
Comparing and contrasting the
performance of single and two stage

object detectors.

Kgaugelo MPHAHLELE
Student Number: 818 683

Supervisor: Dr. D. REDDY

A research report submitted in partial fulfillment of the requirements for the
degree of Master of Science in the field of e-Science

in the

School of Computer Science and Applied Mathematics

University of the Witwatersrand, Johannesburg

8 February 2022

i

Declaration

I, Kgaugelo MPHAHLELE , declare that this research report is my own, unaided
work. It is being submitted for the degree of Master of Science in the field of e-
Science at the University of the Witwatersrand, Johannesburg. It has not been sub-
mitted for any degree or examination at any other university.

Kgaugelo MPHAHLELE

Student Number: 818 683

8 February 2022

ii

Abstract
Object detectors are used in a wide array of different contexts and as such differ-
ent implementations will vary in terms of performance and results. This study
investigated how four object detectors perform on several datasets. More specif-
ically and what is of particular interest would be the performance of these classi-
fiers on remotely sensed images. The four object detectors that are ultimately im-
plemented would be the Regions with Convolutional Neural Networks (RCNN),
the Faster Regions with Convolutional Neural Networks (Faster RCNN), You Only
Look Once (YOLO) and the Single Shot Multi-box Detector (SSD). In regards to
remotely sensed images, it is ultimately found that the RCNN had the detection
highest accuracy followed by Faster RCNN, YOLO and the SSD.

iii

Acknowledgements
The steadfast support of my family and friends has helped provide me with the
necessary and conducive environment to conduct this investigation. Furthermore I
would like to thank Dr. D. Reddy for his steady guidance and supervision.

iv

Contents

Declaration i

Abstract ii

Acknowledgements iii

List of Figures vii

List of Tables ix

List of Abbreviations xi

1 Introduction 1
1.1 Background . 1
1.2 Research Question (or Problem Statement) 4

1.2.1 Research Area . 4
1.2.2 Research Problem . 4
1.2.3 Research Aims and Objectives 5

1.3 Limitations of this research investigation 6

2 Literature Review 7
2.1 Regions with Convolutional Neural Network(RCNN) 7

2.1.1 The Architecture of the Model 8
2.1.2 Test Time Deduction for RCNN 9
2.1.3 Run-time Analysis for RCNN 10

Supervised pre-Training . 11
Domain Fine Tuning of the RCNN 11
Object Category Classifiers of the RCNN. 11

v

2.2 Faster RCNN . 12
2.2.1 The Region Proposal Network 13

Generating Anchors . 14
Translation-Invariant . 15
Multi-Scale Anchors . 15
Loss Function for Training RPNs 16
Training Hhase for the RPN . 18

2.2.2 Exchanging Features between the Fast RCNN as well as the
RCNN . 19
4-Step Alternating Training. 20
Implementation Details . 21

2.3 YOLO . 22
2.3.1 Training the model with inputs of multiple scales 28

2.4 SSD . 31
2.4.1 Model for the SSD . 32
2.4.2 Training for the SSD . 33

3 Research Methodology 37
3.1 Introduction . 37

3.1.1 Research Design . 37
3.2 Methodology . 38

3.2.1 Proposed Method . 38
Methodology for RCNN . 38
Methodology for Faster RCNN 43
Methodology for YOLO . 46
Methodology for SSD . 48

3.2.2 Datasets . 50
3.2.3 Analysis . 51

3.3 Technical Specifications . 54
3.4 Limitations . 54
3.5 Ethical Considerations . 55
3.6 Conclusion . 56

4 Results, Discussion and Limitations 57
4.1 Results . 57

vi

4.1.1 Results for the PASCAl VOC training dataset 57
4.1.2 Results for the Udacity self driving car training dataset 60
4.1.3 Results for the Eastern North American 24 dataset 62
4.1.4 Results for the Snapshot Serengeti training dataset 65
4.1.5 Results for the DOTA dataset 68
4.1.6 Consolidation of results . 71

4.2 Discussion . 72
4.2.1 Regions with Convolutional Neural Networks 73
4.2.2 Faster Regions with Convolutional Neural Networks 76
4.2.3 You Only Look Once . 78
4.2.4 Single Shot MultiBox Detector 80

5 Conclusions and Future Work 82
5.1 Conclusions . 82
5.2 Future Work . 83

Bibliography 84

vii

List of Figures

2.1 This figure illustrates the functionality of the RCNN [5]. 12
2.2 The figure illustrates a basic representation of the Faster RCNN im-

plementation [11]. 14
2.3 The figure illustrates the implementation of the YOLO methodology

at a basic level [12]. 24

3.1 This figure illustrates the model summary of the VGGNet that was
used [29], [31]. 42

4.1 Bar Graph illustrating the mAP of each of the object detectors for the
PASCAL VOC dataset [17]. 60

4.2 Bar Graph illustrating the mAP of each of the object detectors for the
Udacity self driving car testing dataset [18]. 62

4.3 Bar Graph illustrating the mAP of each of the object detectors for the
Eastern North American testing dataset [19]. 65

4.4 Bar Graph illustrating the mAP of each of the object detectors for the
Serengeti Snapshot testing dataset [20]. 68

4.5 Bar Graph illustrating the mAP of each of the object detectors for the
DOTA testing dataset [21]. 71

4.6 Bar graph denoting the object detectors across all the datasets. 1 de-
notes the Pascal VOC [17], 2 denotes the Udacity self driving car test-
ing dataset [18], 3 denotes the Eastern Northern American 24 testing
dataset [19], 4 denotes the Serengeti Snapshot testing dataset [20],
and 5 denotes the DOTA testing dataset [21]. 72

4.7 An example of RCNN generating candidate regions on an image
from PASCAL VOC [17]. 73

viii

4.8 An example of RCNN generating candidate regions on an image
from the Udacity self driving car dataset [18]. 74

4.9 An example of RCNN generating candidate regions on an image
from the Eastern North American dataset [19]. 74

4.10 An example of RCNN generating candidate regions on an image
from the snapshot Serengeti dataset [20]. 75

4.11 An example of RCNN generating candidate regions on an image
from the DOTA dataset [21]. 75

ix

List of Tables

4.1 Table with the average precision(%) results for each object class and
the subsequent mean average precision(%) score for each object de-
tector, with regard to the PASCAL VOC training dataset [17]. 58

4.2 Table with the average precision(%) results for each object class and
the subsequent mean average precision(%) score for each object de-
tector, with regard to the PASCAL VOC testing dataset [17]. 59

4.3 Table with the average precision(%) results for each object class and
the subsequent mean average precision(%) score for each object de-
tector with regard to the Udacity self driving car training dataset [18]. 61

4.4 Table with the average precision(%) results for each object class and
the subsequent mean average precision(%) score for each object de-
tector with regard to the Udacity self driving car testing dataset [18]. 61

4.5 Table with the average precision(%) results for each object class and
the subsequent mean average precision(%) score for each object de-
tector with regard to the Eastern North American training dataset [19]. 63

4.6 Table with the average precision(%) results for each object class and
the subsequent mean average precision(%) score for each object de-
tector with regard to the Eastern North American testing dataset [19]. 64

4.7 Table with the average precision(%) results for each object class and
the subsequent mean average precision(%) score for each object de-
tector with regard to the snapshot Serengeti training dataset [20]. . . 66

4.8 Table with the average precision(%) results for each object class and
the subsequent mean average precision(%) score for each object de-
tector with regard to the snapshot Serengeti testing dataset [20]. . . . 67

x

4.9 Table with the average precision(%) results for each object class and
the subsequent mean average precision(%) score for each object de-
tector with regard to the DOTA training dataset[21]. 69

4.10 Table with the average precision(%) results for each object class and
the subsequent mean average precision(%) score for each object de-
tector with regard to the DOTA testing dataset[21]. 70

xi

List of Abbreviations

RCNN Regions with Convolutional Neural Networks
Fast RCNN Fast Regions with Convolutional Neural Networks
Faster RCNN Faster Regions with Convolutional Neural Networks
YOLO You Only Look Once
YOLOv2 You Only Look Once version 2
SSD Single Shot Multibox Detector
SVM Support Vector Machine
HOG Histograms of Oriented Gradients for Human Detection
SIFT Scale Invariant Feature Transform
CNN Convolutional Neural Network
ILSVRC ImageNet Large Scale Visual Recognition Challenge
RPN Region Proposal Network
PASCAL VOC Pattern Analysis, Statiscal Modelling and Computational

Learning Visual Object Classes
DPM Deformable Part Model
SGD Stochastic Gradient Descent
AP Average Precision
mAP mean Average Precision
IoU Intersection over Union
CUDA Compute Unified Device Architecture
GPU Graphical Processing Unit
CPU Central Processing Unit
NMS Non-maximum suppression
ADAM ADAptive Moment Estimation
DSR Design Science Research
API Application Processing Interface
(RoI) Region of Interest
DOTA Large-scale Dataset for Object DeTection in Aerial Images

1

Chapter 1

Introduction

1.1 Background

Object Detection is a field of study concerned with machines being able to identify
objects within images accurately and quickly in real time [1]. With that in mind it
is worth noting that there is a considerable body of work that has been done in this
field. To further substantiate this, papers such as Papageorgiou and Poggio [2], and
Schneiderman and Kanade [3], used various implementations and methodologies
in regards to the detection of humans. One of these methodologies (as an example),
included the use of a polynomial support vector machine (SVM) which used Haar
wavelet descriptors as an input [4].

Girshick et al. [5], note that for a significant amount of time that various objection
detection implementations were derived from block-wise orientation histograms
such as the Histograms of Oriented Gradients for Human Detection (or HOG) and
the Scale Invariant Features Transform (or SIFT) [5]. It is generally accepted that
HOG and SIFT are roughly associated with the visual neurological pathway within
the first cortical area, but it is also noted that visual recognition takes place through
multi-stage processes, which are hierarchical in nature and as such the HOG and
SIFT fall short of this [5]. In order to address such shortcomings, a "neocognitron”
was conceived by Fukushima which would replicate a neurological structure in
terms of how it visually recognises patterns [6]. In light of this, the neocognitron
lacked the functionality for supervised learning and as such work by Lecun et al. [7],
extended the capabilities of the neocognitron by supplementing it with the use of a

2

stochastic gradient descent via back-propagation, in order to train a convolutional
neural network (CNN) [5].

CNN’s were once considered a flagship tool within object detection, but subse-
quently it fell out of favour due to the popular rise of support vector machines
[5]. This trend subsequently reversed when in 2012, Krizhevsky, Sutskever, and
Hinton [8], managed to produce a high classification accuracy in regards to the Im-
ageNet Large Scale Visual Recognition Challenge (ILSVRC) [5]. Ultimately such
results lead to a pertinent question being asked in which, to what extent can the re-
sults from image classification, be used to generalize object detection [5]. Girshick
et al. [5], address this issue by illustrating that a CNN implementation can ulti-
mately generate higher results in regards to object detection, in comparison to other
methodologies/implementations that are derived from simpler HOG-like features
[5]. The aforementioned CNN implementation uses a multi-pipeline approach in
order to generate accurate results in regards to object detection, as this would re-
quire the localization of objects within the image. In order to facilitate such an
implementation, the localization of objects could be framed as a regression prob-
lem, but another body work [9], illustrates that this approach would not be optimal
[5]. In light of this the "recognition using regions" paradigm is ultimately consid-
ered and used when implementing the CNN. As such this model is subsequently
dubbed the RCNN (Regions with CNN features) [5].

Object detection is generally considered to be a difficult task to complete due to
the nature of the problem it faces, as it requires an array of complex methodologies
in order to answer its’ given task [10]. In response to this complexity, multi-stage
pipelines are incorporated in order to train models and as such these pipelines are
often slow and time-consuming as well as unrefined [10]. As such the RCNN im-
plementation generates numerous regions (dubbed candidate regions) in order to
produce the appropriate localizations within an image [10]. However with this in
mind these candidate regions need to be processed and subsequently refined, in
order to generate accurate localizations. To remedy these shortcomings, a model
that can both classify object proposals as well as refine localizations, is constructed.
This CNN model is a version of the RCNN with the ultimate goal of accurately de-
tecting objects in a timely fashion and as such it is dubbed the Fast Region-based
Convolutional Network method (Fast RCNN) [10].

3

A notable drawback of the Fast RCNN as well as the RCNN is that these im-
plementations use a selective search algorithm in order to generate their candi-
date/proposed regions [11]. In light of this, these networks are negatively impacted
at test time and as such in order to address such an issue, the Faster Region-based
Convolutional Network (Faster RCNN) was developed [11]. The Faster RCNN is
ultimately a culmination of two different modules (the Region Proposal Network
(RPN) as well as an object detector network, the Fast RCNN) being integrated into
one unified detection model. In order to improve upon performance at test time the
Faster RCNN utilizes the RPN in such a manner so as to share its’ convolutional lay-
ers with the Fast RCNN. This ultimately leads to an improvement in performance
at test time since the computational cost for computing proposals will be marginal
[11].

The aforementioned RCNN networks (namely the RCNN, Fast RCNN, Faster RCNN)
are considered to be multi-pipeline implementations. As such they are considered
to be two stage object detectors as they first generate candidate regions and then
they subsequently classify/refine the location of the predictions that they make [12].
In order to subsequently improve the shortcomings and overall performance of two
stage detectors, single stage detectors are ultimately constructed [12].

The first single stage detector to consider would be the You Only Look Once (YOLO)
object detector, which is trained through the use of full images [12]. With this in
mind YOLO is characterised as being extremely fast in comparison to the afore-
mentioned two stage detectors. In light of its fast detection YOLO also outperforms
other real time systems in terms of accuracy. YOLO is able to achieve this through
the use of a single system that frames object detection as a regression problem [12].

Another single stage detector that ought to be considered would be the Single Shot
Multi-detector Box (SSD). The SSD is able to perform both faster and more accu-
rately than YOLO and the aforementioned two stage detectors [13]. This is achieved
through the use of different scales that are generated from feature maps of different
scales, where the predictions will be explicitly separated in regards to their aspect
ratio [13]. Furthermore the implementation of design features aided simple end-
to-end training which consequently resulted in a high accuracy on images while
also improving the trade-off between speed and accuracy, which usually hinders

4

performance of object detectors [13].

Taking into account that there is also a considerable amount of work being done on
remotely sensed images and how well these detectors perform on them [14], one
can ultimately see the fundamental bedrock that has been laid out for this field,
with regard to the extensive literature that is available. Object detection, as a result,
is an expansive field that is a constant state of change and improvement.

1.2 Research Question (or Problem Statement)

1.2.1 Research Area

The research area of concern with regard to this investigation would be image clas-
sification (broadly speaking) and object detection (to be more specific). As previ-
ously highlighted, object detection involves the use of machines in order to identify
objects within images. With this in mind there are various algorithms and method-
ologies that can bring this into fruition [1]. The significance of this type research is
that it has so many broad implications that could be implemented in a wide array of
scenarios and contexts (the list is endless). An example of this being that artificial
intelligence and machine learning algorithms are being used for self driving cars
[15], medical practices to detect physiological ailments or abnormalities [16].

1.2.2 Research Problem

This study seeks to investigate the differences in performance for four object detec-
tors across five different datasets. These object detectors are RCNN, Faster RCNN,
YOLO and SSD. That is, this study will ultimately compare the differences in perfor-
mance between single stage and two stage detectors. With regard to performance,
there are two main factors that are of concern, and that would be the test time per-
formance of each image classifier as well as their accuracy.

Research into how well object detectors perform on remotely sensed datasets, is
also of keen interest, as the various methodologies would be required to accurately
and quickly find small objects/targets within complex backgrounds, in order to see
how well the given object detectors perform on these remotely sensed images.

5

1.2.3 Research Aims and Objectives

The aim of this investigation is to compare four image classifiers on how they per-
form with regard to object detection across five image datasets. As such the main
objective would be comparing and contrasting the performance of single stage ob-
ject detectors with two stage object detectors across various datasets. The single
stage object detectors would be YOLO and SSD, while the two stage object detector
would be RCNN and Faster RCNN.

In order to meet the aforementioned aims of this investigation, the following objec-
tives will need to be met:

• To collect five different image datasets.

– The first dataset that will be collected and used, would be the PASCAL
VOC dataset [17], which has been used extensively for research investi-
gations related to image classification as well as object detection.

– The second dataset that will be collected and used, would be Udacity self
driving car dataset [18], which is comprised of different objects that are
typically found on the road.

– The third and fourth datasets that will be collected and used, would
be the Eastern North American 24 dataset [19] as well as the Snapshot
Serengeti dataset [20]. These two datasets consist of images involving
different species of animals within their respective regions.

– The fifth dataset that will be collected and used, would be the Large-scale
Dataset for Object Detection in Aerial Images [21], which is the dataset
that is comprised of remotely sensed images.

• To build and implement the relevant methodology for each of the object de-
tectors.

• To compare the results and performance of each of the image classifiers across
the five datasets, one of which is a remotely sensed dataset.

6

• To interpret and make the necessary inferences based on those results, that is
the test time performance as well as the accuracy of the object detectors will
be scrutinized.

