θ ∈ Θ is adopted in our study to allow full exploitation. As a result, the ARRL PM system
acts consistently with prior observations to maximise rewards. For testing and subsequent
deployment, each asset i = 1, . . . , M flows independently into the ARRL PM system, which
subsequently outputs preference scores used to calculate effective portfolio weights as discussed in
Section 5.1.3.

5.2 Data

In this section, a review of data sources, features, and data preprocessing methods is provided.

5.2.1 Data Source

Top-performing stocks based on the highest trailing twelve months earnings-per-share (TTM EPS)
across nine major economic sectors in South Africa are selected. The reason for using TTM EPS as
an asset pre-selection criterion is that it is a proxy of a company’s actual profitability2. Furthermore,
the EPS ratio is correlated with trading volume, which implies greater market liquidity. TTM-EPS is
based on actual figures rather than estimates. Thus using it as a pre-selection criterion means that
EPS information just before the testing period (see Section 5.3.2) is considered in the asset selection
process. This avoids passing future rankings to the test dataset, thereby mitigating the impact of
survival bias on the results. This asset pre-selection technique is similar to the one implemented by
Jiang et al [58] where the authors used eleven most-volumed non-cash assets for the portfolio. In
their study, volume information just before the beginning of the back-tests was considered for pre-
selection to avoid survival bias. Deng et al [30] pre-selected three futures contracts based on liquidity,
while Almahdi et al [4] constructed a portfolio of the five most commonly traded exchange-traded
funds from different asset categories. In our study, daily historical stock prices of the pre-selected
equities are obtained from Bloomberg, and the data covers nine years starting from March 7th, 2011
to November 27th, 2020. Table 5.1 shows the stocks and corresponding economic sectors.

TABLE 5.1: Portfolio stocks and economic sectors

Company Name Symbol Sector

Anglo American Platinum AMS Non-Energy Mineral
Aspen Pharmacare Holdings APN Health Technology
Capitec Bank Holdings CPI Finance
Clicks Group CLS Retail Trade
Compagnie Fin Richemont CFR Consumer Durables
Exxaro Resources EXX Energy Minerals
Mondi MNP Process Industries
Naspers NPN Technology Services
Vodacom Group VOD Communications

2EPS is a portion of company’s profits allocated to each outstanding share of stock

47

5.2.2 Features

Table 5.2 shows the technical indicators that form part of the information set. These features are
computed for each of the stocks included in the analysis. These features have a broad coverage
since they span across several groups of technical indicators. Technical indicators from the same
group tend to be more or less correlated with each other. For our study, we considered conventional
technical indicators from each of the predominant groups. The formulae to calculate these technical
indicators are found in [7, 24, 45, 101, 150].

TABLE 5.2: Features: Financial market technical indicators

Feature Name Description Group

EMA Exponential moving average Overlap
HT_trendline Hilbert transform-instantaneous trend-line Overlap
KAMA Kaufman adaptive moving average Overlap
SAR Parabolic SAR Overlap
ADX Average directional movement index Momentum
CCI Commodity channel index Momentum
CMO Chande momentum oscillator Momentum
MACD Moving average convergence / divergence Momentum
MFI Money flow index Momentum
MOM Momentum Momentum
PPO Percentage price indicator Momentum
RSI Relative strength index Momentum
ADOSC Chaikin A/D oscillator Volume
OBV On-balance volume Volume
ATR Average true range Volatility

5.2.3 Data Pre-processing

5.2.3.1 Data Scaling

Most ML algorithms perform optimally when numerical features are scaled to a standard range,
thereby avoiding dominance by certain other variables [97, 111]. For this research, we implement
data standardization which centers each feature individually and divides the result by the standard
deviation to shift the distribution to have a mean of zero and a unit standard deviation [111].

5.2.3.2 Data Stationarity

A time series is stationary if its essential statistical properties do not depend on time [153]. Data
stationarity ensures that the overall behaviour of the time series data remains the same. Time series
data is stationary if the mean, standard deviation, and autocorrelation are finite and constant [152].
Without stationarity, the interpretation of results from statistical inference becomes problematic [86].
A unit root test employing the augmented Dickey-Fuller (ADF) test is used to check for stationarity.
ADF tests the null hypothesis that a time series has unit root [68, 152]. The Difference Transform, a

48

technique that addresses temporal dependence, is used to eliminate trends and seasonal influences
from time series that are non-stationary or have a unit root. The time series is examined once more
to ensure that the transformation was successful. Results of the initial ADF tests performed on pre-
transformed datasets are presented in Section A.1.

5.3 Methods

5.3.1 Instruments

Python programming software was used in the development of the proposed ARRL system for
dynamic asset allocation. Python was chosen for a variety of reasons:

1. Python is an open-source programming language.
2. Python has a variety of built-in classes that integrates data cleaning and subsequent model

training.
3. Python has a user interface that is easy to understand and allows Jupyter Notebook

configuration.
4. Nodes and objects for Tensorflow are Python objects, thus making Python more suitable for

deep-learning.

5.3.2 Training, Validation and Test Split

The data is partitioned into 70% training data, 20% validation data, and 10% testing. The period
covered by each dataset as well as the number of records as a result of these split proportions is
summarised in Table 5.3 as follows:

TABLE 5.3: Data preparation: Train, Validation and Test.

Data Period Covered Size Purpose

Train 2011-03-07/2017-12-19 1,714 Model training over multiple epochs.
Validation 2017-12-20/2019-12-05 490 Validation and hyperparameter tuning.
Test 2019-12-06/2020-11-27 245 Performance evaluation.

The aforementioned data partitioning is based on standard data science techniques for evaluating
model efficacy and efficiency. Deng at al [30], Gold [40] and Kanwar [61] carried out a similar data
partitioning for their analysis.

Figure 5.1 illustrates the historical price of portfolio stocks for each split period:

49

(A) Anglo American Platinum (AMS) (B) Aspen Pharmacare Holdings (APN)

(C) Capitec Bank Holdings (CPI) (D) Clicks Group (CLS)

(E) Compagnie Fin Richemont (CFR) (F) Exxaro Resources (EXX)

(G) Mondi (MNP) (H) Naspers (NPN)

(I) Vodacom Group (VOD) (J) Johannesburg Top 40 (SA40)

FIGURE 5.1: Historical time series data

5.4 Analysis

5.4.1 Portfolio Strategies

Table 5.4 lists and describes portfolio strategies considered for our analysis.

50

TABLE 5.4: Analysis: Portfolio Strategies.

Portolio Name Strategy Description

SA40 Benchmark South African Top 40 Index.
Equally-Weighted (EW) Passive All equitities have equal weight positions.
Value-weighted (VW) Passive Market capitalisation-weighted portfolio.
ARRL Active Uses RRL and no feature learning.
ARRL-ica Active Uses ICA for feature extraction and RRL PM
ARRL-mssa Active Uses MSSA for signal denoising and RRL PM.
ARRL-sdae Active Uses SDAE with drop-out and RRL PM.
ARRL-cdae Active Uses CDAE for latent signal extraction and RRL PM.
ARRL-lstm-dae Active Uses LSTM DAE for latent signal extraction and RRL PM.

The performance benchmark for our analysis is the returns on the SA40 index. The SA40 index
consists of forty of South Africa’s largest market capitalisation-weighted corporations [129]. An
equally-weighted (EW) portfolio employs a classic portfolio management strategy that distributes
AUM equitably among portfolio equities regardless of price fluctuations [120]. For a portfolio of M
equities, the assigned portfolio weight for each asset i = 1, . . . , M is given by:

hi(t) =
1
M

.

A value-weighted (VW) portfolio uses a passive investment strategy that entails assigning weights to
portfolio assets based on their relative market capitalisation [156]. Portfolio weights for constituent
equities are given by:

hi(t) =
ki(t)

∑M
j=1 k j(t)

,

where ki is market capitalisation for portfolio asset i. Stocks with a larger market capitalisation are
given a higher weighting in the portfolio, whereas stocks with a lower market capitalisation are given
a lower weighting [116]. Active strategy portfolios listed in Table 5.4 use RRL to perform dynamic
asset allocation. They only differ based on the feature learning method used, starting with ARRL
that does not use any feature learning. The remaining active strategies use feature learning methods
discussed in Chapter 4.

5.4.2 Evaluation Metrics

Details of the training process are given in Sections A.2 and A.3. Traditional performance measures
are employed in our analysis to assess the out-of-sample performance of the designed portfolios.

5.4.2.1 Terminal Portfolio Value

The terminal portfolio value (TPV) after T periods is given by:

Π(T) = Π(0)
T

∏
t=1

eRp(t) ; Π(0) = Π0,

51

where Π0 is the value of AUM at inception and Rp(t) is portfolio return at time t [52, 152]. We assume
Π0 = 1 so that TPV is the portfolio value per the South African Rand (ZAR) amount invested at time
t = 0.

5.4.2.2 Sharpe Ratio

SR is discussed in Section 5.1.6.

5.4.2.3 Sortino Ratio

Sortino Ratio (STR) is a performance measure that considers asymmetry in returns. STR uses down-
side risk as a measure of risk. The volatility of negative returns is used to calculate the downside risk
[122, 136].

5.4.2.4 Maximum Draw-down

A maximum drawdown (MDD) is the maximum loss experienced by a portfolio from its peak to its
trough before a new peak is reached. MDD is an indicator of downside risk over a specified time
frame.

5.4.2.5 Information Ratio

Information ratio (IR), also known as appraisal ratio, calculates average excess return per unit of
additional risk with respect to the benchmark [6]. It is a ratio of average excess returns to tracking-
error (TE):

IR =
(µp − µb)

TE
; TE = vol(Rp − Rb),

where µp and µb are average returns of the portfolio and its benchmark, respectively and vol(Rp−Rb)

is the volatility of excess returns.

52

Chapter 6

Results and Discussion

6.1 Results and Discussion

6.1.1 Performance Results

Table 6.1 summarises the out-of-sample final portfolio value per Rand amount invested evaluated by
TPV and risk-adjusted-returns given by SR, STR, and IR.

TABLE 6.1: Out-of-sample: Risk-adjusted Return

Portfolio Name TPV SR STR IR

SA40 1.0912 0.0184 0.0211 -
EW 1.0774 0.0160 0.0196 -0.0068
VW 1.2630 0.0492 0.0573 0.0793
ARRL 1.9141 0.1314 0.1516 0.2404
ARRL-ica 2.4997 0.1953 0.2481 0.3597
ARRL-mssa 2.1270 0.1407 0.1767 0.2510
ARRL-sdae 1.5457 0.0840 0.1020 0.1344
ARRL-cdae 1.3159 0.0545 0.0731 0.0756
ARRL-lstm-dae 1.8677 0.1327 0.2013 0.2047

The highlighted values in the results Table 6.1 show the performance of the winning portfolio
strategy. ARRL-ica consistently out-perform all other portfolios in terms of risk-adjusted returns
across all the evaluation metrics considered. The least performing actively managed portfolio is
ARRL-cdae. However, it is marginally better than the VW portfolio, the best passively-managed
portfolio in our study. A majority of actively-managed portfolios appear to out-perform all passive
portfolios in the study.

53

Figure 6.1 is the TPV profile that illustrates the performance of the portfolios over time for the out-
of-sample dataset:

FIGURE 6.1: Out-of-sample: Portfolio performance over time

Figure 6.1 confirms that all portfolios experienced a market contraction towards the end of the first
quarter (Q1) of 2020. However, as the TPV profile shows, most actively managed portfolios rallied
following the 2020 Q1 market downturn.

6.1.2 Risk Assessement

In this section, we use MDD as a risk indicator to assess the impact of the 2020 Q1 market
contraction on the portfolios. According to MDD, the ARRL-lstm-dae portfolio has the least

54

downside risk, followed by ARRL-ica. These portfolios were able to protect upwards of 5% and 10%
equity compared to other portfolios and the benchmark, respectively, during the 2020 Q1 market
contraction, as illustrated in Table 6.2:

TABLE 6.2: Out-of-sample: Maximum Drawdown

Portolio Name MDD

SA40 -35.0738%
EW -32.2155%
VW -32.4622%
ARRL -31.0016%
ARRL-ica -24.2326%
ARRL-mssa -30.9984%
ARRL-sdae -31.0002%
ARRL-cdae -30.8870%
ARRL-lstm-dae -23.4751%

Figure 6.2 shows the out-of-sample drawdown profiles, with severe MDDs noticeable in the earlier
part of the period.

FIGURE 6.2: Out-of-sample: Portfolio drawdowns over time

6.1.3 Asset Allocation and Return Distribution

Table 6.3 shows the out-of-sample asset mix comparison. The actual portfolio re-balancing or
adjustments during the out-of-sample period for actively-managed portfolios are in Section A.4.
The asset allocations indicated in Table 6.3 for actively managed portfolios illustrate the average
asset allocations across the out-of-sample period.

55

TABLE 6.3: Out-of-sample: Average Asset Allocations

Portfolio Name AMS APN CPI CLS CFR EXX MNP NPN VOD

VW 12.20 2.05 5.06 2.14 22.58 1.20 3.38 44.85 6.55
ARRL 12.73 10.35 10.88 9.90 9.79 11.87 10.86 12.96 10.66
ARRL-ica 9.47 14.43 10.00 11.81 10.91 5.44 12.62 10.00 15.31
ARRL-mssa 12.75 10.02 10.90 9.92 10.07 11.83 10.72 12.98 10.80
ARRL-sdae 11.74 11.76 10.53 11.39 7.23 9.91 12.64 10.80 14.00
ARRL-cdae 11.85 10.49 9.37 12.12 11.80 13.74 9.92 11.40 9.30
ARRL-lstm-dae 10.87 12.76 8.75 12.52 8.54 12.04 9.58 12.24 12.70

Considering that actively managed portfolios permit the buying, holding, or selling of stocks in
response to daily stock price fluctuations, the average asset allocations are well-spread across the
economic sectors. In addition, these average allocations appear to be closer to an EW portfolio that
distributes AUM equally among portfolio equities.