•

1.3 Limitations of this research investigation

There are several limitations and issues to consider for this research investigation.
The two main issues are time constraints and the availability of datasets.

With regard to time constraints, computational power is a significant factor to con-
sider. Algorithms are often implemented using powerful machines which would
not be available when practically conducting this investigation. This will inevitably
affect the results that would be generated. Datasets are often riddled with missing
information, be it both annotations or images and as such those chosen to be used
will need to be considered carefully.

7

Chapter 2

Literature Review

This section will focus on the literature that has already explored this given research
area.

2.1 Regions with Convolutional Neural Network(RCNN)

RCNNs’ were first introduced by Girshick et al. [5]. Within this paper the authors
sought to answer "To what extent do the CNN classification results on ImageNet
generalize to object detection results on the PASCAL VOC Challenge?" [5].

It follows that this paper shows (the first one to do so) that it is possible to bridge/unify
the fundamental aspects of image classification and objection detection by showing
that a CNN has the ability to perform substantially higher with regard to object de-
tection on the PASCAL VOC in comparison to models premised on simpler HOG-
like features [5]. In order to achieve this the authors tackled two primary problems:

1. The localization of objects within images through the employed use of deep
learning models [5].

2. The training of, what one would consider to be a high capacity model, while
only using a relatively small amount of labelled data for detection [5].

One particular issue that the authors noted is that unlike image classification, object
detection may require the localization of many objects within an image. The authors
highlighted that in the past two approaches have been proposed and used. The first

8

approach frames localization as a regression problem. The authors touch upon the
fact that this approach, concurrent with theirs, does not perform well [5].

The second approach would be to make use of a sliding window detector. It needs
to be noted that CNN’s have made use of this particular approach for about two
decades where it has been utilized on constrained object categories [5]. Constrained
object categories would include objects like pedestrians and faces [5]. CNNs require
that high spatial resolution is maintained and as such in order to meet that require-
ment, the CNNs only consist of two convolutional and pooling layers [5]. It is made
clear that upon conducting this investigation, the authors considered utilizing the
sliding-window approach [5]. With this in mind, it needs to be noted that there are
challenges that are coupled with such a framework. The main challenge with this
framework is that units high up within the network (which consists of five convo-
lutional layers), will consist of considerably large receptive fields (that is 195× 195
pixels) and strides (that is 32× 32 pixels), within the input image. Subsequently it
follows that the utilization of the sliding-window paradigm with regard to making
precise localizations, will subsequently lead to an open technical challenge [5].

The CNN localization problem is solved through the use of the “recognition us-
ing regions” paradigm [5]. The given methodology results in the the production of
approximately 2000 class independent regional proposals for the given input im-
age and thus it also follows that the given CNN will subsequently extract (from
each region) a feature vector of fixed length [5]. Subsequently it follows that a class
specific linear Support Vector Machine (SVM) is used to classify every proposed
region [5]. In order to calculate the necessary fixed size CNN input from each re-
gional proposal, irrespective of the region’s shape, a simple technique called the
affine image warping, is used [5]. It is necessary to note, that the authors name this
system which combines region proposals with CNNs the method RCNN: Regions
with CNN features [5].

2.1.1 The Architecture of the Model

In order to generate the necessary regional proposals the authors use a selective
search algorithm to do so. This algorithm is employed in order to have a controlled

9

basis of comparison with work that was done prior to their particular body of work
[5].

Moving onto feature extraction, the authors extract a 4096 dimensional feature vec-
tor from every proposed region through the use of a CNN (a Caffe [22] implemen-
tation). This particular implementation and its architecture details are described
quite thoroughly by Krizhevsky, Sutskever, and Hinton [8], as the authors them-
selves note. Through this implementation features were computed through the use
of forward propagating, a mean subtracted 227× 227 RGB image, through five con-
volutional layers as well as two fully connected layers [5].

It is worth noting that the image data (within a particular region) needs to be con-
verted into a format that is compatible with the CNN, as its framework requires
inputs of a fixed 227 pixel size [5]. This is done so that computations for the re-
gion proposals can be executed [5]. As such it is noted that since there are many
possible transformations with regard to the arbitrary shaped regions, the simplest
regions are selected. This selection takes place despite the size/aspect ratio of the
candidate regions. In addition to this the entire area within a tight bounding box
are warped to the prescribed size, furthermore, before this warping is conducted
the tight bounding box is dilated so that the warped size will be equal to p pixels
of warped image context around the original box (p = 16 was used by the authors)
[5].

2.1.2 Test Time Deduction for RCNN

Upon running the given implementation during the testing phase of the model, the
selective search algorithm was run on a given set of images whereby 2000 regional
proposals were extracted [5]. In order for the model to compute the necessary fea-
tures, each proposal is subsequently warped and then subject to forward propaga-
tion through the CNN. Subsequently it follows that an SVM is employed to score
each extracted feature vector for every relevant category. It needs to be noted that
the SVM trained for that class is used to generate that particular score [5]. A greedy
non-maximum suppression was then applied (for each class independently) in or-
der to select candidate regions based on their intersection over union (IoU) overlap
with respect to the scored regions in an image [5]. As such regions with a higher

10

score than the given threshold would be selected and those with a lower score than
the threshold would be rejected [5].

2.1.3 Run-time Analysis for RCNN

It is necessary to note that there are two elements which make object detection bet-
ter and by extension more efficient. The first being that across all parameters, all
CNN parameters will be shared. Secondly, the CNN will compute feature vectors
that have a low dimensionality. Other approaches and systems (such as the UVA
system [23]) have feature vectors of a greater dimensionality [5]. The subsequent
result of these two features,will be that the time used to perform the necessary com-
putations for the relevant region proposals as well as their given features, will be
amortized over all classes [5]. It is worth noting that only the category specific com-
putations will be dot products between the features, SVM weights as well as the
non-maximum suppression [5]. As such when practicalities are kept in mind, all
dot products for a given image, will subsequently be batched into a single matrix
product [5]. As such the feature matrix is usually considered to be 2000× 4096 and
the SVM weight matrices 4096 × N, where N is considered to be the number of
categories [5].

As a result the RCNN has the ability to perform matrix multiplication under ten
seconds despite there being 100K classes and this is due to the fact that RCNN’s
are able to scale to thousands of object classes without the use of approximate tech-
niques [5]. Several efficiencies for RCNN are highlighted when compared to other
bodies of work. Most notably when compared to the UVA system [23] which has
high dimensional features, the UVA would require 134 gigabytes of memory for
100k linear predictors whereas the RCNN would require 1.5 gigabytes thanks to its
low dimensional features. In addition to this, it is highlighted that scalable detec-
tion systems which make use of DPMs and hashing, report a mean average preci-
sion of 16% on VOC 2007 [17] that is coupled with a run time of approximately 300
seconds where as the RCNN according has a run time of approximately one minute
and a mean average precision of 59% [5].

11

Supervised pre-Training

Supervised pre-training is employed when implementing a RCNN. The authors
made use of the ILSVRC 2012 dataset [24] in conjunction with image level annota-
tion in order to discriminatively pre-train their CNN. The pre-training of the model
that takes places is performed by the Caffe CNN library [22], [5].

Domain Fine Tuning of the RCNN

In order for the adaptation for the CNN to take place, the stochastic gradient(SGD)
training of the CNN parameters, utilized the warped region proposals [5]. The au-
thors [5], largely used an unchanged CNN architecture despite the fact that they re-
placed the CNN’s ImageNet specific 1000-way classification layer with a randomly
initialized (N + 1)-way classification layer [5].

With regard to the two datasets that the authors use, the PASCAL VOC dataset [17]
has N = 20, while ILSVRC 2013 [24] has N = 200. With respect to the region pro-
posals, the authors considered regions with an IoU overlap of ≥ 0.5 as having a
positive ground truth box for that box’s class otherwise they are considered to be
negative [5]. The authors [5], implemented a training rate of of 0.001 for the SGD so
as to allow for fine-tuning in order to make progress that would not hinder initial-
ization. Within each SGD iteration, 32 positive windows were sampled (across all
classes) and in addition to this 96 background windows, so that mini batch of size
128 would be constructed. Sampling in favour of positive windows was biased due
to their extreme rarity in comparison to backgrounds [5].

Object Category Classifiers of the RCNN.

There are a few drawbacks that come with region proposals. One being how to deal
with regions that partially overlap objects. By adjusting the IoU threshold from 0.5
to 0.3 one is able to deal with such a drawback. Girshick et al. [5], illustrates this
when conducting their investigation and as such, is able to illustrate that they were
able to increase the models performance (mean Average Precision (mAP)) by five
points. It subsequently follows that when features are extracted and the application
of training labels is implemented, then the optimization of one linear SVM per class
takes place. Setting the IoU to zero would decrease the mAP by four points rather

12

than improving it [5].

The figure presented below, figure 2.1, denotes the functionality of the RCNN as
described in the aforementioned text.

FIGURE 2.1: This figure illustrates the functionality of the RCNN [5].

2.2 Faster RCNN

It is necessary to highlight that RCNNs are executed through the use of CPUs and
that the authors, Ren et al. [11], make note of the fact that implementing the region
proposals on the GPU will accelerate the computations being made in this regard
[11].

In order to overcome some of the drawbacks presented by the RCNN and the sub-
sequent Fast RCNN’s, Ren et al. [11] created a network (Faster RCNN) that would
address those disadvantages. This improvised network consists of two modules;
one being a fully convolutional neural network which generates the proposition of
regions (Regional Proposal Network) and a second module (Fast RCNN detector)
which then utilises proposed regions [11]. As such this network is considered to be
a singular consolidated object detector network. Hence in a rather simple terms the
Regional Proposal Network (RPN) tells the Fast RCNN what is of particular interest
[11].

13

One needs to note that an RPN, as its input, takes an image and then subsequently
gives as an output, a collection of object proposals which are rectangular in nature,
and as such every proposed object will subsequently have a corresponding score
(objectness score) that indicates how confident the model is at identifying said ob-
jects [11]. The overall objective was to essentially have the computation shared
with a Fast RCNN object detection network, as they modelled this process with a
full CNN and as such the underlying assumption that was made is that the RPN
and the Fast RCNN were sharing a common list of convolutional layers [11].

As noted before the Faster RCNN is comprised of two modules (which are the RPN
as well as the Fast RCNN). As such the Faster RCNN is considered to be a uni-
fied model where the RPN proposes regions of interest and subsequently tells the
Fast RCNN where to to look and which regions to use in order to perform object
detection [11].

2.2.1 The Region Proposal Network

The primary responsibility of the RPN network is for it to receive and take in an
entire image as an input and as a result it gives as an output a set of rectangular
object proposals which are all coupled with a probability score (objectness score)
that reflects whether an object lies within the given proposal [11]. It follows that
the RPN also has the added feature and responsibility of sharing its subsequent
computations with the Fast RCNN since both networks use a common list of con-
volutional layers. In order for the RPN to generate the necessary object proposals
the final shared convolutional layer subsequently slides, what is considered, to be
a small network over the convolutional feature map output [11]. A n × n spatial
map is subsequently employed and used as an input for the convolutional feature
map [11]. A lowered dimensionality is required for the given spatial window as the
generated feature map (of lowered dimensionality) will be passed into two related
fully connected layers, which would be a box classification and regression layer
[11]. The framework of these networks is subsequently implemented with an n× n
convolutional layer which is subsequently accompanied by 1× 1 box classification
and regression layers [11].

14

A basic representation of the Faster RCNN model is given by figure 2.2.

FIGURE 2.2: The figure illustrates a basic representation of the Faster
RCNN implementation [11].

Generating Anchors

The number of possible proposals at the given location of each sliding window (de-
noted by k) will subsequently be predicted for the given number of region proposals
[11]. As such it is necessary to note that the k proposals are parametrized in relation

15

to k reference boxes and as such they are referred to as anchors [11]. In addition
to this the anchors are centred at the relevant sliding windows whereby they are
associated with the relevant aspect and scale ratios [11].

Translation-Invariant

The translation invariant property is considered to be a very important property. To
elaborate further on this, if an object within an image is translated then it follows
that the proposal should be translated as well and as such predictions for each ob-
ject location should be feasible and performed by the same function. Another key
feature of this property is that it results in the reduction of size for the model [11].
When comparing the given Faster RCNN approach to a multi-box approach in or-
der to illustrate this phenomenon, the multi-box approach makes use of k-means
in order to generate 800 anchors which do not have the given property, i.e they are
not translation invariant [11]. Furthermore it needs to be noted that the multi-box
model has a (4+ 1)× 800 dimensional fully connected output layer, whereas Faster
RCNN model has a (4 + 2)× 9 dimensional convolutional output layer [11]. This
clearly illustrates that the model Ren et al. [11] developed has an output layer of
2.8 × 104 parameters, in comparison to the multi-box’s output layer of 6.1 × 106
parameters. This clearly shows that the output layer has substantially fewer pa-
rameters when compared to the multi-box [11].

Multi-Scale Anchors

Subsequently it follows that the generation of multiple scale predictions is em-
ployed and used to address issues surrounding the use of different scales as well
as aspect ratios [11]. There are several methodologies and implementations that
can be used to address this particular shortcoming. The first methodology (which
is considered to be time consuming) is dubbed image or feature pyramids which
involves the resizing of images at different scales so that the computations of the
relevant feature includes the resized images at different scales[11]. The second
methodology employs the use of sliding windows which are equipped with differ-
ent aspect/scale ratios and are subsequently utilized on the relevant feature maps.
The second methodology is employed to address the aspect surrounding multiple

16

scales. Then it subsequently follows that it can be considered and dubbed a “pyra-
mid of filters”. Both approaches are usually implemented jointly in order to be more
cost efficient [11]. It is necessary to highlight that the Faster RCNN is a methodol-
ogy which utilizes regression and classification bounding boxes in relation to the
given anchor boxes which are composed of a single scale and as such they result in
the use of a uniformly sized filter [11]. As such in order to resolve this dilemma,
a multi-scale paradigm derived from anchors is applied and as such convolutional
features are subsequently computed and applied at a single scale for a given image
[11].The framework and overall design of the multi-scale anchors are considered to
be a key component with regard to how features are shared since they do not carry
any extra costs for addressing scales [11].

Loss Function for Training RPNs

Each anchor is allocated two possible class labels (object/not an object). An anchor
has to meet any one of two conditions in order to be allocated a positive label [11]:

• An anchor must have the greatest IoU overlap with a given ground truth box
[11].

• An anchor must have an IoU overlap greater than 0.7 with any of the ground
truth boxes [11].

Keeping the aforementioned conditions in mind, it is necessary to note that a single
ground truth box has the ability to allocate positive labels to several anchors [11].
Furthermore the second condition is usually adequate enough in determining posi-
tive samples and the first condition will only be applicable in the rare event that the
second condition does not find a positive sample [11]. Anchors are given negative
labels if they have an IoU overlap which is less than 0.3 for all ground truth boxes
[11]. In addition to this anchors that have neither a positive or negative label make
no substantive contribution when training the model. As such the aforementioned
conditions play a substantive role in minimising the objective function following
the multi task loss in the Fast RCNN [11]. It follows that the given image will have

17

the following loss function [11]:

L({pi} , {ti}) =
1

Ncls
∑

i
Lcls(pi, p*

i) + λ
1

Nreg
∑

i
p*

i Lreg(ti, t*
i) (2.1)

It is necessary to define and elaborate further on the variables used in the loss func-
tion and as such it follows that [11]:

• i denotes the index within a mini batch and as such pi denotes the predicted
probability of whether or not, anchor i is an object [11].

• p*
i denotes the ground truth label and as such , an anchor is positive if p*

i = 1
and negative if p*

i = 0 [11].

• The four parametrized coordinates of the predicted bounding box are denoted
by the vector ti [11].

• Subsequently t*
i denotes the ground-truth box associated with a positive an-

chor [11].

• Lcls denotes the classification loss which is a over two classes (object/not an
object) [11].

• Lreg(ti, t*
i) = R((ti − t*

i)) is employed for use for the regression loss, and as
such it follows that, R is the robust loss function (smooth L1) [11].

• p*
i Lreg denotes the fact that the regression loss is either enabled for (p*

i = 1)
otherwise it is not enabled for negative anchors (p*

i = 0) [11].

• The classification layer consists of outputs {pi} whereas the regression layers
consists of {ti} [11].

• {pi} and {ti} are weighted by the balancing parameter λ [11].

• It is worth noting that Ncls and Nreg also normalize {pi} and {ti} [11].