Table 6.4 shows the results of the Wilcoxon Signed-Rank Test performed on the null hypothesis, H0,
that portfolio returns’ distribution (shown in Section A.5) is the same as that of the benchmark.

TABLE 6.4: Out-of-sample: Wilcoxon Signed-Rank Test

Portolio Name p-value Wilcoxon Signed Rank Test

EW 0.8173 Same distribution (fail to reject H0)
VW 0.3543 Same distribution (fail to reject H0)
ARRL 0.0000 Different distribution (reject H0)
ARRL-ica 0.0000 Different distribution (reject H0)
ARRL-mssa 0.0000 Different distribution (reject H0)
ARRL-sdae 0.0066 Different distribution (reject H0)
ARRL-cdae 0.3905 Same distribution (fail to reject H0)
ARRL-lstm-dae 0.0004 Different distribution (reject H0)

6.2 Summary

The top three portfolios according to the performance evaluations and risk are ARRL-ica, ARRL-
mssa, and ARRL-lstm-dae. ARRL-mssa is the most risky of the three, and that is consistent with
the observation that MSSA effectively isolates noise from the original input. Although performance
improves relative to the ARRL portfolio, there is a marginal improvement in terms of risk.

In the first quarter of 2020, all portfolios experienced double-digit losses. Only a few RRL-based
portfolios were able to provide considerable equity protection relative to passive portfolios. The
observation is consistent with the study by Molina [98]. The study concludes that RRL-learners
are unable to predict precipitous stock price decline. Our findings suggest that by applying signal
processing, the severity of drawdowns can be reduced.

56

Overall, our analysis shows that actively managed portfolios outperform passively-managed
portfolios and the benchmark, albeit marginally for ARRL-cdae. The outperformance is
corroborated in most previous studies [4, 30, 36, 81, 100]. Furthermore, most actively managed
portfolios have return distributions that differ significantly from the benchmark, supporting the
benefits of combining RRL with signal processing to generate excess returns or alpha.

57

Chapter 7

Conclusion and Future Work

7.1 Conclusion

An RRL-based portfolio management system is adopted to perform unsupervised optimal portfolio
rebalancing. Various signal processing approaches such as ICA, MSSA, and denoising autoencoders
are applied to the RRL module, resulting in a hybrid dynamic asset allocation system, referred to as
ARRL, that extracts latent features from multi-channel market inputs. Furthermore, the system
directly outputs portfolio weights and is scalable with portfolio size. The study demonstrates that
the proposed ARRL system outperforms all the surveyed classical portfolio management strategies
in terms of the final accumulated portfolio value and risk-adjusted returns. More precisely, the
best-performing portfolio applies ICA to the RRL-model, and it attained a 2.5-fold growth during
the out-of-sample period. Moreover, the test results show that two of the best top-performing
portfolios achieved significant equity savings relative to the benchmark during the market
contraction experienced during the first quarter of 2021.

7.2 Future Work

Further exploration includes applying other novel feature-learning methods such as the Wavelets
Transformation. Wavelets Transformation is a decomposition-based method that converts complex
information into elementary forms [134]. Additionally, a regime-switching framework proposed by
Maringer et al [88] can be incorporated to cater for sharp stock price declines. Sentiment analysis and
text-timing of a live news feed from social media and Bloomberg or Reuters offer another channel of
valuable market information. This information and fundamental data potentially summarise stock’s
intrinsic value much better, thereby improving the learning process. Furthermore, the analysis can
be broadened to include a larger pool of investable assets. Not only does this mitigate firm-specific
risk, but it also gives the system more freedom to move across shares within an available investible
universe. For instance, the ARRL system can be tested on the top 100 (by market capitalisation) of
the 350 shares listed on the JSE. The empirical test could also be conducted using a rolling window
basis that would dynamically update model parameters.

58

Appendix A

Learning Graphics

A.1 Augmented Dickey-Fuller Test

Table A.1 shows the p-values of the features identified as non-stationary at 5% significance level.

TABLE A.1: Features: Augmented Dickey-Fuller Unit Root Test

Feature Name AMS APN CPI CLS CFR EXX MNP NPN VOD

Close price 0.822 0.564 0.901 0.969 0.341 0.247 0.636 0.987 0.087
EMA 0.804 0.544 0.883 0.971 0.401 0.309 0.622 0.991 0.098
HT_trendline 0.880 0.527 0.887 0.977 0.403 0.409 0.645 0.992 0.105
KAMA 0.888 0.562 0.891 0.977 0.349 0.440 0.601 0.991 0.136
SAR 0.678 0.502 0.893 0.963 0.245 0.348 0.614 0.981 0.088
OBV 0.243 0.933 - 0.442 0.561 0.231 0.536 0.413 0.960
ATR 0.361 - 0.157 0.339 - - 0.117 0.765 -

A.2 Training Artifical Neural Networks

Hyperparameter tuning is performed using Scikit-Learn’s Randomized Grid-Search. The number of
layers in deep neural networks, the number of neurons in each layer for SDAEs, feature maps for
CDAEs, regularisation values, dropout probability, and learning rates are some of the parameters
adjusted during the training process. A learning rate schedule is applied to yield optimal
performance. The activation function of choice is the Scaled Exponential Linear Unit (SELU) that
results in self-normalizing neural networks to enable high-level abstract representation [64, 82].
According to Klambauer et al [64], the self-normalizing property ensures that the output of each
layer preserves a mean of zero and unit standard deviation during training, which solves the
vanishing or exploding gradient problem. The LeCun initializer is employed to mitigate the issue of
unstable gradients [108]. The Adaptive Moment Estimation (ADAM) is chosen as the optimizer
because it combines the benefits of Momentum and Root Mean Square Propagation (RMSProp).
ADAM determines autonomous adaptive learning rates for various parameters by computing the

59

first and second-moment estimates of the gradient [63, 154]. Also, an early-stopping time during
training is implemented to save computational time and mitigate over-fitting.

A.3 Training Results

RRL-based PM systems are trained using Algorithm 6. Model training is performed on the training
dataset for 150 epochs. Parameter estimates are averaged over 30 trials. Table A.2 shows the 95%
confidence interval of the training SR for each asset in the portfolio.

TABLE A.2: Confidence Interval of Training Sharpe Ratio (%)

Stocks ARRL ARRL-ica ARRL-mssa ARRL-sdae ARRL-cdae ARRL-lstm-dae

AMS 4.94 ± 0.32 6.60 ± 0.81 5.47 ± 0.42 3.63 ± 0.68 2.76 ± 0.54 4.66 ± 0.89
APN 3.37 ± 0.62 9.18 ± 0.89 3.31 ± 0.38 4.05 ± 0.82 4.58 ± 0.75 4.46 ± 0.72
CPI 4.74 ± 0.83 9.04 ± 0.48 4.72 ± 0.83 4.79 ± 0.37 4.79 ± 0.56 3.77 ± 1.25
CLS 1.52 ± 0.67 7.19 ± 0.90 1.07 ± 0.50 3.99 ± 1.00 4.70 ± 0.27 4.15 ± 1.02
CFR 2.36 ± 0.25 8.10 ± 0.73 2.41 ± 0.31 3.36 ± 0.80 4.56 ± 0.57 3.80 ± 0.64
EXX 4.35 ± 0.27 7.36 ± 0.65 4.66 ± 0.36 4.31 ± 1.04 2.81 ± 0.64 3.72 ± 0.56
MNP 4.60 ± 0.41 7.37 ± 1.07 5.14 ± 0.40 2.77 ± 1.03 3.14 ± 0.68 4.90 ± 0.83
NPN 2.89 ± 0.30 5.74 ± 0.57 3.20 ± 0.39 2.26 ± 0.48 5.36 ± 0.68 2.59 ± 0.58
VOD 2.15 ± 0.51 7.76 ± 0.66 2.48 ± 0.62 3.59 ± 0.85 4.94 ± 1.11 5.64 ± 1.10

The confidence intervals are much wide for artificial neural networks. This is due in part to the
fact that deep neural networks require substantial hyperparameter tuning and that there is a trade-
off between performance and simplicity. Gold [40] alludes that there is a large number of fixed
parameters that need to be tuned by trial and error when training deep RRL; there is no fixed set of
parameters that can reliably be deemed optimal. Overall, performance is stable, and optimal SR is
obtained within 150 epochs as indicated in the graphs below:

60

(A) ARRL training curve

(B) ARRL-ica training curve

FIGURE A.1: Training curves for ARRL and ARRL-ica

61

(A) ARRL-mssa training curve

(B) ARRL-sdae training curve

FIGURE A.2: Training curves for ARRL-mssa and ARRL-sdae

62

(A) ARRL-cdae training curve

(B) ARRL-lstm-dae training curve

FIGURE A.3: Training curves for ARRL-mssa and ARRL-sdae

63

A.4 Out-of-sample Dynamic Asset Allocation

(A) Out-of-sample: ARRL asset allocations

(B) Out-of-sample: ARRL-ica asset allocations

FIGURE A.4: Dynamic asset allocation for ARRL and ARRL-ica funds

64

(A) Out-of-sample: ARRL-mssa asset allocations

(B) Out-of-sample: ARRL-sdae asset allocations

FIGURE A.5: Dynamic asset allocation for ARRL-mssa and ARRL-sdae funds

65

(A) Out-of-sample: ARRL-cdae asset allocations

(B) Out-of-sample: ARRL-lstm-dae asset allocations

FIGURE A.6: Dynamic asset allocation for ARRL-cdae and ARRL-lstm-dae funds

66

A.5 Portfolio Return Distribution

FIGURE A.7: Out-of-sample: Portfolio returns distribution

67

Bibliography

[1] A long peek into reinforcement learning. https://lilianweng.github.io/lil-log/2018/02/
19/a-long-peek-into-reinforcement-learning.html.

[2] Christopher Adcock et al. “Portfolio performance persistence: does the choice of performance
measure matter?” In: (2019).

[3] Tolulope Akinbulire et al. “A reinforcement learning approach to tackle illegal, unreported
and unregulated fishing”. In: 2017 IEEE Symposium Series on Computational Intelligence (SSCI).
IEEE. 2017, pp. 1–8.

[4] Saud Almahdi and Steve Y Yang. “An adaptive portfolio trading system: A risk-return
portfolio optimization using recurrent reinforcement learning with expected maximum
drawdown”. In: Expert Systems with Applications 87 (2017), pp. 267–279.

[5] Shun-ichi Amari, Andrzej Cichocki, and Howard Hua Yang. “A new learning algorithm for
blind signal separation”. In: Advances in neural information processing systems. 1996,
pp. 757–763.

[6] M.J.P Anson, D.R Chambers, and K.H Black H Kazemi. CAIA Level 1, An Introduction to Core
Topics in Alternative Investments. 2013.

[7] Gerald Appel and W Frederick Hitschler. Stock market trading systems. Irwin Professional Pub,
1980.

[8] Mahsa Asadi et al. “Model-Based Reinforcement Learning Exploiting State-Action
Equivalence”. In: Asian Conference on Machine Learning. PMLR. 2019, pp. 204–219.

[9] Andrew D Back and Andreas S Weigend. “A first application of independent component
analysis to extracting structure from stock returns”. In: International journal of neural systems
8.04 (1997), pp. 473–484.

[10] Andrew D Back and Andreas S Weigend. “What Drives Stock Returns?-An Independent
Component Analysis”. In: Proceedings of the IEEE/IAFE/INFORMS 1998 Conference on
Computational Intelligence for Financial Engineering (CIFEr)(Cat. No. 98TH8367). IEEE. 1998,
pp. 141–156.

[11] Taimur Baig and Ilan Goldfajn. “Financial market contagion in the Asian crisis”. In: IMF staff
papers 46.2 (1999), pp. 167–195.

[12] Wei Bao, Jun Yue, and Yulei Rao. “A deep learning framework for financial time series using
stacked autoencoders and long-short term memory”. In: PloS one 12.7 (2017), e0180944.

[13] Martino Bardi and Italo Capuzzo-Dolcetta. Optimal control and viscosity solutions of Hamilton-
Jacobi-Bellman equations. Springer Science & Business Media, 2008.

https://lilianweng.github.io/lil-log/2018/02/19/a-long-peek-into-reinforcement-learning.html
https://lilianweng.github.io/lil-log/2018/02/19/a-long-peek-into-reinforcement-learning.html

68

[14] Dirk Becherer. “Rational hedging and valuation of integrated risks under constant absolute
risk aversion”. In: Insurance: Mathematics and economics 33.1 (2003), pp. 1–28.