According to the implementation presented in [11] the mini-batch size as well as
the number of anchor locations are both respectively employed and used to nor-
malize the classification and regression terms respectively in equation 2.1 [11]. It
is prescribed that λ = 10 so that the classification/regression terms are equally

18

weighted (approximately so). It is worth noting that the results of the experiments
conducted in [11] are insensitive to the various values of λ, furthermore it is subse-
quently highlighted that the that the normalization of the classification/regression
terms is not necessary and it is advised that it should (or could) be simplified. The
parametrizations of the 4 coordinates (following the paper [5]) were adapted for
bounding box regressions [11]:

tx = (x−xa)
wa

, ty = (y−ya)
ha

tw = log(w
wa
), th = log(h

ha
),

t*
x = (x*−xa)

wa
, t*

y = (y*−ya)
ha

,

t*
w = log(w*

wa
), t*

h = log(h*

ha
),

(2.2)

It is necessary to note that the box’s centre coordinates height as well as its width
are denoted by x, y, w, h. The predicted box, anchor box as well the ground-truth
box are denoted by x, xa and x* [11]. This is generally considered to be a bounding-
box regression from an anchor box to a nearby ground-truth box [11]. The authors
(Ren et al. [11]) used a different method in order to achieve bounding regression
which is done by RoI (Regions of Interest) based methods ([5] and [10]) which were
mentioned in the previous chapters. Subsequently it follows that in this given for-
mulation the features used for regression will have the same spatial size (3× 3) on
the feature maps [11].

Training Hhase for the RPN

Training the RPN would require the use of end-to-end backpropagation as well
as the stochastic gradient descent (SGD) [11]. The RPN model is further trained
through the use of a sampling methodology that is centred around the image, this
is a technique that was also employed for the Fast RCNN [10]. It is worth noting
that an image generates a given number of mini batches which are comprised of
several negative as well as positive anchor examples [11]. As such the optimization
for the given loss functions and all their relevant anchors is a possibility, despite the
fact that a bias will exist for the dominant negative anchor examples [11]. With this
in mind the arbitrary sampling of 256 anchors within an image is employed so that
the computations of the loss function for a given mini-batch are generated in order

19

to address this bias. As such a ratio of 1 : 1 will subsequently come into fruition for
the sampled negative and positive anchor examples [11].

2.2.2 Exchanging Features between the Fast RCNN as well as the

RCNN

This section will now deal with what needs to be considered with regards to how
the Fast RCNN will utilize the aforementioned proposals. Since the RPN and Fast
RCNN are trained separately, as such their convolutions will be subjected to differ-
ent training regiments [11]. As a result, out of necessity, rather than producing two
independent learning networks, a technique is developed that would allow for the
sharing of convolutional layers between the networks. There are three solutions in
which the training networks have their features shared [11].

• The first is called Alternative training [11].

– Alternative training entails initially training the RPN, then employing
those generated proposals when subsequently training the RPN [11].

– As a result a the network tuned by the Fast RCNN will subsequently be
used to initialize the RPN and as such this process is reiterative [11].

– The aforementioned solution is utilized by the authors (Ren et al. [11])
when conducting their experiments [11].

• The second solution is called the Approximate joint training and it entails
merging the RPN and Fast RCNN networks during training [11].

– Region proposals are generated for every SGD iteration that takes places
during a forward pass [11].

– When training the Fast RCNN detector, the aforementioned region pro-
posals are subjected to the the same conditions as the fixed, precomputed
proposals [11].

– The computed losses for both networks (RPN/Fast RCNN) are combined
despite a backward propagation occurring as per the norm [11].

20

– The given solution is considered easy to implement but it is worth not-
ing that it does not take into account certain network responses. More
specifically this would be the derivatives of the proposal boxes coordi-
nates [11].

– Despite the fact the Approximate joint training yields similar results to
the Alternative training it generates quicker run time speeds [11].

• The last solution would be the Non-approximate joint training [11].

– The RPN, predicts the necessary bounding boxes and as such they are
also the functions of the input [11].

4-Step Alternating Training.

The adoption of a step training scheme results in alternating optimization because
the model has the ability to learn features [11]:

• Step 1: Training for the RPN takes place as previously mentioned before. Sub-
sequently it follows that an ImageNet pre-trained model will be used to ini-
tialize the network and as such it subsequently follows that the network is
subjected to fine tuning for the region proposal task that takes place end-to-
end [11].

• Step 2: The proposals generated in step 1 will be employed by the Fast RCNN
so that a different network is subsequently trained [11].

• Step 3: The detector network is initialized first so that the RPN is subsequently
trained accordingly, which will result in fine tuning the layers belonging to the
RPN as well as fixing the shared convolutional layers [11].

– Step 3 subsequently results in the two networks sharing convolutional
layers [11].

• Step 4: Two processes are undertaken during this step in order to generate a
singular network [11].

– It is prescribed that the shared convolutional layers are kept to be uni-
form [11].

21

– It is also prescribed that the layers, belonging only to the Fast RCNN, are
fine tuned [11].

Implementation Details

The RPN and Fast RCNN networks are implemented and executed on images com-
prised of a singular scale [11]. The shorter side of the images are rescaled to s = 600
pixels. It is worth noting that the multi-scale feature extraction has a likely chance
of increasing the models’ accuracy however the added benefit of this does not sig-
nificantly outweigh the reduction run-times for the model [11].

It is worth noting that the runtime can be reduced or improved upon if the relevant
models do not utilize image pyramids/filter pyramids when making predictions
for regions of multiple scales [11]. As such it follows that the given implementation
has the ability to make predictions which are greater than the underlying amenable
field. Upon the commencement of training all cross-boundary anchors are not con-
sidered in order to prevent their contribution to the given loss functions [11]. It is
worth noting that approximately 20000 anchors can be generated from an image
with a size of 1000× 600. When training subsequently begins, the number of an-
chors is further reduced to roughly 6000 per image if the cross-boundary anchors
are not considered [11]. With this in mind, it is prescribed that the cross-boundary
anchors are ignored as they introduce substantially large and error terms in the ob-
jective that would be difficult to correct. This would inevitably lead to the training
scheme bing unable to converge [11].

The testing phase of the implementation will require that a fully convolutional RPN
is applied to an entire image [11]. As such it subsequently follows that the cross
boundary proposal boxes are generated and then attached to the image boundary
[11]. It is necessary to highlight that in an effort to reduce the overlapping of RPN
proposals (that is their redundancy), a non-maximum suppression strategy is es-
poused and implemented on the proposed regions in relation to their classification
scores [11]. It follows that after NMS the use of the top-N ranked proposal regions
for detection, is quite necessary. As as result after training the Fast RCNN using
2000 RPN proposals, it follows that the different numbers will be evaluated at test
time [11].

22

2.3 YOLO

The YOLO implementation is supposed to improve upon the inefficiencies of two
stage detectors, this is in part due to the fact that YOLO makes about half the back-
ground errors as your Fast Region based CNNs [12]. YOLO is unique in that it
brings together the separate components of object detection and consolidates them
into a singular network, which results in a network where that uses the features
of an entire image so that it is able to predict each bounding box. YOLO is con-
sidered to be a unified model which can simultaneously make predictions for each
bounding box as well the relevant class probabilities [12]. An exemplification of the

The two main benefits that YOLO has is that it considered to be substantially faster
and more accurate than other real time systems [12]. Furthermore YOLO has the
ability to learn generalizable denotations of objects, which subsequently results in
a model that has a better performance in comparison to other detection models like
RCNN when it comes to natural images by rather large margins [12]. It should also
be noted that YOLO is less likely to deteriorate and stop functioning when it is used
with different and unexpected inputs as well as new domains due to the fact that it
is highly generalizable [12].

Despite the obvious advantages of YOLO there are still some disadvantages to this
method, namely:

1. YOLO cannot identify some objects accurately, more so small objects [12].

2. Upon analysis conducted by Redmon and Farhadi [1], it is clear that YOLO
generates significantly more localization errors than the Fast RCNN [1].

3. Lastly it should be noted that it was found that YOLO has a low recall score
when compared to the different RCNN methodologies [1].

The overall design of YOLO is meant to achieve high levels of accuracy while si-
multaneously achieving real time speeds through the use of end-to-end training.
The YOLO implementation will subsequently result in an input image being frac-
tionated into a S× S grid [12]. Hence the responsibility of detecting the location of
the centre of the object is held by each grid cell. As a result it follows that the pre-
dictions for the confidence scores as well as B bounding boxes are made for each

23

grid cell. These confidence scores reflect whether or not the model was able to accu-
rately locate an object within the relevant bounding box. Thus the confidence score
can subsequently be defined as Pr(object)*IOUtruth

pred [12]. Subsequently it follows
that if no object lies within the given bounding box then a confidence score of 0
will be given and if the opposite is true than it would be desirable if the confidence
score as well as the IoU overlap were equal [12]. It is necessary to state that every
bounding box is comprised of five predictions, which are the (x, y) centre coordi-
nates relative to the bounds of the grid cell, the height(h) and width(w), and finally
the confidence score [12]. Furthermore the number of B bounding boxes is irrele-
vant as there will only be one set of class probabilities that will be predicted per
grid cell [12]. It follows that at test time, the product between the probabilities as
well as the individual box confidence predictions will be implemented as follows
[12] :

Pr(Classi|Object)*Pr(Object)*IOUtruth
pred = Pr(Classi) ∗ IOUtruth

pred (2.3)

An exemplification and general outline of the underlying process that takes in place
in relation to the object detection for YOLO is given by figure 2.3 presented below.

24

FIGURE 2.3: The figure illustrates the implementation of the YOLO
methodology at a basic level [12].

The aforementioned product inevitably leads to the generation of confidence scores
for each box (which are class specific). In addition to this, these particular scores are
subsequently used to encode the probabilities of how accurately the predicted boxes
fit with the objects and whether the correct class lies within the given bounding box
[12]. The height and width are also predicted in relation to the whole image. C
conditional class probabilities Pr(Classi|Object) will be predicted for each grid cell
[12]. Furthermore these predictions are encoded as an S× S× (B*5+C) tensor, and
as a result the grid cell which contains the particular object subsequently conditions
these probabilities [12].

It is necessary to note that Redmon and Farhadi [1] present novel concepts to help
ameliorate the accuracy of YOLO which subsequently results in a YOLO implemen-
tation which would be more accurate but still just as fast. It is subsequently dubbed
YOLOv2 [1]. Batch normalization is introduced in order to remove the various im-
plementations of regularization while also improving convergence [1]. A marginal
increase in accuracy of YOLO is therefore noted when all of the convolutional layers

25

are appended with batch normalization. Batch normalization is also noted in aid-
ing the regularization of the model and in addition to this drop-out can be removed
from the model without over-fitting [1].

It needs to be noted that a significant portion of image classifiers are pre-trained on
ImageNet where input images less than 256× 256 are used and operated on. The
model as implemented by Redmon et al. [12] would use a resolution of 224× 224
to train a classification network. As such the model would subsequently increase
the resolution to 448 when detection is being conducted. This subsequently results
in a network that alternates between learning to detect objects as it simultaneously
adjusts to the latest input resolution [1]. YOLOv2 is different in this regard as it is
initially fine tuned at the full 448× 448 resolution for the first 10 epochs on Ima-
geNet. This subsequently results in a network where it is given the necessary time
to adjust its filters in order for it to work better on high resolution outputs. As such
the resulting network on detection is fine tuned further in order to have a resolution
classification network whereby an mAP increase of approximately 4% is achieved
[1].

As noted earlier YOLO is able to make predictions of the coordinates of bounding
boxes directly through the use of fully connected layers on top of the convolutional
feature extractor [1]. With this in mind the YOLOv2 will have the fully connected
layers removed and the subsequent result will be that, the predictions of the bound-
ing boxes will be made through the use of anchor boxes [1]. Subsequently it follows
that the elimination of one pooling layer results in a higher resolution from the out-
put in regards to the networks convolutional layers. What subsequently follows is
that the network is shrunk in order to work on the 416 input images rather than
448× 448 [1]. The main reason for undertaking this process would be to obtain a
feature map with an odd number of locations and as such this would inevitably
result in a single centre cell. A notable positive of this is that objects (more so large
objects) will a higher tendency of being placed within the centre of an image, so
rather than using four locations to predict objects, one location in the centre of an
image can be used when making all the relevant predictions [1].

The downsampling of the image reduces an input image by a factor of 32 and

26

as such an input image of 416 will result in a feature map of 13× 13 (downsam-
pling is conducted by YOLO’s convolutional layers) [1]. In relation to the anchor
boxes, it follows that in order to generate predictions for the anchor boxes, a dis-
sociation between the spatial location and the class prediction paradigm has to oc-
cur [1]. It is worth noting that the predicted objects are able to generate the rel-
evant predictions for the IoU overlap score. Redmon and Farhadi [1] note that
there will be a small decrease in the accuracy of YOLOv2 due to the use of an-
chor boxes. With this in mind however YOLO is only able to predict 98 boxes
per image whereas YOLOv2, due to the utilization anchor boxes, has the ability
to predict more than 1000 boxes for each image [1]. There are notable differences
when YOLOv2 is implemented with/without anchor boxes. Most notably there is
a substantial improvement in the recall score when YOLOv2 is implemented with
anchors (recall score of 88%) in comparison to when YOLOv2 is not implemented
with anchors is not (recall score of 81%) [1]. This inevitably means that despite a
small decrease in the mAP the model still has room for improvement due to the
increase in recall [1].

There are two main issues that come along with anchor boxes. The first issue is that
box dimension are "hand picked" which results in a network that can learn to adjust
accordingly [1]. It follows that when these box dimensions are chosen in a more
efficient manner, then the network will have better box dimensions to start with
and as such the network will be able to learn far much more easily to predict good
detections [1]. In order to choose the necessary box dimensions the employment of
the k-means clustering algorithm occurs, thus the bounding boxes for the training
datasets’, will accordingly locate the necessary anchors one would be looking for
[1]. It is necessary to note that the conventional k-means algorithm (which employs
the use of euclidean distance) generates more errors of larger bounding boxes than
it does for smaller bounding boxes [1]. This is in contrast to what is meant to be
achieved, which are good IoU scores that would not depend on the size of the box
[1]. As a result a distance metric of:

d(box, centroid) = 1− IoU(box, centroid) (2.4)

will be used [1]. K-means is executed for the given number of values of k and
subsequently the average IoU will be plotted against the closest centroid so that an

27

appropriate k value can be prescribed [1].

The second issue that come into play with anchor boxes, would be the model in-
stability which is more of an issue during early iterations [1]. Model instability is
noted as being mostly caused by making predictions from the (x, y) locations of the
box. It needs to be highlighted that within RPNs, the network predicts the values
tx as well as ty and calculates the centre co-ordinates (x, y) as [1]:

x = (tx*wa)− xa

y = (ty*ha)− ya

To illustrate this, a prediction of tx = 1 would result in shifting the relevant box
to the right by the width of the anchor box, furthermore a predication of tx = −1
would subsequently result in shifting the box to the left by the width of the anchor
box [1]. In addition to this, the arbitrary initialization of the network will result in
a considerable amount of time being needed to stabilize it, so that sensible offsets
are predicted accordingly [1]. In light of this, it would be better for the network to
make predictions of the location coordinates in relation to the location of the grid
cell rather than predicting offsets [1]. As such the a logistic regression can be used
to constrain the networks predictions in order for the bounds of the ground truths
to fall between 0 and 1 [1]. In the output feature map 5 bounding boxes will be
predicted by the network at each cell. As such the coordinates are predicted by
the network for each bounding box, tx, ty, tw, th, to [1]. It is worth noting that a cell
which is offset from the top left corner of the image by (cx, cy) and the bounding
box prior will have a width and height pw, ph, then the predictions corresponds to
[1].:

bx = σ(tx) + cx

by = σ(ty) + cy

bw = pw exp tw

bh = ph exp th

The location prediction functions to make the parametrization easier to learn as
well as making the network more stable [1]. As such a YOLO model that operates

28

with dimension clusters as well as with directly predicting the bounding box centre
location results in a 5% accuracy improvement compared to a version of the model
that only uses anchor boxes [1].

As stated earlier YOLOv2 uses a 13× 13 feature map to generate predictions that
would also accommodate large objects. With this in mind the YOLOv2 would ben-
efit from finer grained features being used for the localization of smaller objects.
The approach that is taken by Redmon and Farhadi [1] in this regard is that a pass-
through layer is added which brings in features from an earlier layer at a 26× 26
resolution [1]. It is worth noting that the function of this pass-through layer is to
concatenate high and low resolution features by placing adjacent features into dif-
ferent channels rather than in spatial locations [1]. As such, this inevitability results
in a 26× 26× 512 feature map turning into a 13× 13× 2048 feature map that can
be concatenated with the original features. Redmon and Farhadi [1], note a modest
improvement of 1% when running their detector on top of this expanded feature
map in order for it have access to fine grained features [1].

2.3.1 Training the model with inputs of multiple scales

The original methodological implementation of YOLO used an input resolution of
448× 448 and with the amendment of anchor boxes this is later revised to 416× 416
[1]. In contrast YOLOv2 is able to resize input resolutions "on the fly", due to it only
using convolutional and pooling layers as it is necessary for the model to be resilient
when the model runs images with various sizes, this aspect is subsequently trained
into the model [1]. As a result the network is set such that after every few iterations
the given implementation downsamples by a factor of 32 from the following multi-
ples of 32 : {320, 352, . . . , 608}, where the largest and tiniest samples are 608× 608
and 320 × 320 respectively [1]. The network is resized to those dimensions as a
consequence and the model is educated on how to best make predictions fro the
various input dimensions. In other words the network learns to make predictions
across various resolutions [1]. The authors, Redmon and Farhadi [1], note that at
more miniature sizes the network, YOLOv2, is able to run quicker, and as such a
trade-off comes into play between speed/accuracy [1]. In addition to this they note
that YOLOv2 is able to run as a "cheap" and fairly accurate object detector since at
an input resolution of 288× 288 it runs at more than 90 frames per second with a

29

mAP similar to the Fast RCNN [10], whereas at higher resolution of YOLOv2 is still
able to operate at real time speeds with a mAP of 78.6 [1].

YOLOv2 is trained through the use of a Darknet-19 framework coupled with the
SGD on a ImageNet 1000 dataset [24] Furthermore it needs to be noted that the
typical data augmentation strategies are also used during training, namely [1]:

• saturations as well as rotations [12],

• crops [12],

• exposure shifts [12],

• and hues [12].

As noted earlier, initially training on images at 224× 224, the network will be subse-
quently fine tuned to a larger size, 448. It is only necessary to fine tune the network
for 10 epochs and subsequently start with a learning rate of 10−3 [12].

It is prescribed that the sum-squared error be employed for use due to the fact that
it is considered to be rather simple to optimize. As such it is necessary to note that
the sum squared error does not line up with the overall objective of maximising the
average precision [12]. In addition to this, objects are not contained in a consider-
able amount of grid cells within every image. As a result the "confidence" scores
will push the cells towards zero, which results in the gradient from the cells (which
contain objects) being overpowered [12]. With this in mind the training that the
model undertakes may diverge during its initial/early phase as the possibility of
model instability is raised [12]. In order to address this issue it is prescribed that,
for boxes which do not contain objects, the loss is subjected to an increase as well
as a decrease for both the predicted bounding box coordinates and the predicted
confidence scores [12]. For this outcome to bear fruition it is further given that
λcoord = 5 and λnoobj = 5 [12]. As noted earlier the sum-squared errors will being
about equally weighted errors that are generated by miniature/large boxes [12]. In
addition to this the metric also reflects the fact that the large and small boxes do not
carry the same consequences as small deviations generated from large boxes tend
to carry "less weight" than those from smaller boxes [12]. In order to attend to this,
it is prescribed that predictions are made for the square roots of both the height and

30

width of the boxes rather than their actual height and width [12]. This prescription
will subsequently result in the YOLO implementation being able to generate more
accurate predictions per grid cell in relation to the multiple bounding boxes [12].

During the training phase of the given YOLO implementation it is required that any
one of the bounding box predictors is liable for each object. To further elaborate on
this, one predictor will be given the responsibility of generating predictions for a
given object based on whether or not the given predictor consists of the highest
IoU overlap [12]. This subsequently results in a specialization of the bounding box
predictors where the recall scores are subjected to a holistic improvement. This is
due to the fact that the each predictor will better suited in predicting their own
specialized sizes, aspect ratios and classes of objects [12]. The following multi-loss
function is subsequently optimized upon commencement for the training phase of
the given YOLO methodology [12]:

λcoord

S2

∑
i=0

B

∑
j=0

1
obj
ij

[(
xi − x̂i

)2
+
(
yi − ŷi

)2
]

+λcoord

S2

∑
i=0

B

∑
j=0

1
obj
ij

[(√
wi −

√
x̂i
)2

+

(
√

yi −
√

ŷi

)2]
+

S2

∑
i=0

B

∑
j=0

1
obj
ij
(
Ci − Ĉi

)2

+λnoobj

S2

∑
i=0

B

∑
j=0

1
noobj
ij

(
Ci − Ĉi

)2

+
S2

∑
i=0

B

∑
j=0

1
noobj
ij

(
Ci − Ĉi

)2

+
S2

∑
i=0

1
obj
i ∑

c∈classes

(
pi(c)− p̂i(c)

)2

(2.5)

it is necessary to note that 1
obj
i represents if an object resides in cell i and as such, it

represents whether or not the j-th bounding box predictor in cell i, is liable for that
prediction [12]. The penalization of a classification error occurs if an object, which
lies within the grid cell, is incorrectly classified [12].

31

It is worth highlighting that YOLO is considered to be a rather fast network in
regards to test time. This is due in part to the fact that it is a singular network
(as already stated) which would mean that only this singular network is required
for evaluation. Spatial diversity within the bounding box predictions is enforced
within the grid design. As a result it follows that it is quite apparent that the net-
work is only able to predict one box for each object as well as which particular grid
cell an objects falls into. It is also possible for large objects (or objects neighbouring
on the border of several cells) to be localized by multiple cells. In order to fix these
multiple detections it is prescribed that a non-maximal suppression be used [12].

In conclusion there are several limitations of YOLO that need to be highlighted and
discussed. To start things off, YOLO imposes rather strong spatial constraints on
bounding box predictions since each grid cell is able to only predict two boxes and
as a result will only have one class [12]. Subsequently it follows that this spatial con-
straint will limit the network in terms of the number of proximal object that it can
predict. As such the network will only be able to learn to predict bounding boxes
from data, hence it will inevitably struggle to generalize objects in contemporary
or rather unusual aspect ratios/configurations [12]. Therefore the network will use
rather coarse features in order to predict the bounding boxes due to the fact that its’
architecture will have multiple downsampling layers from the input layers [12]. To
end things off, the loss function (which approximates detection performance) that
is used to train the network, will subsequently end up treating the errors the same
in a small bounding box in comparison to a large bounding box [12]. It needs to be
noted that a small error within a large box is considered to be rather benign but a
small error in a small box will have a much greater effect on the IoU [12]. It needs
to emphasised that the primary cause of the aforementioned errors would be the
wrong localizations being made [12].

2.4 SSD

The authors, Liu et al. [13], note that the models that were presented earlier have
two main shortcomings. The first being that the RCNNs take a considerable amount
of time to operate and their quickest model (Faster RCNN) operates at 7 frames per

32

second while also producing accurate predictions [13]. YOLO on the other hand
operates at 45 frames per second but at the cost of accuracy [13].

It worth noting that the SSD model is meant to perform both efficiently (time-wise)
and accurately, thereby outperforming both YOLO and the aforementioned 2 stage
detectors [13].

SSD is a network framework that uses a single stage to detect objects (that is a
single stage detector) as such since this means that classification and localization
transpire when a single forward passes through the network. SSD also employs
the use of feature extractor network which are also present in the Faster RCNN
[13]. SSD also uses a bounding boxes regression that was developed by Szegedy,
Toshev, and Erhan [9], and as such the main purpose in that regard is that SSD has
no need for regional proposals since different bounding boxes are used then adjust
the bounding box for its prediction [13].

2.4.1 Model for the SSD

In order to build and implement the SSD, the use of a framework based on the
feed-forward CNN is employed in order for the SSD to be able to generate a fixed
sized set of bounding boxes as well as scores that would be necessary for detecting
the presence of different object classes within the relevant bounding boxes and as a
result, it follows that a non-maximum suppression step will also be utilized so that
the final detections can be generated [13].

The initial layers of the single stage multi-box detector architecture stem from a con-
ventional network architecture [13]. A supplementary framework is subsequently
appended to the network which will result in it generating detections with a num-
ber of key features [13].

The first of these key features necessary for detection, would be multi-scale feature
maps. This key feature consists of the addition of convolutional feature layers at the
end of the pruned base network [13]. The size of these given layers progressively
decreases and as such they facilitate the predicted detections at multiple scales [13].
It follows that the predicted detections that the convolutional model makes will not
be the same for each feature layer [13].

33

The second key feature is the convolutional predictor for detection. Through the
use of a set of convolutional filters, the addition of every feature layer will result in
the generation of a fixed set of detection predictions [13]. Therefore a feature layer
with the given size of m× n and p channels will result in a 3× 3× p small kernel
that generates the relevant score and the particular category, since this would be
the fundamental factor needed for the prediction parameters to make a prospective
detection [13]. For each m by n location it is prescribed that a kernel be applied
to each of the given locations so that an output value can be generated. It follows
that the measurement for every feature map location, for the offset values of the
bounding box, is subsequently taken in relation with the default boxes’ position
[13]. Lastly, the third and final key feature would be the aspect ratios as well as
the default boxes. It is necessary to note that at the peak of the model, the set
of default bounding boxes is related to each of the feature map cells for multiple
feature maps [13]. It follows that the default boxes will employ a convolutional
manner to arrange the feature maps. Thus the location for every box is subsequently
fixed in relation to its given/associated cell [13]. As such it follows that at each
feature map cell, offsets are predicted relative to the default box shapes within the
cell and the per class scores which indicate whether an object lies within each of
those boxes [13]. More specifically it follows that for each box out of k that lie
at a particular location, c class scores will be computed as well as the four offsets
relative to the original default box shape [13]. What this inevitably results in is a
total of (c + 4)kmn outputs for a m× n feature map [13].

2.4.2 Training for the SSD

When the training for SSD is undertaken, it is required that the ground truth in-
formation are allocated to specific outputs in the fixed set of detector outputs [13].
As such it subsequently follows that the loss function and backpropagation will be
applied end-to-end [13]. In addition to this the training of the SSD involves a set
of default boxes being chosen alongside the scales of detection, data augmentation
and hard negative mining [13].

The authors, Liu et al. [13], note that the training objective for the SSD stems from
the multi-box objective and as such it follows that it can be extended into handling
several object classes [13]. In addition to this, xp

ij = {1, 0} is defined as the indicator

34

for matching the i-th default box to the j-th ground truth box of category p [13]. As
such it will follow that ∑i xp

ij ≥ 1 for the aforementioned matching strategy [13].
As a result the entire objective loss function is composed of a weighted sum of the
localization loss as well as the confidence loss where N is defined as the number of
matched default boxes [13].

L(x, c, l, g) =
1
N
(Lcon f (x, c) + αLloc(x, l, g)) (2.6)

Subsequently if N = 0 then the loss will be equivalent to 0 [13]. The localization loss
will thus be a smooth L1 loss between the predicted box (1) as well as the ground
truth box(g) parameters [13]. In order to offset the centre (cx, cy) of the default
bounding box (d) and for its width (w) and height(h) , will be regressed [13].

Lloc(x, l, g) =
max

∑
i∈Pos

∑
m∈{cx,cy,w,h}

xk
ijsmoothL1(lm

i − ĝm
j) (2.7)

ĝcx
j =

(gcx
j − dcx

i)

dw
i

ĝcy
j =

(gcy
j − dcy

i)

dh
i

(2.8)

ĝw
j = log

(gw
j

dw
i

)
ĝh

j = log
(gh

j

dh
i

)
(2.9)

As such it follows that the confidence loss is the softmax loss over multiple classes
confidences(c) [13].

Lcon f (x, c) = −
N

∑
i∈Pos

xp
ij log(ĉp

i)− ∑
i∈Neg

log(ĉ0
i) where ĉp

i =
exp(cp

i)

exp(cp
i)

(2.10)

Subsequently it follows that through the use of cross-validation the weight term α

will be set to 1 [13].

Since SSD is a single network used for object predictions, the use of feature maps
from multiple different layers will result in an image being processed at different
sizes and subsequently combining the result afterword, furthermore this all tran-
spires while the parameters are being shared across all object scales [13]. The use of

35

lower and upper feature maps for detection is motivated due to the fact that the au-
thors, Liu et al. [13], note that the other body of works have established the fact that
semantic segmentation can be improved through the use of feature maps at lower
layers and the addition of global context pooled from a feature will subsequently
assist in smoothing the segmentation results [13].

Within a network the feature maps from different levels, are subsequently associ-
ated with the different receptive field sizes. With this mind, it needs to be noted
that it is not a requirement for the default boxes and the actual receptive fields to be
associated or correspond with one another [13]. The tile of the default boxes is con-
structed in such a manner so that the feature maps inevitably learn to be responsive
to particular scales of the objects. In order to compute the scale of the default boxes
for each feature map, m is considered to be the feature maps for prediction, and as
such the following computation is given [13]:

sk = smin +
smax − smin

m− 1
(k− 1), k ∈ [1, m] (2.11)

As such the following definitions are given in regards to the terms defined above
where smin = 0.2 and smax = 0.9. This means that the lowest layer will have a scale
of 0.2 and the highest scale will have a scale of 0.9 and as a result all the layers
in between will be regularly spaced [13]. In order to compute the width(wa

k =

sk
√

ar) and the height(ha
k = sk√

ar
) of each default box, it is prescribed that different

aspect ratios be imposed for the default boxes and as such they are subsequently
represented as ar ∈

{
1, 2, 3, 1

2 , 1
3

}
[13]. With regard to the aspect ratio of 1, the result

of 6 default boxes per feature map location is given by the addition of a default box
with the scale of s

′
k =
√

sksk+1, furthermore, (i+0.5
| fk|

, j+0.5
| fk|

, where | fk| will be the size
of the k-th square feature map i, j ∈ [0, | fk|), will be set as the centre of each default
box [13]. Furthermore in order to have a variety of different scales and aspect ratios
from all the locations of the many feature maps, the predictions for all the default
boxes with different sales and aspect ratios will be combined [13].

The result after the matching step is that most of the default boxes will be negatives,
more so when there is a large number of possible default boxes [13]. Subsequently a
considerable imbalance will now exist between the positive and negative examples

36

[13]. To solve these dilemmas and avoid the employment of all the negative exam-
ples, the highest confidence loss will be sorted for each default box and the top ones
are chosen so that the ratio at most 3 : 1 between the negatives and the positives
[13]. The authors, Liu et al. [13], found that this will result in faster optimization
and a more stable training. The aforementioned step is called hard negative mining
[13].

The last training strategy to be employed for the SSD would be the data augmen-
tation strategy. In this regard there are three options that can be employed in order
to ensure that the model is holistically more robust to the various input object sizes
and shapes, and in addition to this each training image will be arbitrarily sampled
[13]. The first option that is available would be to use the entire image as an input.
The second option would to arbitrarily sample a patch and the third option would
be to sample a patch resulting in the minimum jaccard overlap with the objects is
0.1, 0.3, 0.5, 0.7 or 0.9 [13]. It is worth noting that the size of each sampled patch is
[0.1, 1] in regards to the original size of the image and the aspect ratio is between
1
2 and 2 [13]. Following this sampling step, each sampled patch is subsequently
resized to fixed size and is horizontally flipped with probability 0.5 [13].

37

Chapter 3

Research Methodology

3.1 Introduction

This section deals with the research method which will be used and applied for this
project as well as the Methodology (which involves the Proposed Method, Data, the
analysis), Limitations and the Ethical Considerations.

3.1.1 Research Design

A Design Science Research methodology will be used when conducting this par-
ticular research project. As such the Design Science Research (DSR) methodology
consists of a collection of synthetic and analytical techniques as well as perspec-
tives which are used for executing research objectives/investigations (more so in
Computer Science related fields) [25].

The primary functionality of this research design uses the application of prior knowl-
edge in order to help solve as well as address significant issues and problems in an
efficient manner [25].

The DSR methodology is compromised of three cycles, namely, relevance, design
and rigor. The relevance cycle initiates the DSR methodology into a framework of
implementations that sets out research requirements into inputs and also identi-
fies the required criteria for the final assessment of the research outcomes [26]. In
relation to the models that were used for this investigation, the relevance cycle is
employed when implementing the models and their subsequent algorithms.

38

The design cycle is described by Simon [27], is the core and heart of every DSR
project, and as such this particular cycle is used create various designs and evalu-
ating these different designs against the relevant criteria until such a point that the
given design would be satisfactory [27]. In relation to the models that were used
for this investigation, the design cycle is employed in relation to the evaluation and
performance assessment of the aforementioned object detector models.

The rigor cycle provides the foundational knowledge and methods that were pre-
viously established within this research domain and as such the newly generated
knowledge from the conducted research will be added as new knowledge to the
research community [26]. In relation to the models that were used for this investi-
gation, the rigor cycle is employed in the introductory phase of this investigation,
whereby the background and literature review of this research area is given.

3.2 Methodology

3.2.1 Proposed Method

A brief but concise description will be given for necessary methodology that will be
carried in order to conduct this investigation. The relevant models will be imple-
mented using python [28], and Application Programming Interfaces such as Keras
[29] and the open source library called TensorFlow [30].

Methodology for RCNN

The fundamental steps needed to implement the RCNN model 3 can be summarised
as follows [5]:

1. Step 1: Generating region proposals.

• Through the employment of the selective search algorithm, category-
independent region proposals will be generated as these proposals will
define the set of candidate object regions [5].

2. Step 2: The creation of CNN features.

39

• Affine image warping will be used to produce a CNN input, of uniform
size, from each candidate region that was generated in step 1 [5].

• Subsequently it will follow that a feature vector of fixed length will be ex-
tracted through the employment and use of a pre-trained CNN network
[5].

3. Step 3: The Support Vector Machine classifies each region into classes.

• Each region will then be classified into a class by a set of class specific
SVMs [5].