[15] Frank Beichelt. Stochastic processes in science, engineering and finance. CRC Press, 2006.
[16] Geert Bekaert et al. “The global crisis and equity market contagion”. In: The Journal of Finance

69.6 (2014), pp. 2597–2649.
[17] Richard Bellman. “A Markovian decision process”. In: Journal of mathematics and mechanics

(1957), pp. 679–684.
[18] Richard Bellman. “A Markovian Decision Process”. In: Indiana Univ. Math. J. 6 (4 1957),

pp. 679–684. ISSN: 0022-2518.
[19] Christopher M Bishop. Pattern recognition and machine learning. springer, 2006.
[20] Pavlo R Blavatskyy. “Back to the St. Petersburg paradox?” In: Management Science 51.4 (2005),

pp. 677–678.
[21] Steffen Bohn. “The slippage paradox”. In: arXiv preprint arXiv:1103.2214 (2011).
[22] Steven J Bradtke and Michael O Duff. “Reinforcement learning methods for continuous-time

Markov decision problems”. In: Advances in neural information processing systems. 1995,
pp. 393–400.

[23] Jerome R Busemeyer. “Dynamic decision making”. In: (1999).
[24] Tushar S Chande and Stanley Kroll. The new technical trader: boost your profit by plugging into

the latest indicators. Vol. 44. John Wiley & Sons Incorporated, 1994.
[25] Yiu-ming Cheung and Lei Xu. “Independent component ordering in ICA time series

analysis”. In: Neurocomputing 41.1-4 (2001), pp. 145–152.
[26] Francois Chollet. Deep Learning mit Python und Keras: Das Praxis-Handbuch vom Entwickler der

Keras-Bibliothek. MITP-Verlags GmbH & Co. KG, 2018.
[27] Vijay K Chopra and William T Ziemba. “The effect of errors in means, variances, and

covariances on optimal portfolio choice”. In: Handbook of the Fundamentals of Financial
Decision Making: Part I. World Scientific, 2013, pp. 365–373.

[28] John C Cox and Chi-fu Huang. “Optimal consumption and portfolio policies when asset
prices follow a diffusion process”. In: Journal of economic theory 49.1 (1989), pp. 33–83.

[29] Mark HA Davis and Sébastien Lleo. Risk-sensitive investment management. Vol. 19. World
Scientific, 2014.

[30] Yue Deng et al. “Deep direct reinforcement learning for financial signal representation and
trading”. In: IEEE transactions on neural networks and learning systems 28.3 (2016), pp. 653–664.

[31] Elroy Dimson, Paul Marsh, and Mike Staunton. “Long-run global capital market returns and
risk premia”. In: Available at SSRN 299335 (2002).

[32] I Capuzzo Dolcetta and M Falcone. “Discrete dynamic programming and viscosity solutions
of the Bellman equation”. In: Annales de l’Institut Henri Poincare (C) Non Linear Analysis. Vol. 6.
Elsevier. 1989, pp. 161–183.

[33] Kevin Dowd. “Adjusting for risk:: An improved Sharpe ratio”. In: International review of
economics & finance 9.3 (2000), pp. 209–222.

[34] Drawdowns. https://www.investopedia.com/terms/d/drawdown.asp.

https://www.investopedia.com/terms/d/drawdown.asp

69

[35] Bo Du et al. “Stacked convolutional denoising auto-encoders for feature representation”. In:
IEEE transactions on cybernetics 47.4 (2016), pp. 1017–1027.

[36] Xin Du, Jinjian Zhai, and Koupin Lv. “Algorithm trading using q-learning and recurrent
reinforcement learning”. In: positions 1 (2016), p. 1.

[37] Ward Edwards. “Dynamic decision theory and probabilistic information processings”. In:
Human factors 4.2 (1962), pp. 59–74.

[38] Aniekan Essien and Cinzia Giannetti. “A deep learning framework for univariate time series
prediction using convolutional LSTM stacked autoencoders”. In: 2019 IEEE International
Symposium on INnovations in Intelligent SysTems and Applications (INISTA). IEEE. 2019, pp. 1–6.

[39] Aurélien Géron. Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts,
Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, 2019.

[40] Carl Gold. “FX trading via recurrent reinforcement learning”. In: 2003 IEEE International
Conference on Computational Intelligence for Financial Engineering, 2003. Proceedings. IEEE. 2003,
pp. 363–370.

[41] Nina Golyandina, Vladimir Nekrutkin, and Anatoly A Zhigljavsky. Analysis of time series
structure: SSA and related techniques. CRC press, 2001.

[42] Nina Golyandina et al. “Multivariate and 2D extensions of singular spectrum analysis with
the Rssa package”. In: arXiv preprint arXiv:1309.5050 (2013).

[43] Lovedeep Gondara. “Medical image denoising using convolutional denoising autoencoders”.
In: 2016 IEEE 16th International Conference on Data Mining Workshops (ICDMW). IEEE. 2016,
pp. 241–246.

[44] Emad M Grais and Mark D Plumbley. “Single channel audio source separation using
convolutional denoising autoencoders”. In: 2017 IEEE global conference on signal and
information processing (GlobalSIP). IEEE. 2017, pp. 1265–1269.

[45] Joseph Ensign Granville. Granville’s new strategy of daily stock market timing for maximum profit.
Prentice-Hall, 1976.

[46] Jiang Guo. “Backpropagation through time”. In: Unpubl. ms., Harbin Institute of Technology 40
(2013), pp. 1–6.

[47] Hossein Hassani. “Singular spectrum analysis: methodology and comparison”. In: (2007).
[48] Hossein Hassani and Dimitrios Thomakos. “A review on singular spectrum analysis for

economic and financial time series”. In: Statistics and its Interface 3.3 (2010), pp. 377–397.
[49] Simon S Haykin et al. Neural networks and learning machines/Simon Haykin. 2009.
[50] Geoffrey E Hinton and Richard S Zemel. “Autoencoders, minimum description length and

Helmholtz free energy”. In: Advances in neural information processing systems. 1994, pp. 3–10.
[51] Grace Xing Hu, Jun Pan, and Jiang Wang. “Noise as information for illiquidity”. In: The Journal

of Finance 68.6 (2013), pp. 2341–2382.
[52] John Hull et al. Options, futures and other derivatives/John C. Hull. Upper Saddle River, NJ:

Prentice Hall, 2009.
[53] J Wesley Hutchinson and Robert J Meyer. “Dynamic decision making: Optimal policies and

actual behavior in sequential choice problems”. In: Marketing Letters 5.4 (1994), pp. 369–382.

70

[54] Aapo Hyvärinen. “Survey on independent component analysis”. In: (1999).
[55] Aapo Hyvärinen and Erkki Oja. “Independent component analysis: algorithms and

applications”. In: Neural networks 13.4-5 (2000), pp. 411–430.
[56] Jonathan E Ingersoll Jr. “Portfolio separation theorems”. In: Theory of financial decision making

(1987).
[57] Stuart Jarvis, Adrian Lawrence, and Sheng Miao. “Dynamic asset allocation techniques”. In:

British Actuarial Journal 15.3 (2009), pp. 573–655.
[58] Zhengyao Jiang, Dixing Xu, and Jinjun Liang. “A deep reinforcement learning framework for

the financial portfolio management problem”. In: arXiv preprint arXiv:1706.10059 (2017).
[59] Olivier Jin and Hamza El-Saawy. “Portfolio management using reinforcement learning”. In:

Stanford University (2016).
[60] M Chris Jones and Robin Sibson. “What is projection pursuit?” In: Journal of the Royal Statistical

Society: Series A (General) 150.1 (1987), pp. 1–18.
[61] Nitin Kanwar et al. “Deep Reinforcement Learning-Based Portfolio Management”.