In order to implement the RCNN, a VGGNet [31] will be used to extract the nec-
essary features. VGGNet [31] is quite similar to AlexNet [8] (which was originally
used by Girshick et al. [5]) in that it uses 3× 3 convolutions. The stark difference be-
tween AlexNet [8] and VGGNet [31] is the number of filters being used, as VGGNet
[31] has a greater number of filters [8], [31].

VGGNet is also appealing to use in this regard because its’ weight configuration
is publicly available on application programming interfaces like Keras [29]. It is
necessary to note that pre-trained weights from ImageNet [32] will be downloaded
and used so as to aid the training of the given implementation.

The last two layers for the VGGNet network will be removed as it will only be used
for the extraction of features. This is similar to what was done in Girshick et al. [5]
as they removed the last two fully connect layers as well, which subsequently led
them to utilize the pool layer [5].

The model summary is presented in the graphic, 3.1, below:

40

41

42

FIGURE 3.1: This figure illustrates the model summary of the VGGNet
that was used [29], [31].

It is clear that the image shape should be (height, width, Nchannel) = (224, 224, 3).
As such the search region proposal will not always generate an image with a

43

height, width = 224. The computations for the CNN features for a given region
proposal can only be calculated if the image date is subsequently converted into
a compatible format. In line with what was highlighted in the literature review,
a warping of the region proposals in relation to the CNN’s input size, needs to
be performed irrespective of the size/aspect ratio of that particular region [5]. As
such it follows that once the selection search algorithm has been run on an image
approximately 2000 region proposals should be extracted, and thus the warping of
each candidate region needs to take place [5].

Finally in order to complete the RCNN model it is necessary to have/create a clas-
sifier to identify objects. As stated before, the classifier in this case would be a cate-
gory specific linear Support Vector Machine that would be trained using the corre-
sponding ground truth label for each candidate region [5]. Regions that contain the
relevant object(s) will be considered as positive examples whereas the opposite is
true. That is regions that contain no object will be considered to be negative exam-
ples. An Intersection over Union overlap threshold (= 0.3) will also be used when
regions partially overlap objects [5].

Methodology for Faster RCNN

There are several steps that need to be undertaken when implementing the Faster
RCNN. To start things off, the VGG16 [31] network is once again employed to
be used as a feature extraction module. This network will provide the necessary
framework for the two main modules for the Faster RCNN (that is the RPN and
Fast RCNN networks) [11]. The VGG16 [31] network layers will be modified where
necessary so as to allow the input images to pass through it [11].

Moving onto anchor boxes, they will have two main responsibilities with regard to
their implementation [11].

• Anchor boxes will be produced at each feature map location [11].

• As such the appropriate labels as well as the appropriate locations of all the
objects will be associated to each anchor [11].

– The objects within the image will be subsequently allocated to the pre-
scribed anchor box that contains them [11].

44

– An anchor must have the greatest IoU overlap with a given ground truth
box [11].

– An anchor must have the an IoU overlap greater than 0.7 with any of the
ground truth boxes [11].

– Anchors are given negative labels if they have an IoU overlap which is
less than 0.3 for all ground truth boxes [11].

– In addition to this anchors that have neither a positive or negative label
make no substantive contribution when training the model [11].

• Locations will subsequently be allocated to each anchor box with its relevant
ground truth object which has the maximum IoU [11].

Moving onto the RPN network, it has already been noted that the network is com-
prised of a convolutional module and a regression layer. The regression layers’
functionality in this instance, is that it predicts the location of the the relevant box
inside the anchor [11]. It follows that in order to generate region proposals the
aforementioned network needs to be slid over a convolutional feature map [11]. A
n × n spatial map is subsequently employed and used as an input for the convo-
lutional feature map. It will consequently follow that each sliding window will be
mapped to a lower dimensional feature (quite possibly 512 features) [11]. As a re-
sult this feature is fed into two related full connected layers which are, as stated
before, a box regression and classification layer [11]. The architecture of the Faster
RCNN subsequently has a structure of a 3× 3 convolutional layer with two related
1× 1 convolutional layers [11]. In addition to this the network layers are initial-
ized with a zero mean as well as a 0.01 standard deviation with zeros for base. The
Faster RCNN will also be run for 120 epochs with a thousand steps for each epoch.
Implementation will subsequently be conducted through the use of the Keras API
[29].

It is worth noting that the generated RPN proposals will overlap with each other to
a great extent as such it is prescribed that a non-maximum suppression algorithm
is adopted so as to address this issue and reduce redundancy as well as maintain
accuracy [11].

45

Subsequently it follows that after the final region proposals have been obtained,
the region proposals, ground truth boxes and their relative labels are taken as an
input for the Fast RCNN, which is subsequently liable for the predicting the object
locations and the relevant class [11]. The RoI pooling layers are subsequently used
by the Fast RCNN for each and every proposal suggested by the RPN. The RoI
pooling layer is liable for generating feature maps of uniform size, by taking inputs
which are not of a fixed size [11]. As such the RoI pooling layer receives the two
inputs [11]:

• The first input would be a feature map of uniform size which is retrieved from
a convolutional network [11].

• The second input would be the set of RoI’s denoted by the matrix, N× 5. The
number of regions of interest is denoted by N [11].

The RoI pooling layer is responsible for every region of interest from the input list
and as such it takes a section of the input feature map that is associated to it and
will subsequently scale it to some pre-defined size [11]. The scaling is subsequently
conducted by [11]:

• Each proposed region is fractionated into parts of unifom size [11].

• For each uniform part, it is necessary to determine its greatest value [11].

• Subsequently it follows that these maximum values are replicated into the
output buffer [11].

Inevitable a set of rectangles (of various sizes) is obtained and as such the corre-
sponding set of feature maps(of uniform size) can be quickly found. Furthermore
the RoI pooling layer is primarily used because it has a comparatively fast process-
ing speed [11]. Following the implementation of the Fast RCNN, once the relevant
feature maps are passed through it expected output would be the necessary classi-
fication that needs to take place [11].

Lastly the loss function for the Fast RCNN needs to be implemented. Since the
Faster RCNN is comprised of two modules, this will result in two loss functions
being computed but later added together in order to generate the total loss for the
Faster RCNN model [11].

46

Methodology for YOLO

YOLO employs Anchor boxes in order to localize multiple objects which are in close
proximity to one another. As such it is prescribed that it is necessary to predefine
two hyper-parameters, which are firstly the number of anchor boxes as well as their
shapes [12]. This is done so that multiple objects that in a close proximity to one
another will be allocated different anchor boxes. As a result this will be that the
more anchor boxes there are the more objects YOLO will be able to detect within
close proximity of each other [12].

In order to determine/prescribe the necessary amount of anchor boxes as well as
their designated shapes, k-means clustering algorithm is implemented such that
it is employed and used with regard to the shape of the relevant bounding box
[1]. This is done to prevent an overspecialization of anchor boxes, with regard to
predicting the shape of bounding boxes for objects that are a rare data point within
the dataset [1].

The feature data that will be used by the k-means clustering will be data that con-
tains the height and width as its features. Subsequently it follows that the height
and width of an image will be used to standardize the height as well as the width
of the relevant bounding box [1]. This prescription is given because the different
image will have a wide array of dimensions (that is height and width) [1].

The k-means clustering will have four primary steps where the number of clusters
will be set and the cluster centres will be initialized [1].

1. Step 1: Each item will be allocated to the closest cluster centres. It is worth
noting that the IoU will be used to calculate the distance to the cluster centre

2. Step 2: The necessary computations for the cluster centres will take place.

• The mean/median can be used to bring this about.

3. Step 3: The previous two steps will be repeated up until the two consecutive
iterations produce the same cluster centres.

It follows that the k-means clustering is subsequently employed so as to determine
the necessary amount of anchor boxes as well as how they will specialize in relation

47

to the shape of the anchor box. K-means will be run (in order.) for the following
hyper parameters: k ∈ [2, 10] [1].

The use of an Elbow curve or GAP statistics [33], where the main aim in this re-
gard would be to determine the true number of clusters that would be captured, in
relation to the slop of the IoU [1].

Input/output encoding of YOLO is another essential process that needs to be un-
dertaken. Input encoding simply requires that an image be read-in and resized to
the prescribed shape. With regards to output encoding there are several steps that
need to be conducted [1].

• Step 1: The outputs xmin, ymin, xmax, ymax need to be resized [1].

• Step 2: Each object needs to be assigned a corresponding ground truth anchor
box [1].

• It has been already established that YOLO needs to use an anchor box to detect
multiple objects in a nearby region as such [1]:

– K-means will be used as describe to determine and prescribe the amount
of necessary anchor boxes [1].

– Each anchor box has its own specialized shape [1].

– A grid cell that has the greatest IoU overlap as well as the centre and
anchor of the object will be coupled with the given object from that par-
ticular image [1].

• Step 3: It follows that a rescaling of the unit of bounding box coordinates to
the grid cell scales takes place [1].

– It needs to be noted that YOLO splits the given image into grid cells (of
n× n grid cells) and thus it will subsequently assign image classification
and localization algorithms in each of the grid cells [1].

• Step 4: The input and output encodings will be combined and subsequently a
batch generator will be produced using the Keras [29] API.

48

– A Keras generator will be used in this regard to get batches of the input
alongside the corresponding output, simultaneously during the training
phase of this implementation.

– To illustrate this phenomenon if the model reads in 15 images, 15 corre-
sponding label vectors will be produced as a result.

– According to the authors [1], what will subsequently follow, is that the 15
corresponding label vectors will be fed into the GPU during the training
phase.

– For this investigation however usage of the GPU is not possible due to
the lack of hardware and software. In light of this Google colab and
other online resources, could have been a viable alternative but the inter-
net data requirements would have been a limiting factor as they can be
expensive.

– As such the CPU will be used in this regard.

Moving onto the model architecture for YOLO, it is a rather simple design. For the
most part it is simply a combination of different layers. Pre-trained weights [1] will
be loaded and used for YOLO. It follows that the loss function will be implemented
so as to penalize the classification error if an object is present in that grid cell [1].
Subsequently it will follow that the IoU overlap will be computed for each grid
cell and anchor pair [1]. For each predicted bounded box the best IoU is calculated
irrespective of the ground truth anchor box for each object [1].

Methodology for SSD

The framework for the SSD will based off of the VGG16net [31] and once again
implemented using the Keras API [29]. This base network will also be pre-trained
on the ILSVRC [24] dataset. During the implementation of this base network it will
follow that the original VGG fully connected layers will not be used. Instead similar
to what Liu et al. [13] constructed, a set of supplementary convolutional layers will
be added so that features can be extracted at multiple scales while simultaneously
reducing the size of the input associated to each consecutive layer [13].

49

The supplementary convolutional layers are meant to also generate key features
in order for the network to generate detections. These key features would be the
multi-scale feature maps for detection, the default boxes and aspect ratios, the con-
volutional predictors for detection [13]. Moving onto the necessary steps that will
take place when this model is implemented [13].

• The matching strategy is employed so that the ground truth information are
assigned to specific outputs in the fixed set of detector outputs [13]. As such
it subsequently follows that the loss function and backpropagation will be
applied end-to-end [13].

• Hard negative mining takes place due to the fact that there is an expectation,
that most of the default boxes will be negative after the matching step [13].

• This is done to address the imbalance between positive and negative training
examples so that the model is optimized quicker and the training that takes
place is more stable [13].

• The training objective for the SSD will result in an indicator for matching the
i-th default box to the j-th ground truth box of category p [13].

• The selection of scales and aspect ratios for the default boxes will take place
[13].

– Since the SSD is a single network used for object predictions [13].

– The use of feature maps from multiple different layers will result in an
image being processed at different sizes and as such the results will be
combined [13].

– Furthermore, this all transpires while the parameters are being shared
across all object scales [13].

• Lastly data augmentation can be used so that the model is holistically more
robust to the various input object sizes and shapes, and in addition to this each
training image will be arbitrarily sampled [13]. There are three main ways one
could augment the data and they are as follows [13] :

– The original image will be used as an input in its entirety [13].

50

– Arbitrarily sampling a patch [13].

– Sampling a patch resulting in the minimum jaccard overlap with the ob-
jects is 0.1, 0.3, 0.5, 0.7 or 0.9 [13].

The SSD model will be subject to a number of training parameters [13].

• The model will be trained for 120 epochs, where each epoch will consist of
1000 training steps.

• The learning rate for the first 80 epochs will be 0.001, followed by 0.0001 for
the next 20 epochs and subsequently 0.00001 for the next 20 epochs.

• The optimizer that will be used for the SSD will be the SGD.

– SGD is employed in this investigation because it has a better generaliza-
tion performance over adaptive gradient algorithms like ADAM [34].

It is worth noting that the GPU was used in the work conducted by Liu et al. [13],
as such for this investigation since the adequate hardware and software specifica-
tion have not been met a CPU will be used instead. In conclusion it follows that
a non-maximum suppression step will subsequently be utilized to make the final
detections [13].

3.2.2 Datasets

When conducting an investigation centred around object detection, there are sev-
eral aspects one has to consider when deciding which dataset(s) to use. Some of
these key aspects would include the size, structure, and relevancy of the datasets.

There is a considerable amount of image datasets which one could use for object
detection. Their size in terms of image resolution and the overall hard disk memory
space they occupy is thus of great consequence. Such features affect the overall
performance of the models that one intends to implement, as issues around runtime
and accuracy come into play. It is worth noting that the hard disk space that these
datasets occupy can range from a couple of gigabytes to more than 200 gigabytes
[5].

51

When considering the relevancy of the image datasets, one has to focus on the main
aim of the research investigation. Localizations and the overall performance of the
models will be greatly affected and as such performance will vary. As already noted
before in the literature review, object sizes within images will not have the same
localization accuracy in comparison to larger objects.

Several datasets were used to conduct this research investigation. The first dataset
that was utilized would be the PASCAL VOC [17] dataset which contains 20 dif-
ferent image classes [17]. This dataset is used a considerable amount times when
conducting investigations centred around object detections.

The second dataset that was used, would be the Udacity self driving car dataset
[18]. This dataset four different object classes and subsequently contains over 15000
images and 97942 labels.

A camera snapshot dataset of animals was employed for this research project namely
the Eastern North American 24 dataset [19]. This dataset consists of images of dif-
ferent animals from North America in their natural habitat. Hidden cameras were
used to obtain these images of animals that were in a reasonable vicinity. The Snap-
shot Serengeti [20] dataset was also utilized. These snapshot datasets are similar
to the Eastern North American 24 dataset, only difference would be the location of
where the images were taken and which animals were captured.

With regard to remotely sensed images, the Large-scale Dataset for Object Detec-
tion in Aerial Images (DOTA [21]), was employed. The images in this dataset were
rather considerably larger than the other datasets and as such preprocessing tech-
niques had to be utilised in order to perform experiments on this dataset. To be
more specific the images (and their respective annotations) were split into smaller
files and as such this altered the dataset that was used for the given implementa-
tions.

3.2.3 Analysis

In this research it would be appropriate to use several tools to analyse and assess the
performance of the various methods/implantations. Amongst the several tools one
could use the mean Average Precision (mAP) [35] and detection Average Precision

52

(AP) [36]. The given datasets will be divided into training and testing splits with
an 80:20 split. Furthermore the time taken to make the predictions is also of great
essence as one of the main objectives of object detection is to have models that are
able to make predictions accurately and quickly in real time.

The metrics (AP [36] and mAP [35]), are tools one uses to measure and gauge how
accurate object detectors are. These metrics are used due to the fact that object
detectors are built to classify and localize objects within an image [37]. In order to
make the necessary calculations for the mAP, there are other key sets of information
that needs to be accounted for. This information is comprised of the ground truth
data and the intersection over union (IoU) overlap [38] as well as the precision and
recall [39] scores.

To start things off, the ground truth data for the images contains the necessary anno-
tations needed for the detection and classification to take place. These annotations
usually contain information pertaining to the coordinates(x, y), dimensions (height
and width) and the class labels of the objects in the image. As a consequence of all
this, the ground truth data is subsequently used to generate the ground truth boxes
[38]. With this in mind the IoU overlap would be the given ratio from the intersec-
tion over union overlap between the predicted boxes that a given object detection
model generates and the ground truth boxes. To further elaborate, the overlap be-
tween a predicted box and a ground truth box represents the area of intersection for
these boxes, while the union overlap simple represents the total cumulative area for
these two boxes [38]. Mathematically it can be defined as follows [38]:

IoU =
prediction boxes ∩ ground truth boxes
prediction boxes ∪ ground truth boxes

(3.1)

or it can be defined as

IoU =
Area of overlap
Area of Union

(3.2)

As mentioned before there is an IoU threshold that needs to be considered when
the model is being executed. This is done so that the True/False positives can be

53

identified by the model. To further elaborate on this if a threshold of 0.5 is used
then any IoU overlap that is greater than 0.5 is considered a True positive otherwise
it is considered to be a False positive [39]. In light of this there False negatives also
need to be accounted for. False negatives are generated when the model is not able
to identify objects within the image [39]. As such it would be possible to compute
the correct number of detections that the model is able to generate through the use
of a metric called Precision, which is defined as [39]:

Precision =
True Positives

True Positives + False Positives
(3.3)

Furthermore in order to calculate the average precision of the class of an object the
recall score is necessary. In simple terms th recall score is considered to represent
how well a model is able to label positive samples [35]. Recall is defined as follows
[39]:

recall =
True Positives

True Positives + False Negative
(3.4)

Now the average precision is defined as the area under the interpolated preci-
sion/recall curve for a given object class [39]. An interpolated precision/recall
curve is defined by the subsequent plotting of the recall/precision scores (where
the inclusion of lower scored detections is accounted for) [39]. Interpolations are
generated for the dips that occur for the given plot, that is every precision is re-
placed by the highest score of itself as well as the precision scores present at greater
uniformly spaced recall levels [39]. The Average Precision [36] can as such be de-
fined at a set as [39]:

Average Precision =
1
R ∑

r∈{0,0.1,...,1.0}
pinterp(r) (3.5)

where R denotes the number of recall levels used and

pinterp(r) = maxr̃:r̃≥r p(r̃) (3.6)

54

as such the recall level is denoted by r, and p(r̃) denotes the generated precision
score at its corresponding recall r̃ [36].

In conclusion it follows that the mean Average Precision, is the average of all the av-
erage precision scores and subsequently evaluates the entire model across all object
classes [35]. The mAP can be defined as [40]:

MAP =
1
n ∑

n
APn (3.7)

3.3 Technical Specifications

The models were implemented on a DELL XPS 13-9365 machine that had a ran-
dom access memory of 15.5 gigabytes, four intel i7-8500Y CPU of 1.5 GHz, a 64
bit windows 10 operating system [41], as well as a 512.1 gigabyte disk capacity.
In addition to this the programming language that was used to implement these
models was python [28], which used the python programming libraries of pandas
[42],scikit learn [43], numpy [44], scipy [45], tensorflow [30], keras [29], matplotlib
[46] amongst many others.

3.4 Limitations

Computational power is hindering in this regard as the implementation for the Sin-
gle Stage Detectors and Two Stage Detectors takes a considerable amount of time
to run especially, for large datasets. Furthermore it is prescribed that the models
are implemented and executed with the help of a GPU. This is done as GPU’s are
able to make several times more computations than the CPU with regard to deep
learning models. The Compute Unified Device Architecture (CUDA) toolkit [47],
which was developed by the Nvidia corporation is the necessary API that employs
the use of the GPU for deep learning models [47]. As such this toolkit can be used
alongside other deep learning APIs such as Keras [29] and Pytorch [48]. In light of
aforementioned CUDA toolkit and the prescribed GPU, it is necessary to note that
the given GPU that has to be used in conjunction with the CUDA toolkit would be
a Nvidia GPU. These GPUs have been historically used to build powerful gaming
platforms, since these powerful systems need a dedicated electronic unit to quickly

55

render and create various images which are needed as an output for a display [47].
With this in mind the given system that will be used to undertake the given in-
vestigation does not have the necessary Nvidia GPU to work alongside the CUDA
toolkit. This inevitably means that the CPU will be burdened with performing the
necessary computations and executing the given models [47].

As with any research investigation, time constraints are also factored in. As already
noted the CPU will be expected to carry out all the necessary computation for the
proposed investigation and as such the run-times for the given models will be con-
siderably longer/slower than what was generated in similar bodies of work.

Initially, it was planned that this investigation would seek to find out and un-
derstand how well each of the previously mentioned classifiers, performed when
detecting vehicles/objects from satellite/remotely sensed images, across various
datasets. Collecting this particular set of datasets, proved to be a difficult task, as a
considerable amount of them were not annotated and labelled properly. This was
the case for the aerial elephants dataset [49] as well as the Stanford drone dataset
[50]. As such, given the time constraints of this project, it would be a time consum-
ing process to label each image, thus changing the given datasets that were used,
proved to be the better way to go.

3.5 Ethical Considerations

With regard to the ethics surrounding these datasets, there is not much to consider
ethically as the datasets are publicly available and they do not infringe upon indi-
vidual rights. No information is used to also personally identify individuals. The
only cause for concern would be that this research area is typically used by surveil-
lance states and institutions for unethical endeavours. With this in mind one has to
weigh the possible ramifications (both positive and negative) about such research
being conducted. The possible negatives of this is that authoritarian countries like
China have been to known to impose draconian measures and maintain a police
state with the aid of detection models [51]. This has already been demonstrated
in places like Hong Kong where the surveillance systems were used to identify
protesters which lead to a heavy handed use of force from the Hong Kong police in
an effort to shut-down the Hong Kong protests. As such it follows that the research

56

conducted in this field will aid and supplement their agenda [52]. The positive
takeaways from this research being conducted is that it contributes to the existing
body of work which helps to advance machine learning algorithms and techniques
related to object detection and image classification. As immense strides are being
made in Artificial intelligence and robotics, technology related to self driving cars
benefit immensely from these algorithms and models [15].

3.6 Conclusion

The basic structure, limitations and methodology for this investigation have been
outlined and discussed. As such these steps and outlines need to be implemented
in a timely fashion.

57

Chapter 4

Results, Discussion and Limitations

This chapter seeks to present and discuss the results of this investigation in relation
to the four object detectors as well as the relevant datasets that were outlined. In
addition to this, the limitations of the study will be presented in this chapter.

4.1 Results

The results of the four object detectors for all the datasets is presented below.

4.1.1 Results for the PASCAl VOC training dataset

The results of the four object detectors for the PASCAL VOC training dataset [17],
are presented in the table 4.1 below, where the best performing model is highlighted
in cyan.

58

TABLE 4.1: Table with the average precision(%) results for each object
class and the subsequent mean average precision(%) score for each ob-

ject detector, with regard to the PASCAL VOC training dataset [17].

RCNN Faster RCNN YOLO SSD
aeroplane 71.5 89.2 90.5 78.1

bicycle 68.1 82.4 81.4 84.8

bird 51.2 84.0 77.6 76.9

boat 39.7 58.3 62.6 69.0

bottle 30.0 58.8 53.7 47.1

bus 54.2 86.6 81.8 87.5

car 69.9 82.7 75.3 86.4

cat 29.3 88.2 86.5 89.7

chair 49.4 51.6 43.1 60.0

cow 45.2 87.1 85.7 88.8

dining-table 71.6 66.5 55.4 77.8

dog 57.0 92.9 81.8 87.2

horse 73.3 85.8 81.2 89.6

motorbike 63.1 87.0 85.0 84.3

person 75.7 87.2 79.6 78.7

potted-plant 55.1 49.5 48.8 51.0

sheep 27.3 75.9 83.4 78.3

sofa 38.7 68.1 64.9 82.8

train 60.2 89.4 83.7 90.0

tv-monitor 77.8 64.3 72.1 79.5

mAP 55.4 76.8 73.7 78.3

The results of the four object detectors for the PASCAL VOC testing dataset [17], are
presented in the table 4.2 below, where the best performing model is highlighted in
cyan.

59

TABLE 4.2: Table with the average precision(%) results for each object
class and the subsequent mean average precision(%) score for each ob-

ject detector, with regard to the PASCAL VOC testing dataset [17].

RCNN Faster RCNN YOLO SSD
aeroplane 68.3 88.6 86.0 77.5

bicycle 67.7 78.2 79.4 83.9

bird 45.8 80.7 75.8 75.2

boat 38.6 53.9 60.9 66.6

bottle 29.6 57.1 51.2 44.9

bus 51.0 82.6 79.5 85.5

car 69.4 79.4 71.6 84.7

cat 28.5 86.1 86.0 87.3

chair 48.1 49.5 42.8 58.4

cow 40.3 84.8 80.6 82.4

dining-table 68.4 65.9 54.2 76.1

dog 53.8 89.2 83.3 85.4

horse 71.3 84.3 79.7 86.7

motorbike 59.4 83.7 82.1 83.9

person 72.7 84.6 76.2 76.5

potted-plant 51.7 44.8 44.4 48.5

sheep 22.9 75.2 79.5 80.1

sofa 34.3 64.8 65.3 87.4

train 57.7 85.7 80.8 85.7

tv-monitor 75.8 59.1 68.7 76.3

mAP 52.8 73.9 71.1 76.1

The bar graph 4.1 below illustrates the mean average precision score (%) for each of
the object detectors, for the PASCAL VOC dataset [17].

60

RCNN Faster RCNN YOLO SSD
0

20

40

60

80

Object Detectors

m
ea

n
av

er
ag

e
pr

ec
is

io
n

(%
)

FIGURE 4.1: Bar Graph illustrating the mAP of each of the object de-
tectors for the PASCAL VOC dataset [17].

From graph 4.1 and table 4.2, it can be seen that the SSD had the highest mAP score,
followed by the Faster RCNN and YOLO, and as such the RCNN had the lowest
mAP score.

4.1.2 Results for the Udacity self driving car training dataset

The results of the four object detectors for the Udacity self driving car training
dataset [18], are presented in the table 4.3 below, where the best performing model
is highlighted in cyan.

61

TABLE 4.3: Table with the average precision(%) results for each object
class and the subsequent mean average precision(%) score for each ob-
ject detector with regard to the Udacity self driving car training dataset

[18].

RCNN Faster RCNN YOLO SSD
biker 27.0 13.8 35.3 38.9

car 44.1 67.5 72.0 55.7

traffic Light 38.5 32.1 44.7 51.3

Truck 55.6 59.0 62.8 63.5

pedestrian 31.0 59.5 63.2 56.9

mAP 39.2 46.4 55.7 53.1

The results of the four object detectors for the Udacity self driving car testing dataset
[18], are presented in the table 4.4 below, where the best performing model is high-
lighted in cyan.

TABLE 4.4: Table with the average precision(%) results for each object
class and the subsequent mean average precision(%) score for each ob-
ject detector with regard to the Udacity self driving car testing dataset

[18].

RCNN Faster RCNN YOLO SSD
biker 22.9 10.7 33.4 37.2

car 42.4 63.5 65.2 53.7

traffic Light 34.1 28.8 41.6 46.7

Truck 52.6 55.0 61.8 59.4

pedestrian 26.0 57.3 60.5 55.4

mAP 35.6 43.1 49.5 50.5

The bar graph 4.2 below illustrates the mean average precision score (%) for each of
the object detectors, for Udacity self driving car testing dataset [18].

62

RCNN Faster RCNN YOLO SSD

10

20

30

40

50

60

Object Detectors

m
ea

n
av

er
ag

e
pr

ec
is

io
n

(%
)

FIGURE 4.2: Bar Graph illustrating the mAP of each of the object de-
tectors for the Udacity self driving car testing dataset [18].

From graph 4.2 and table 4.4, it can be seen that the SSD had the highest mAP score,
followed by YOLO and the Faster RCNN, and as such the RCNN had the lowest
mAP score.

4.1.3 Results for the Eastern North American 24 dataset

The results of the four object detectors for the Eastern North American 24 training
dataset [19], are presented in the table 4.5 below, where the best performing model
is highlighted in cyan.

63

TABLE 4.5: Table with the average precision(%) results for each object
class and the subsequent mean average precision(%) score for each
object detector with regard to the Eastern North American training

dataset [19].

RCNN Faster RCNN YOLO SSD
American black bear 61.4 55.5 64.1 66.9

American crow 37.8 53.1 42.5 52.3

coyote 49.3 68.9 58.0 55.1

bobcat 69.0 74.5 59.7 74.2

Northern racoon 74.2 78.7 69.3 63.9

Eastern cottontail 27.1 44.3 58.0 76.1

red fox 24.6 42.9 33.4 74.9

Eastern Fox squirrel 39.7 56.2 51.7 77.2

Eastern chipmunk 37.2 50.0 74.1 69.7

Woodchuck 38.0 32.1 75.8 72.3

Virginia opossum 54.5 74.8 74.2 69.5

Striped skunk 44.9 47.4 63.1 37.0

White tailed deer 57.2 79.3 71.8 79.2

mAP 47.3 57.4 61.0 66.2

The results of the four object detectors for the Eastern North American 24 testing
dataset [19], are presented in the table 4.6 below, where the best performing model
is highlighted in cyan.

64

TABLE 4.6: Table with the average precision(%) results for each object
class and the subsequent mean average precision(%) score for each ob-
ject detector with regard to the Eastern North American testing dataset

[19].

RCNN Faster RCNN YOLO SSD
American black bear 57.5 53.1 62.5 65.7

American crow 34.1 50.3 39.1 47.6

coyote 46.9 65.0 55.9 52.1

bobcat 62.5 70.9 56.0 69.8

Northern racoon 72.7 74.5 66.3 58.0

Eastern cottontail 24.0 40.8 53.2 73.4

red fox 20.2 40.4 30.8 69.7

Eastern Fox squirrel 36.7 53.0 47.7 72.3

Eastern chipmunk 34.4 48.9 71.4 66.3

Woodchuck 35.6 27.7 70.2 68.9

Virginia opossum 43.8 62.6 69.1 64.4

Striped skunk 39.0 46.1 60.0 31.0

White tailed deer 52.3 72.8 68.7 76.5

mAP 43.1 54.3 57.8 62.7

The bar graph 4.3 below illustrates the mean average precision score (%) for each of
the object detectors, for the Eastern North American testing dataset [19].

65

RCNN Faster RCNN YOLO SSD

10

20

30

40

50

60

70

Object Detectors

m
ea

n
av

er
ag

e
pr

ec
is

io
n(

%
)

FIGURE 4.3: Bar Graph illustrating the mAP of each of the object de-
tectors for the Eastern North American testing dataset [19].

From graph 4.3 and table 4.6, it can be seen that the SSD had the highest mAP score,
followed by YOLO and the Faster RCNN , and as such the RCNN had the lowest
mAP score.

4.1.4 Results for the Snapshot Serengeti training dataset

The results of the four object detectors for the Snapshot Serengeti training dataset
[20], are presented in the table 4.7 below, where the best performing model is high-
lighted in cyan.

66

TABLE 4.7: Table with the average precision(%) results for each object
class and the subsequent mean average precision(%) score for each ob-
ject detector with regard to the snapshot Serengeti training dataset [20].

RCNN Faster RCNN YOLO SSD
buffalo 65.7 58.0 55.2 50..4

cheetah 24.1 27.3 42.7 33.9

eland 27.0 37.8 34.6 37.0

elephant 68.6 59.1 75.2 74.6

giraffe 43.2 65.4 27.1 39.2

hippopotamus 36.1 37.7 51.9 64.8

honeybadger 49.2 48.0 67.4 67.1

impala 41.8 58.1 78.3 65.4

Jackal 38.0 60.3 73.1 77.8

leopard 14.9 32.0 39.5 37.1

lion 58.1 66.8 54.0 59.5

rhinoceros 35.4 37.3 60.8 68.7

spotted hyena 59.3 38.7 48.1 51.4

topi 21.9 38.1 38.5 65.2

wildebeest 35.1 65.8 66.0 67.9

zebra 53.3 29.4 44.6 50.1

mAP 41.3 47.3 49.8 52.2

The results of the four object detectors for the Snapshot Serengeti testing dataset
[20], are presented in the table 4.8 below, where the best performing model is high-
lighted in cyan.

67

TABLE 4.8: Table with the average precision(%) results for each object
class and the subsequent mean average precision(%) score for each ob-
ject detector with regard to the snapshot Serengeti testing dataset [20].

RCNN Faster RCNN YOLO SSD
buffalo 60.7 53.2 52.5 47.4

cheetah 22.2 23.5 33.1 31.9

eland 19.8 35.1 30.4 35.2

elephant 66.6 55.7 72.0 70.8

giraffe 39.4 60.0 24.8 30.1

hippopotamus 33.5 34.3 50.3 59.3

honeybadger 45.8 45.3 60.6 65.7

impala 34.7 55.7 70.2 61.0

Jackal 35.5 57.2 72.9 70.9

leopard 10.3 29.2 36.7 34.5

lion 56.8 63.4 47.0 49.1

rhinoceros 29.1 36.8 58.9 64.4

spotted hyena 57.0 36.6 47.4 48.6

topi 15.7 32.5 34.2 57.0

wildebeest 32.3 60.3 63.7 63.8

zebra 49.2 21.9 42.1 46.0

mAP 38.0 43.8 49.8 52.2

The bar graph 4.4 below illustrates the mean average precision score (%) for each of
the object detectors, for the snapshot Serengeti testing dataset [20].

68

RCNN Faster RCNN YOLO SSD

10

20

30

40

50

60

Object Detectors

m
ea

n
av

er
ag

e
pr

ec
is

io
n(

%
)

FIGURE 4.4: Bar Graph illustrating the mAP of each of the object de-
tectors for the Serengeti Snapshot testing dataset [20].

From graph 4.4 and table 4.8, it can be seen that the SSD had the highest mAP score,
followed by YOLO and the Faster RCNN , and as such the RCNN had the lowest
mAP score.

4.1.5 Results for the DOTA dataset

The results of the four object detectors for the DOTA training dataset [21], are pre-
sented in the table 4.9 below, where the best performing model is highlighted in
cyan.