PhD thesis. 2019.
[62] Ioannis Karatzas, John P Lehoczky, and Steven E Shreve. “Optimal portfolio and consumption

decisions for a “small investor” on a finite horizon”. In: SIAM journal on control and optimization
25.6 (1987), pp. 1557–1586.

[63] Diederik P Kingma and Jimmy Ba. “Adam: A method for stochastic optimization”. In: arXiv
preprint arXiv:1412.6980 (2014).

[64] Günter Klambauer et al. “Self-normalizing neural networks”. In: Advances in neural information
processing systems. 2017, pp. 971–980.

[65] Marek Andrzej Kociński et al. “On transaction costs in stock trading”. In: Metody Ilościowe w
Badaniach Ekonomicznych 18.1 (2017), pp. 58–67.

[66] Vijay R Konda and John N Tsitsiklis. “Actor-critic algorithms”. In: Advances in neural
information processing systems. Citeseer. 2000, pp. 1008–1014.

[67] Mukesh Kumar et al. “Feature selection and classification of microarray data using
MapReduce based ANOVA and K-nearest neighbor”. In: Procedia Computer Science 54 (2015),
pp. 301–310.

[68] Denis Kwiatkowski et al. “Testing the null hypothesis of stationarity against the alternative of
a unit root”. In: Journal of econometrics 54.1-3 (1992), pp. 159–178.

[69] Sascha Lange and Martin Riedmiller. “Deep auto-encoder neural networks in reinforcement
learning”. In: The 2010 International Joint Conference on Neural Networks (IJCNN). IEEE. 2010,
pp. 1–8.

[70] Dominic Langlois, Sylvain Chartier, and Dominique Gosselin. “An introduction to
independent component analysis: InfoMax and FastICA algorithms”. In: Tutorials in
Quantitative Methods for Psychology 6.1 (2010), pp. 31–38.

[71] Marc Levinson. “Guide to financial markets, London”. In: The Economist (2005).
[72] Yuxi Li. “Deep reinforcement learning: An overview”. In: arXiv preprint arXiv:1701.07274

(2017).

71

[73] Zhipeng Liang et al. “Adversarial deep reinforcement learning in portfolio management”. In:
arXiv preprint arXiv:1808.09940 (2018).

[74] Zhipeng Liang et al. Deep reinforcement learning in portfolio management. 2018.
[75] Liang Jin and M. M. Gupta. “Stable dynamic backpropagation learning in recurrent neural

networks”. In: IEEE Transactions on Neural Networks 10.6 (1999), pp. 1321–1334. DOI: 10.1109/
72.809078.

[76] Timothy P Lillicrap et al. “Continuous control with deep reinforcement learning”. In: arXiv
preprint arXiv:1509.02971 (2015).

[77] Steven A Lippman, John J McCall, and Wayne L Winston. “Constant absolute risk aversion,
bankruptcy, and wealth-dependent decisions”. In: Journal of Business (1980), pp. 285–296.

[78] Jun Liu, Francis A Longstaff, and Jun Pan. “Dynamic asset allocation with event risk”. In: The
Journal of Finance 58.1 (2003), pp. 231–259.

[79] Xingchen Liu et al. “Fault diagnosis of rotating machinery under noisy environment
conditions based on a 1-D convolutional autoencoder and 1-D convolutional neural
network”. In: Sensors 19.4 (2019), p. 972.

[80] Chi-Jie Lu, Tian-Shyug Lee, and Chih-Chou Chiu. “Financial time series forecasting using
independent component analysis and support vector regression”. In: Decision support systems
47.2 (2009), pp. 115–125.

[81] David W Lu. “Agent inspired trading using recurrent reinforcement learning and lstm neural
networks”. In: arXiv preprint arXiv:1707.07338 (2017).

[82] Avinash Madasu and Vijjini Anvesh Rao. “Effectiveness of self normalizing neural networks
for text classification”. In: arXiv preprint arXiv:1905.01338 (2019).

[83] Jeff Madura. “Financial Markets and Instruments”. In: Thomson South-Western (2006).
[84] Myles E Mangram. “A simplified perspective of the Markowitz portfolio theory”. In: Global

journal of business research 7.1 (2013), pp. 59–70.
[85] Steven V Mann, Frank J Fabozzi, and Moorad Choudhry. The Global Money Markets. 2002.
[86] Radu Manuca and Robert Savit. “Stationarity and nonstationarity in time series analysis”. In:

Physica D: Nonlinear Phenomena 99.2-3 (1996), pp. 134–161.
[87] Hongzi Mao et al. “Resource management with deep reinforcement learning”. In: Proceedings

of the 15th ACM Workshop on Hot Topics in Networks. 2016, pp. 50–56.
[88] Dietmar Maringer and Tikesh Ramtohul. “Regime-switching recurrent reinforcement learning

for investment decision making”. In: Computational Management Science 9.1 (2012), pp. 89–107.
[89] Harry M Markowitz. “Investment for the long run: New evidence for an old rule”. In: The

Journal of Finance 31.5 (1976), pp. 1273–1286.
[90] RC Merton. “Optimum consumption and portfolio-rules in a continuous-time framework”.

In: Journal of Economic Theory (December 1971) (1971).
[91] Robert C Merton. “Lifetime portfolio selection under uncertainty: The continuous-time case”.

In: The review of Economics and Statistics (1969), pp. 247–257.
[92] Robert C Merton. “Theory of rational option pricing”. In: The Bell Journal of economics and

management science (1973), pp. 141–183.

https://doi.org/10.1109/72.809078
https://doi.org/10.1109/72.809078

72

[93] Robert C Merton and Paul Anthony Samuelson. “Continuous-time finance”. In: (1992).
[94] Attilio Meucci. Risk and asset allocation. Springer Science & Business Media, 2009.
[95] Hyman P Minsky. “The financial instability hypothesis”. In: The Jerome Levy Economics Institute

Working Paper 74 (1992).
[96] Tom M Mitchell et al. Machine learning. 1997.
[97] Tom Michael Mitchell. The discipline of machine learning. Vol. 9. Carnegie Mellon University,

School of Computer Science, Machine Learning . . ., 2006.
[98] Gabriel Molina. “Stock Trading with Recurrent Reinforcement Learning (RRL)”. In: CS229, nd

Web 15 (2016).
[99] John Moody et al. “Performance functions and reinforcement learning for trading systems

and portfolios”. In: Journal of Forecasting 17.5-6 (1998), pp. 441–470.
[100] John E Moody and Matthew Saffell. “Reinforcement learning for trading”. In: Advances in