69

TABLE 4.9: Table with the average precision(%) results for each object
class and the subsequent mean average precision(%) score for each ob-

ject detector with regard to the DOTA training dataset[21].

RCNN Faster RCNN YOLO SSD
baseball diamond 69.1 65.3 40.9 41.8

basketball court 57.0 57.9 56.2 31.5

bridge 47.2 34.6 27.9 81.4

ground track field 68.3 55.1 37.3 22.0

harbor 76.8 51.7 35.0 19.2

helicopter 79.0 34.8 14.4 7.4

large vehicle 94.3 47.5 41.8 39.2

plane 81.2 85.7 82.0 58.1

roundabout 55.1 46.1 37.6 37.4

ship 77.8 44.3 49.0 29.5

small vehicle 88.5 51.7 41.8 5.7

soccer ball field 75.8 40.4 47.4 12.9

storage tank 77.3 88.4 46.1 54.7

swimming pool 90.2 52.4 36.7 13.0

tennis court 87.1 74.9 60.5 86.3

mAP 75.0 55.4 43.6 36.0

The results of the four object detectors for the DOTA testing dataset [21], are pre-
sented in the table 4.10 below, where the best performing model is highlighted in
cyan.

70

TABLE 4.10: Table with the average precision(%) results for each ob-
ject class and the subsequent mean average precision(%) score for each

object detector with regard to the DOTA testing dataset[21].

RCNN Faster RCNN YOLO SSD
baseball diamond 66.2 62.7 35.9 37.9

basketball court 53.3 54.0 51.5 27.1

bridge 43.4 31.6 26.8 77.7

ground track field 65.9 53.9 35.7 16.9

harbor 70.2 39.8 35.9 11.3

helicopter 67.0 29.6 12.0 0.9

large vehicle 86.2 44.4 39.0 35.1

plane 78.8 80.2 78. 56.4

roundabout 50.0 42.3 34.5 25.5

ship 73.3 41.9 46.8 25.3

small vehicle 84.2 48.3 36.1 0.0

soccer ball field 71.6 36.1 38.6 7.2

storage tank 74.6 73.9 43.7 51.6

swimming pool 87.8 47.4 32.6 8.4

tennis court 83.5 69.5 58.5 83.8

mAP 70.4 50.3 39.9 31.0

The bar graph 4.5 below illustrates the mean average precision score (%) for each of
the object detectors, for the DOTA [21].

71

RCNN Faster RCNN YOLO SSD
0

20

40

60

80

Object Detectors

m
ea

n
av

er
ag

e
pr

ec
is

io
n(

%
)

FIGURE 4.5: Bar Graph illustrating the mAP of each of the object de-
tectors for the DOTA testing dataset [21].

From graph 4.5 and table 4.10, it can be seen that the RCNN had the highest mAP
score, followed by the Faster RCNN and YOLO, and as such the SDD had the lowest
mAP score.

4.1.6 Consolidation of results

From graph 4.6, the various performances of the object detectors can be seen across
various the datasets that were used throughout this investigation.

72

1 2 3 4 5
0

10

20

30

40

50

60

70

80

Datasets

m
ea

n
av

er
ag

e
pr

ec
is

io
n

(%
)

RCNN
Faster RCNN
YOLO
SSD

FIGURE 4.6: Bar graph denoting the object detectors across all the
datasets. 1 denotes the Pascal VOC [17], 2 denotes the Udacity self
driving car testing dataset [18], 3 denotes the Eastern Northern Amer-
ican 24 testing dataset [19], 4 denotes the Serengeti Snapshot testing

dataset [20], and 5 denotes the DOTA testing dataset [21].

4.2 Discussion

There are several factors and metrics that need to be outlined and discussed for
each image classifier, in terms of how they performed across the aforementioned
datasets. These will be outlined in the subsequent sections that follow as they re-
late to the overall performance, accuracy and general functionality of each of the
classifier.

73

4.2.1 Regions with Convolutional Neural Networks

Upon implementing the RCNN, it is noted that the network generates candidate
regions for each image through the use of a selective search algorithm. The number
of regions generated varies from image to image but generally speaking approxi-
mately 2000 candidate regions are produced for each image. Below one can see an
example of the candidate regions being generated from each dataset.

(A) An image before candidate regions
are generated.

(B) An image after candidate regions are
generated.

FIGURE 4.7: An example of RCNN generating candidate regions on an
image from PASCAL VOC [17].

74

(A) An image before candidate regions
are generated.

(B) An image after candidate regions are
generated.

FIGURE 4.8: An example of RCNN generating candidate regions on an
image from the Udacity self driving car dataset [18].

(A) An image before candidate regions
are generated.

(B) An image after candidate regions are
generated.

FIGURE 4.9: An example of RCNN generating candidate regions on an
image from the Eastern North American dataset [19].

75

(A) An image before candidate regions
are generated.

(B) An image after candidate regions are
generated.

FIGURE 4.10: An example of RCNN generating candidate regions on
an image from the snapshot Serengeti dataset [20].

(A) An image before candidate regions
are generated.

(B) An image after candidate regions are
generated.

FIGURE 4.11: An example of RCNN generating candidate regions on
an image from the DOTA dataset [21].

In order to make the necessary predictions an IoU threshold is applied and in this
case, an IoU threshold of 0.4 was used. With this in mind the overall training time
was considerably long given that the predictions were being made through the sole
use of a CPU, which further added to the time and computational complexity. As
such the average training time for the RCNN model with regard to the datasets

76

used, was approximately 268 hours. To further elucidate the average runtime at
test time was approximately 440 seconds per image. That is it took an average of
440 seconds to generate the necessary candidate regions and subsequently make
the relevant prediction.

Moving onto the aspect of accuracy, what is of particular interest in this regard
would be the mAP that was achieved for each dataset. The RCNN had the highest
mAP in regards to the DOTA dataset [21], followed by the PASCAL VOC [17], the
Eastern North American dataset [19], the snapshot Serengeti dataset [20], and lastly
the Udacity self driving car [18]. The differences in performance across datasets
can be attributed to costs related to the feature maps in relation to storage space
as well as how localizations are made for small/large objects within the image. To
elucidate further a significant drawback of the RCNN is that the features from each
proposal from each image is written to a storage device and as such these features
require a large volume of storage space. This drawback significantly impacts train-
ing time. Furthermore it is observed that the generated regions (through the use of
the selective search algorithm) were able to better detect small objects within im-
ages (as observed with the DOTA dataset [21]).

The RCNN model implemented in this paper, outperformed the RCNN imple-
mented in Girshick et al. [5], in relation to the PASCAL VOC dataset [17]. The mAP
achieved for the RCNN model implemented in [5], for the PASCAL VOC dataset,
was 50.2%, whereas the mAP achieved by the RCNN model implemented in this
paper was 52.8%. In relation to the other datasets, it does not seem that the RCNN
was applied to them in prior works.

4.2.2 Faster Regions with Convolutional Neural Networks

With regards to the Faster RCNN, object proposals are delegated to the RPN and as
such approximately 300 regions were being generated for each image when making
the necessary predictions. IoU thresholds of 0.7 as well as 0.3 were considered in
order to adequately assign the appropriate negative/positive anchor boxes. The
proposed regions were used to train the Fast RCNN.

77

As noted before this unified system leads to quicker training and testing times. In
regards to training time, it is noted that this model had an average training time
of approximately 178 hours across the four datasets and an average runtime of ap-
proximately 20 seconds (in relation to the test images).

The Faster RCNN recorded its highest mAP with the PASCAL VOC dataset [17],
followed by the DOTA dataset [21], the Eastern North American dataset [19], the
snapshot Serengeti dataset [20], and lastly the Udacity self driving car [18]. Once
again it is observed that implementations that use regional proposals are better able
to detect small objects within images due to the results obtained from the DOTA
dataset [21].

In order to improve and account for the performance of the Faster RCNN there are
perhaps several steps or adjustments in the given methodology one could make.
One of the first options would be to address the issue of training networks with
features shared. For this investigation, an alternate training methodology was used
and as such experimenting with an approximate joint training implementation as
well as a non approximate joint training implementation could improve the overall
performance of the given model (more so in terms of training time) [11]. Moving
on, a change in the settings of the anchors could be used to improve the results.
This is done by changing the number of aspect ratios and anchor scales as well as
their given values. The use of different anchor scales and anchors can be done since
the scales and aspect ratios are disentangled dimensions for the detection accuracy.
Lastly one could also consider that the λ in 2.1 could be changed to different values
in order to experiment and moderately improve results but in this regard the λ is
considered to be insensitive within a wide range. This is due to the fact that within
a scale of two orders of magnitude, λ only illustrates marginal increases in perfor-
mance [11].

The Faster RCNN model implemented in this paper, outperformed the Faster RCNN
model implemented in Ren et al. [11], in relation to the PASCAL VOC dataset [17].
The mAP achieved for the Faster RCNN model implemented in [11], for the PAS-
CAL VOC dataset [17], was 73.2%, whereas the mAP achieved by the Faster RCNN
model implemented in this paper was 73.9%.

78

In Schneider, Taylor, and Kremer [53], the Faster RCNN model implemented in that
paper achieved an mAP of 76.7%, whereas the Faster RCNN model implemented in
this paper achieved an mAP of 43.8%, in relation to the Snapshot Serengeti dataset
[20].

In Xia et al. [21], an mAP of 60.46% (using oriented bounding boxes) and 54.13% (us-
ing horizontal bounding boxes), in relation to the DOTA dataset [21], was achieved
by using a SSD model [21]. The model implemented in this paper achieved a mAP
of 50.3%, and as such was outperformed by the SSD models implemented in Xia et
al. [21], that used two variations for their bounding boxes (horizontal and oriented
bounding boxes) [21]. In relation to the other datasets, it does not seem that the
Faster RCNN was applied to them, in prior works.

4.2.3 You Only Look Once

As a single stage detector YOLO uses the full image when training and when it
makes its’ subsequent predictions. The first thing to consider with this imple-
mented version of YOLO is that K clustering was used to generate the necessary
anchor boxes. For each of the datasets the following hyper-parameter of k ∈ [2, 10]
was used. In order to determine the number clusters, the elbow curve is used to
determine this. In regards to the training and testing time, YOLO had an average
training time of approximately 72 hours across all 5 datasets and had an average test
time of approximately 9 seconds to generate the necessary predictions on a given
image. It is worth noting that the IoU threshold that was used in this investigation
was an IoU of 0.5. Again, it would have been more appropriate to adjust this pa-
rameter in regards to each relevant dataset.

YOLO had its’ highest mAP with the PASCAL VOC [17], followed by the Eastern
North American dataset [19], the snapshot Serengeti dataset [20], the Udacity self
driving car [18], and lastly the DOTA dataset [21]. There were several steps that
could have been implemented in order to improve the overall performance of the

79

YOLO model in regards to the other datasets that it achieved poor results on. Firstly
a pass-through layer could have been added so as to improve the localization of
objects with small bounding boxes (that is images with small objects). To further
improve the performance of this given YOLO implementation, the model could be
trained using images at a higher resolution of 448× 448 instead of 224× 224. Such a
change will prevent the model from switching to object detection while also simul-
taneously adjusting to the current input resolution [1]. Lastly multi-scale training
could be employed in order to train the model using different images at different
input scales which would allow the network to better perform across different in-
put dimensions [1].

The YOLO model implemented in this paper, outperformed the YOLO model im-
plemented in Redmon et al. [12], but was outperformed by the YOLOv2 model im-
plemented in Redmon and Farhadi [1], in relation to the PASCAL VOC dataset [17].
The mAP achieved for [12] for the PASCAL VOC dataset, was 57.9%, whereas the
mAP achieved by the YOLO model implemented in this paper was 71.1%, while the
mAP achieved by the YOLOv2 implemented in Redmon and Farhadi [1] was 73.4%.

In Schneider, Taylor, and Kremer [53], the YOLO model implemented in that pa-
per achieved a mAP of 43.3% whereas the YOLO model implemented in this paper
achieved an mAP of 49.8%, in relation to the Snapshot Serengeti dataset [20].

In Xia et al. [21], an mAP of 25.492% (using oriented bounding boxes) and 39.2% (us-
ing horizontal bounding boxes), in relation to the DOTA dataset [21], was achieved
by using a YOLOv2 model [21]. The model implemented in this paper achieved a
mAP of 39.9%, which outperformed the YOLOv2 model that was implemented in
Xia et al. [21], that used two variations for their bounding boxes (horizontal and
oriented bounding boxes) [21]. In relation to the other datasets, it does not seem
that the YOLO was applied to them in prior works.

80

4.2.4 Single Shot MultiBox Detector

When the SSD was implemented it managed an average training time of approx-
imately 68 hours across all four datasets, while it also had an average test time of
approximately 8 seconds to generate the necessary predictions on a given image.
The IoU threshold that was used with regard to the SSD was an IoU of 0.7. Further
adjustments or expansions on this particular aspect could be made in subsequent
bodies of work.

The SSD had its’ highest mAP with the PASCAL VOC [17], followed by the Eastern
North American dataset [19],the snapshot Serengeti dataset [20], the Udacity self
driving car [18], and lastly the DOTA dataset [21]. The SSD model is cited as being
prone to poorer performances where objects have a small bounding box [13]. As
such with this in mind the Udacity [18], Serengeti snapshot [20], the Eastern North
American [19] ands the DOTA [21] datasets highlight this in regards to the SSD’s
poorer performance on these datasets. With this in mind SSD will conversely per-
form better with large objects (like those in PASCAL VOC [17])[13].

In order to generate the required results, the SSD was implemented in such a man-
ner that i)t only receives images, with a 300× 300 resolution, as an input. Taking
this into account using a higher resolution input might have improved the models
performance but impacted its’ computational and time complexities in a negative
manner. With this in mind there are several other data augmentation strategies that
could be implemented in order to improve the results across the four datasets. The
first strategy one could use would be to, place an image on a canvas that is 16 times
larger than the original image and subsequently filled with mean values. This ex-
pansion of the images would introduce more training examples for the model but
it would subsequently increase training time as the number of iterations would in-
crease. This strategy is implemented so as to improve the accuracy related to small
objects [13]. Another strategy that could be employed would be to improve the
tiling of default boxes. This would be done so that the position and scale of default
boxes would have a better alignment with their receptive fields for every region on
a given feature map.

81

When comparing the results obtained in this investigation, in relation to the PAS-
CAL VOC dataset [17], to the results obtained in Liu et al. [13], it needs to be noted
that the model implemented by Liu et al. [13], had two variations [13]. The first im-
plementation had an input image of 300× 300 and the second implementation had
an input image of 512× 512 [13]. The first SSD implementation (which had an mAP
of 74.3%), was outperformed by the SSD model implemented in this paper (which
had an mAP of 76.1%), however in light of this, the second SSD implementation
from Liu et al. [13] had an mAP of 76.8%, which marginally outperformed the SSD
model implemented in this paper.

In Xia et al. [21], an mAP of 29.86% (using oriented bounding boxes) and 17.84% (us-
ing horizontal bounding boxes), in relation to the DOTA dataset [21], was achieved
by using a SSD model [21]. The model implemented in this paper achieved a mAP
of 31.0%, which outperformed the SSD model that was implemented in Xia et al.
[21], that used two variations for their bounding boxes (horizontal and oriented
bounding boxes) [21]. In relation to the other datasets, it does not seem that the
SSD was applied to them in prior works.

82

Chapter 5

Conclusions and Future Work

5.1 Conclusions

This investigation sought to compare and contrast the results/performance that sin-
gle and two stage detectors would obtain across several datasets. In light of this it is
observed that single stage detectors generally outperformed and generated better
results than two stage detectors. The notable exception to this would be although
two stage detectors are still quite inefficient in making timely predictions, they still
had a better mAP score when making predictions on remotely sensed images. In
this regard, the RCNN followed by the Faster RCNN (Two stage detectors) vastly
outperformed YOLO and the SSD (Single stage detectors). When considering the
performance of these implementations, on image datasets that were not remotely
sensed, one can actually see a reverse in performance as the single stage detectors
(SSD followed by YOLO) outperform the two stage detectors (Faster RCNN fol-
lowed RCNN).

The differences in performance with regard to remotely and none remotely sensed
image datasets, are largely due to the ability to perform localizations on small ob-
jects within the given images. The RCNN and Faster RCNN utilize regional pro-
posals in order to generate their predictions and in light of this they are better able
to localize small objects within images.

83

5.2 Future Work

This body of work could be further extended and expanded upon by including
contemporary methodologies and implementations such as the mask-RCNN [37],
YOLOv3 [54], YOLOv4 [55]. Furthermore the use of different remotely sensed
datasets could be considered in order to have more expansive results. Furthermore,
the limitations of the study could also be accounted in order to generate more mean-
ingful results, more so in relation to the optimization of the hyper-parameters.

Another consideration that could be taken into account would be to improve the
overall performance of two stage detectors, in respect to the amount of time needed
for them to make predictions as well as improving the overall accuracy of single
stage detectors on remotely sensed images.