Neural Information Processing Systems. 1999, pp. 917–923.
[101] Patrick G Mulloy. “Smoothing data with less lag”. In: Technical Analysis of Stocks and

Commodities 12.2 (1994), pp. 72–80.
[102] John J Murphy. Intermarket technical analysis: trading strategies for the global stock, bond,

commodity, and currency markets. Vol. 6. John Wiley & Sons, 1991.
[103] Marek Musiela and Thaleia Zariphopoulou. “Portfolio choice under dynamic investment

performance criteria”. In: Quantitative Finance 9.2 (2009), pp. 161–170.
[104] Ralph Neuneier. “Optimal asset allocation using adaptive dynamic programming”. In:

Advances in Neural Information Processing Systems. 1996, pp. 952–958.
[105] Andrew Ng et al. “Sparse autoencoder”. In: CS294A Lecture notes 72.2011 (2011), pp. 1–19.
[106] Richard E Oberuc. Dynamic portfolio theory and management: using active asset allocation to

improve profits and reduce risk. McGraw Hill Professional, 2004.
[107] Erkki Oja, Kimmo Kiviluoto, and Simona Malaroiu. “Independent component analysis for

financial time series”. In: Proceedings of the IEEE 2000 Adaptive Systems for Signal Processing,
Communications, and Control Symposium (Cat. No. 00EX373). IEEE. 2000, pp. 111–116.

[108] Genevieve B Orr and Klaus-Robert Müller. Neural networks: tricks of the trade. Springer, 2003.
[109] Joel Owen and Ramon Rabinovitch. “On the class of elliptical distributions and their

applications to the theory of portfolio choice”. In: The Journal of Finance 38.3 (1983),
pp. 745–752.

[110] Xinlei Pan et al. “Virtual to real reinforcement learning for autonomous driving”. In: arXiv
preprint arXiv:1704.03952 (2017).

[111] Fabian Pedregosa et al. “Scikit-learn: Machine learning in Python”. In: the Journal of machine
Learning research 12 (2011), pp. 2825–2830.

[112] Shige Peng. “A generalized dynamic programming principle and Hamilton-Jacobi-Bellman
equation”. In: Stochastics: An International Journal of Probability and Stochastic Processes 38.2
(1992), pp. 119–134.

[113] Shige Peng. “Stochastic hamilton–jacobi–bellman equations”. In: SIAM Journal on Control and
Optimization 30.2 (1992), pp. 284–304.

73

[114] Danilo Filippo Reiszel Pereira, Natanael Nunes de Moura Junior, and Luiz Pereira Caloba.
“Financial Time Series Forecasting Using Non-Linear Methods and Stacked Autoencoders”.
In: 2018 International Joint Conference on Neural Networks (IJCNN). IEEE. 2018, pp. 1–8.

[115] Andre F Perold and William F Sharpe. “Dynamic strategies for asset allocation”. In: Financial
Analysts Journal 44.1 (1988), pp. 16–27.

[116] Yuliya Plyakha, Raman Uppal, and Grigory Vilkov. “Why does an equal-weighted portfolio
outperform value-and price-weighted portfolios?” In: Available at SSRN 2724535 (2012).

[117] Florian Pusse and Matthias Klusch. “Hybrid online pomdp planning and deep reinforcement
learning for safer self-driving cars”. In: 2019 IEEE Intelligent Vehicles Symposium (IV). IEEE.
2019, pp. 1013–1020.

[118] Martin L Puterman. Markov decision processes: discrete stochastic dynamic programming. John
Wiley & Sons, 2014.

[119] Xin-Yao Qian and Shan Gao. “Financial series prediction: Comparison between precision of
time series models and machine learning methods”. In: arXiv preprint arXiv:1706.00948 (2017).

[120] Frank K Reilly and Keith C Brown. Investment analysis and portfolio management. Cengage
Learning, 2011.

[121] Izabela Rejer and Pawel Górski. “Benefits of ICA in the case of a few channel EEG”. In: 2015
37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society
(EMBC). IEEE. 2015, pp. 7434–7437.

[122] Thomas N Rollinger and Scott T Hoffman. “Sortino: a ‘sharper’ratio”. In: Chicago, IL: Red Rock
Capital. (2013).

[123] Sheldon M Ross. Introduction to stochastic dynamic programming. Academic press, 2014.
[124] Stephen Ross. “The arbitrage pricing theory”. In: Journal of Economic Theory 13.3 (1976),

pp. 341–360.
[125] Stephen A Ross. “Mutual fund separation in financial theory—the separating distributions”.

In: Theory of Valuation. World Scientific, 2005, pp. 309–356.
[126] Srikanth Ryali et al. “Development, validation, and comparison of ICA-based gradient artifact

reduction algorithms for simultaneous EEG-spiral in/out and echo-planar fMRI recordings”.
In: Neuroimage 48.2 (2009), pp. 348–361.

[127] Alaa Sagheer and Mostafa Kotb. “Unsupervised pre-training of a Deep LStM-based Stacked
Autoencoder for Multivariate time Series forecasting problems”. In: Scientific Reports 9.1
(2019), pp. 1–16.

[128] Guillermo Sahonero-Alvarez and Humberto Calderón. “A comparison of SOBI, FastICA,
JADE and Infomax algorithms”. In: Proceedings of the 8th International Multi-Conference on
Complexity, Informatics and Cybernetics. 2017, pp. 17–22.

[129] SAT40. https://www.bloomberg.com/quote/TOP40:IND.
[130] Yoshiharu Sato. “Model-Free Reinforcement Learning for Financial Portfolios: A Brief

Survey”. In: arXiv preprint arXiv:1904.04973 (2019).
[131] William F Sharpe. “Capital asset prices: A theory of market equilibrium under conditions of

risk”. In: The journal of finance 19.3 (1964), pp. 425–442.

https://www.bloomberg.com/quote/TOP40:IND

74

[132] William F Sharpe. “The sharpe ratio”. In: Journal of portfolio management 21.1 (1994), pp. 49–58.
[133] Alex Shlemov and Nina Golyandina. “Shaped extensions of singular spectrum analysis”. In:

arXiv preprint arXiv:1401.4980 (2014).
[134] M Sifuzzaman, MR Islam, and MZ Ali. “Application of Wavelet Transform and its Advantages

Compared to Fourier Transform”. In: Journal of Physical Sciences 13 (2009), pp. 121–134.
[135] Marinko Škare and Małgorzata Porada-Rochoń. “Multi-channel singular-spectrum analysis

of financial cycles in ten developed economies for 1970–2018”. In: Journal of Business Research
112 (2020), pp. 567–575.

[136] Frank A Sortino and Lee N Price. “Performance measurement in a downside risk framework”.
In: the Journal of Investing 3.3 (1994), pp. 59–64.

[137] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.
[138] Richard S Sutton et al. “Policy gradient methods for reinforcement learning with function

approximation”. In: Advances in neural information processing systems. 2000, pp. 1057–1063.
[139] Randall Swift. “Stochastic Processes in Science, Engineering and Finance by Frank

Beichelt-Chapmann & Hall/CRC (2006)”. In: Journal of Statistical Theory and Practice 1.2
(2007), pp. 285–287.

[140] Lance Taylor and Stephen A O’Connell. “A Minsky crisis”. In: The Quarterly Journal of
Economics 100.Supplement (1985), pp. 871–885.

[141] Dimitrios D Thomakos, Tao Wang, and Luc T Wille. “Modeling daily realized futures volatility
with singular spectrum analysis”. In: Physica A: Statistical Mechanics and its Applications 312.3-4
(2002), pp. 505–519.

[142] James Tobin. “Liquidity preference as behavior towards risk”. In: The review of economic studies
25.2 (1958), pp. 65–86.

[143] Gavin Tsang, Jingjing Deng, and Xianghua Xie. “Recurrent Neural Networks for Financial
Time-Series Modelling”. In: 2018 24th International Conference on Pattern Recognition (ICPR).
IEEE. 2018, pp. 892–897.

[144] Pascal Vincent et al. “Extracting and composing robust features with denoising
autoencoders”. In: Proceedings of the 25th international conference on Machine learning. 2008,
pp. 1096–1103.

[145] Pascal Vincent et al. “Stacked denoising autoencoders: Learning useful representations in a
deep network with a local denoising criterion.” In: Journal of machine learning research 11.12
(2010).

[146] Shanshan Wang et al. “Order-free Medicine Combination Prediction with Graph
Convolutional Reinforcement Learning”. In: Proceedings of the 28th ACM International
Conference on Information and Knowledge Management. 2019, pp. 1623–1632.

[147] Christopher JCH Watkins and Peter Dayan. “Q-learning”. In: Machine learning 8.3-4 (1992),
pp. 279–292.

[148] Laurens Weijs. “Reinforcement learning in Portfolio Management and its interpretation”. In:
Erasmus Universiteit Rotterdam (2018).

75

[149] Paul J Werbos. “Backpropagation through time: what it does and how to do it”. In: Proceedings
of the IEEE 78.10 (1990), pp. 1550–1560.

[150] J Welles Wilder. New concepts in technical trading systems. Trend Research, 1978.
[151] Ronald J Williams. “Simple statistical gradient-following algorithms for connectionist

reinforcement learning”. In: Machine learning 8.3-4 (1992), pp. 229–256.
[152] Paul Wilmott. Paul Wilmott on quantitative finance. John Wiley & Sons, 2013.
[153] Annette Witt, Jürgen Kurths, and A Pikovsky. “Testing stationarity in time series”. In: physical

Review E 58.2 (1998), p. 1800.
[154] Jing Yuan and Ying Tian. “An Intelligent Fault Diagnosis Method Using GRU Neural Network

towards Sequential Data in Dynamic Processes”. In: Processes 7.3 (2019), p. 152.
[155] Guanyu Zhou, Kihyuk Sohn, and Honglak Lee. “Online incremental feature learning with

denoising autoencoders”. In: Artificial intelligence and statistics. 2012, pp. 1453–1461.
[156] Mengying Zhu et al. “Adaptive Portfolio by Solving Multi-armed Bandit via Thompson

Sampling”. In: arXiv preprint arXiv:1911.05309 (2019).
[157] Shu-Shang Zhu, Duan Li, and Shou-Yang Wang. “Risk control over bankruptcy in dynamic

portfolio selection: A generalized mean-variance formulation”. In: IEEE transactions on
Automatic Control 49.3 (2004), pp. 447–457.

[158] William T Ziemba et al. The stochastic programming approach to asset, liability, and wealth
management. Citeseer, 2003.

	Declaration
	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	List of Abbreviations
	List of Symbols
	Introduction
	Background
	Research Area
	Research Problem
	Prior Literature
	Problematising

	Problem Statement
	Research Aims and Objectives
	Purpose
	Research Question
	Research Aims
	Objectives

	Assumptions and Definitions
	Limitations
	Contribution
	Outline

	Portfolio Management
	Conceptual Framework
	Portfolio Reward and Risk

	Modern Portfolio Theory
	Maximise Risk-adjusted Return
	Risk Minimisation
	Markowitz in Practice: Pros and Cons

	Dynamic Asset Allocation
	The Wealth Process
	Maximising Expected Utility
	Stochastic Control and Bellman Equations
	Cox-Huang Approach
	Numerical Approach
	Tree Approaches
	Lattice Approach

	Summary

	Reinforcement Learning
	Reinforcement Learning Process
	Markov Decision Processes
	Definition
	Markov Property
	Markov Decision Process Algorithm

	A Conceptual Framework
	On-Policy State-Value Function
	On-Policy State-Action Value Function
	Bellman Equations
	Bellman Optimality Equations

	Reinforcement Learning Algorithms
	Model-based Reinforcement Learning Algorithms
	Model-free Reinforcement Learning algorithms
	Q-Learning
	Deep Q-learning
	Policy Gradient
	REINFORCE: Monte Carlo PG
	REINFORCE with Baseline
	Actor-Critic Methods
	Deep Deterministic Policy Gradient

	Recurrent Reinforcement Learning
	Summary

	Signal Processing and Feature Extraction Methods
	Singular Spectrum Analysis
	General Review of SSA and Usefulness
	Details of the SSA algorithm
	Embedding
	Singular Value Decomposition
	Grouping
	Reconstruction

	Multichannel Singular Spectrum Analysis
	Independent Component Analysis
	Details of ICA
	ICA Methods
	Minimising Mutual Information
	Maximising Non-Gaussianity

	Autoencoders
	Details of AE
	Stacked Denoising Autoencoder
	Convolutional Denoising Autoencoder
	Recurrent Denoising Autoencoder

	Summary

	Research Methodology
	Research design
	Overview
	State Space
	Action Space
	Reward Function
	Feature Learning
	ARRL System: Optimal Rebalancing
	Policy Search Algorithm

	Data
	Data Source
	Features
	Data Pre-processing
	Data Scaling
	Data Stationarity

	Methods
	Instruments
	Training, Validation and Test Split

	Analysis
	Portfolio Strategies
	Evaluation Metrics
	Terminal Portfolio Value
	Sharpe Ratio
	Sortino Ratio
	Maximum Draw-down
	Information Ratio

	Results and Discussion
	Results and Discussion
	Performance Results
	Risk Assessement
	Asset Allocation and Return Distribution

	Summary

	Conclusion and Future Work
	Conclusion
	Future Work

	Learning Graphics
	Augmented Dickey-Fuller Test
	Training Artifical Neural Networks
	Training Results
	Out-of-sample Dynamic Asset Allocation
	Portfolio Return Distribution

	Bibliography