One main limitation of this study would be that the hyper-parameters for the mod-
els used in this investigation were not optimized, for the various datasets that were
used in this investigation. To alleviate this limitation, several algorithms can be
implemented in order to fine-tune and optimise the hyper-parameters of the ob-
ject detector models that were implemented [56]. Search algorithms such as Grid
search, Random search and the Bayesian optimization are just some of the many
search algorithms that can be considered for future bodies of work [56]. In addition
to this, open and closed source hyper-parameter toolkits can also be employed and
used in order to streamline the fine tuning of the hyper-parameters in question [56].

84

Bibliography

[1] Joseph Redmon and Ali Farhadi. YOLO9000: Better, Faster, Stronger. 2016. arXiv:
1612.08242 [cs.CV].

[2] Constantine Papageorgiou and Tomaso Poggio. “A Trainable System for Ob-
ject Detection”. In: International Journal of Computer Vision 38 (June 2000), pp. 15–
33. DOI: 10.1023/A:1008162616689.

[3] Henry Schneiderman and Takeo Kanade. “Object Detection Using the Statis-
tics of Parts”. In: International Journal of Computer Vision 56 (Feb. 2004), pp. 151–
177. DOI: 10.1023/B:VISI.0000011202.85607.00.

[4] N. Dalal and B. Triggs. “Histograms of oriented gradients for human detec-
tion”. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR’05). Vol. 1. 2005, 886–893 vol. 1. DOI: 10.1109/CVPR.2005.
177.

[5] Ross B. Girshick et al. “Rich feature hierarchies for accurate object detection
and semantic segmentation”. In: CoRR abs/1311.2524 (2013). arXiv: 1311 .
2524. URL: http://arxiv.org/abs/1311.2524.

[6] Kunihiko Fukushima. “Neocognitron: A self-organizing neural network model
for a mechanism of pattern recognition unaffected by shift in position”. In: Bi-
ological cybernetics 36 (Feb. 1980), pp. 193–202. DOI: 10.1007/BF00344251.

[7] Yann Lecun et al. “Backpropagation Applied to Handwritten Zip Code Recog-
nition”. In: Neural Computation 1 (Dec. 1989), pp. 541–551. DOI: 10.1162/neco.
1989.1.4.541.

[8] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. “ImageNet Clas-
sification with Deep Convolutional Neural Networks”. In: Proceedings of the
25th International Conference on Neural Information Processing Systems - Volume
1. NIPS’12. Lake Tahoe, Nevada: Curran Associates Inc., 2012, 1097–1105.

https://arxiv.org/abs/1612.08242
https://doi.org/10.1023/A:1008162616689
https://doi.org/10.1023/B:VISI.0000011202.85607.00
https://doi.org/10.1109/CVPR.2005.177
https://doi.org/10.1109/CVPR.2005.177
https://arxiv.org/abs/1311.2524
https://arxiv.org/abs/1311.2524
http://arxiv.org/abs/1311.2524
https://doi.org/10.1007/BF00344251
https://doi.org/10.1162/neco.1989.1.4.541
https://doi.org/10.1162/neco.1989.1.4.541

85

[9] Christian Szegedy, Alexander Toshev, and Dumitru Erhan. “Deep Neural Net-
works for Object Detection”. In: Proceedings of the 26th International Confer-
ence on Neural Information Processing Systems - Volume 2. NIPS’13. Lake Tahoe,
Nevada: Curran Associates Inc., 2013, 2553–2561.

[10] Ross Girshick. Fast R-CNN. 2015. arXiv: 1504.08083 [cs.CV].

[11] Shaoqing Ren et al. Faster R-CNN: Towards Real-Time Object Detection with Re-
gion Proposal Networks. 2015. arXiv: 1506.01497 [cs.CV].

[12] Joseph Redmon et al. You Only Look Once: Unified, Real-Time Object Detection.
2015. arXiv: 1506.02640 [cs.CV].

[13] Wei Liu et al. “SSD: Single Shot MultiBox Detector”. In: Lecture Notes in Com-
puter Science (2016), 21–37. ISSN: 1611-3349. DOI: 10.1007/978-3-319-46448-
0_2. URL: http://dx.doi.org/10.1007/978-3-319-46448-0_2.

[14] Changqing Cao et al. “Research on Airplane and Ship Detection of Aerial Re-
mote Sensing Images Based on Convolutional Neural Network”. In: Sensors
20 (Aug. 2020), p. 4696. DOI: 10.3390/s20174696.

[15] Yoganandhan .A et al. “Fundamentals and Development of Self-Driving Cars”.
In: Materials today: proceedings (May 2020). DOI: 10.1016/j.matpr.2020.04.
736.

[16] Chinthakindi Balaram Murthy et al. “Investigations of Object Detection in Im-
ages/Videos Using Various Deep Learning Techniques and Embedded Plat-
forms—A Comprehensive Review”. In: Applied Sciences 10.9 (2020). ISSN: 2076-
3417. DOI: 10.3390/app10093280. URL: https://www.mdpi.com/2076-3417/
10/9/3280.

[17] Roozbeh Mottaghi et al. “The Role of Context for Object Detection and Se-
mantic Segmentation in the Wild”. In: Proceedings of the 2014 IEEE Conference
on Computer Vision and Pattern Recognition. CVPR ’14. USA: IEEE Computer
Society, 2014, 891–898. ISBN: 9781479951185. DOI: 10.1109/CVPR.2014.119.
URL: https://doi.org/10.1109/CVPR.2014.119.

[18] Udacity. “Udacity Self-Driving Car Driving Data”. In: (2016). URL: https:
//github.com/udacity/self-driving-car.

https://arxiv.org/abs/1504.08083
https://arxiv.org/abs/1506.01497
https://arxiv.org/abs/1506.02640
https://doi.org/10.1007/978-3-319-46448-0_2
https://doi.org/10.1007/978-3-319-46448-0_2
http://dx.doi.org/10.1007/978-3-319-46448-0_2
https://doi.org/10.3390/s20174696
https://doi.org/10.1016/j.matpr.2020.04.736
https://doi.org/10.1016/j.matpr.2020.04.736
https://doi.org/10.3390/app10093280
https://www.mdpi.com/2076-3417/10/9/3280
https://www.mdpi.com/2076-3417/10/9/3280
https://doi.org/10.1109/CVPR.2014.119
https://doi.org/10.1109/CVPR.2014.119
https://github.com/udacity/self-driving-car
https://github.com/udacity/self-driving-car

86

[19] Hayder Yousif, Roland Kays, and Zhihai He. “Dynamic Programming Selec-
tion of Object Proposals for Sequence-Level Animal Species Classification in
the Wild”. In: IEEE Transactions on Circuits and Systems for Video Technology
(2019).

[20] AB Swanson et al. Data from: Snapshot Serengeti, high-frequency annotated camera
trap images of 40 mammalian species in an African savanna. 2015. DOI: doi:10.
5061/dryad.5pt92. URL: https://doi.org/10.5061/dryad.5pt92.

[21] Gui-Song Xia et al. DOTA: A Large-scale Dataset for Object Detection in Aerial
Images. 2017. arXiv: 1711.10398 [cs.CV].

[22] Yangqing Jia et al. Caffe: Convolutional Architecture for Fast Feature Embedding.
2014. arXiv: 1408.5093 [cs.CV].

[23] J. R. R. Uijlings et al. “Selective Search for Object Recognition”. In: Interna-
tional Journal of Computer Vision 104.2 (2013), pp. 154–171. URL: https://ivi.
fnwi.uva.nl/isis/publications/2013/UijlingsIJCV2013.

[24] Olga Russakovsky et al. “ImageNet Large Scale Visual Recognition Chal-
lenge”. In: Int. J. Comput. Vision 115.3 (Dec. 2015), 211–252. ISSN: 0920-5691.
DOI: 10.1007/s11263-015-0816-y. URL: https://doi.org/10.1007/s11263-
015-0816-y.

[25] Alan Hevner and Samir Chatterjee. “Design Science Research in Informa-
tion Systems”. In: Design Research in Information Systems: Theory and Practice.
Vol. 22. Boston, MA: Springer US, 2010, pp. 9–22. ISBN: 978-1-4419-5653-8.
DOI: 10.1007/978-1-4419-5653-8_2. URL: https://doi.org/10.1007/978-
1-4419-5653-8_2.

[26] Alan R. Hevner. “A Three Cycle View of Design Science Research”. In: Scan-
dinavian Journal of Information Systems 19 (2007), p. 4.

[27] Yaneer Bar-Yam. “The sciences of the artificial, 3rd edition: By Herbert A. Si-
mon”. In: Complexity 3.5 (1998), pp. 47–48. DOI: https://doi.org/10.1002/
(SICI)1099-0526(199805/06)3:5<47::AID-CPLX7>3.0.CO;2-F. eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1002/%28SICI%291099-

0526%28199805/06%293%3A5%3C47%3A%3AAID-CPLX7%3E3.0.CO%3B2-F. URL:
https://onlinelibrary.wiley.com/doi/abs/10.1002/%28SICI%291099-

0526%28199805/06%293%3A5%3C47%3A%3AAID-CPLX7%3E3.0.CO%3B2-F.

https://doi.org/doi:10.5061/dryad.5pt92
https://doi.org/doi:10.5061/dryad.5pt92
https://doi.org/10.5061/dryad.5pt92
https://arxiv.org/abs/1711.10398
https://arxiv.org/abs/1408.5093
https://ivi.fnwi.uva.nl/isis/publications/2013/UijlingsIJCV2013
https://ivi.fnwi.uva.nl/isis/publications/2013/UijlingsIJCV2013
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1007/978-1-4419-5653-8_2
https://doi.org/10.1007/978-1-4419-5653-8_2
https://doi.org/10.1007/978-1-4419-5653-8_2
https://doi.org/https://doi.org/10.1002/(SICI)1099-0526(199805/06)3:5<47::AID-CPLX7>3.0.CO;2-F
https://doi.org/https://doi.org/10.1002/(SICI)1099-0526(199805/06)3:5<47::AID-CPLX7>3.0.CO;2-F
https://onlinelibrary.wiley.com/doi/pdf/10.1002/%28SICI%291099-0526%28199805/06%293%3A5%3C47%3A%3AAID-CPLX7%3E3.0.CO%3B2-F
https://onlinelibrary.wiley.com/doi/pdf/10.1002/%28SICI%291099-0526%28199805/06%293%3A5%3C47%3A%3AAID-CPLX7%3E3.0.CO%3B2-F
https://onlinelibrary.wiley.com/doi/abs/10.1002/%28SICI%291099-0526%28199805/06%293%3A5%3C47%3A%3AAID-CPLX7%3E3.0.CO%3B2-F
https://onlinelibrary.wiley.com/doi/abs/10.1002/%28SICI%291099-0526%28199805/06%293%3A5%3C47%3A%3AAID-CPLX7%3E3.0.CO%3B2-F

87

[28] Guido Van Rossum and Fred L. Drake. Python 3 Reference Manual. Scotts Val-
ley, CA: CreateSpace, 2009. ISBN: 1441412697.

[29] François Chollet et al. Keras. https://keras.io. 2015.

[30] Martín Abadi et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous
Systems. Software available from tensorflow.org. 2015. URL: https://www.
tensorflow.org/.

[31] Karen Simonyan and Andrew Zisserman. Very Deep Convolutional Networks
for Large-Scale Image Recognition. 2014. arXiv: 1409.1556 [cs.CV].

[32] J. Deng et al. “ImageNet: A large-scale hierarchical image database”. In: 2009
IEEE Computer Society Conference on Computer Vision and Pattern Recognition
Workshops (CVPR Workshops). Los Alamitos, CA, USA: IEEE Computer So-
ciety, 2009, pp. 248–255. DOI: 10.1109/CVPR.2009.5206848. URL: https:
//doi.ieeecomputersociety.org/10.1109/CVPR.2009.5206848.

[33] Robert Tibshirani, Guenther Walther, and Trevor Hastie. “Estimating the num-
ber of clusters in a data set via the gap statistic”. In: Journal of the Royal Statis-
tical Society: Series B (Statistical Methodology) 63.2 (2001), pp. 411–423. DOI: 10.
1111/1467-9868.00293. eprint: https://rss.onlinelibrary.wiley.com/
doi/pdf/10.1111/1467-9868.00293. URL: https://rss.onlinelibrary.
wiley.com/doi/abs/10.1111/1467-9868.00293.

[34] Pan Zhou et al. “Towards Theoretically Understanding Why SGD General-
izes Better Than ADAM in Deep Learning”. In: CoRR abs/2010.05627 (2020).
arXiv: 2010.05627. URL: https://arxiv.org/abs/2010.05627.

[35] Paul Henderson and Vittorio Ferrari. “End-to-end training of object class de-
tectors for mean average precision”. In: CoRR abs/1607.03476 (2016). arXiv:
1607.03476. URL: http://arxiv.org/abs/1607.03476.

[36] Ethan Zhang and Yi Zhang. “Average Precision”. In: Encyclopedia of Database
Systems. Ed. by LING LIU and M. TAMER ÖZSU. Boston, MA: Springer US,
2009, pp. 192–193. ISBN: 978-0-387-39940-9. DOI: 10.1007/978-0-387-39940-
9_482. URL: https://doi.org/10.1007/978-0-387-39940-9_482.

[37] Kaiming He et al. “Mask R-CNN”. In: CoRR abs/1703.06870 (2017). arXiv:
1703.06870. URL: http://arxiv.org/abs/1703.06870.

https://keras.io
https://www.tensorflow.org/
https://www.tensorflow.org/
https://arxiv.org/abs/1409.1556
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.ieeecomputersociety.org/10.1109/CVPR.2009.5206848
https://doi.ieeecomputersociety.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1111/1467-9868.00293
https://doi.org/10.1111/1467-9868.00293
https://rss.onlinelibrary.wiley.com/doi/pdf/10.1111/1467-9868.00293
https://rss.onlinelibrary.wiley.com/doi/pdf/10.1111/1467-9868.00293
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/1467-9868.00293
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/1467-9868.00293
https://arxiv.org/abs/2010.05627
https://arxiv.org/abs/2010.05627
https://arxiv.org/abs/1607.03476
http://arxiv.org/abs/1607.03476
https://doi.org/10.1007/978-0-387-39940-9_482
https://doi.org/10.1007/978-0-387-39940-9_482
https://doi.org/10.1007/978-0-387-39940-9_482
https://arxiv.org/abs/1703.06870
http://arxiv.org/abs/1703.06870

88

[38] Hamid Rezatofighi et al. “Generalized Intersection Over Union: A Metric and
a Loss for Bounding Box Regression”. In: 2019 IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR). 2019, pp. 658–666. DOI: 10.1109/
CVPR.2019.00075.

[39] David Olson and Dursun Delen. Advanced Data Mining Techniques. Jan. 2008.
ISBN: 978-3-540-76916-3. DOI: 10.1007/978-3-540-76917-0.

[40] Steven M. Beitzel, Eric C. Jensen, and Ophir Frieder. “MAP”. In: Encyclopedia
of Database Systems. Ed. by LING LIU and M. TAMER ÖZSU. Boston, MA:
Springer US, 2009, pp. 1691–1692. ISBN: 978-0-387-39940-9. DOI: 10.1007/978-
0-387-39940-9_492. URL: https://doi.org/10.1007/978-0-387-39940-
9_492.

[41] Ed Bott and Craig Stinson. Windows 10 inside out. Microsoft Press, 2019.

[42] Wes McKinney et al. “Data structures for statistical computing in python”. In:
Proceedings of the 9th Python in Science Conference. Vol. 445. Austin, TX. 2010,
pp. 51–56.

[43] Fabian Pedregosa et al. “Scikit-learn: Machine learning in Python”. In: Journal
of machine learning research 12.Oct (2011), pp. 2825–2830.

[44] Charles R. Harris et al. “Array programming with NumPy”. In: Nature 585
(2020), 357–362. DOI: 10.1038/s41586-020-2649-2.

[45] Pauli Virtanen et al. “SciPy 1.0: Fundamental Algorithms for Scientific Com-
puting in Python”. In: Nature Methods 17 (2020), pp. 261–272. DOI: 10.1038/
s41592-019-0686-2.

[46] John D Hunter. “Matplotlib: A 2D graphics environment”. In: Computing in
science & engineering 9.3 (2007), pp. 90–95.

[47] NVIDIA, Péter Vingelmann, and Frank H.P. Fitzek. CUDA, release: 10.2.89.
2020. URL: https://developer.nvidia.com/cuda-toolkit.

[48] Adam Paszke et al. “PyTorch: An Imperative Style, High-Performance Deep
Learning Library”. In: Advances in Neural Information Processing Systems 32.
Curran Associates, Inc., 2019, pp. 8024–8035. URL: http://papers.neurips.
cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-

learning-library.pdf.

https://doi.org/10.1109/CVPR.2019.00075
https://doi.org/10.1109/CVPR.2019.00075
https://doi.org/10.1007/978-3-540-76917-0
https://doi.org/10.1007/978-0-387-39940-9_492
https://doi.org/10.1007/978-0-387-39940-9_492
https://doi.org/10.1007/978-0-387-39940-9_492
https://doi.org/10.1007/978-0-387-39940-9_492
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-019-0686-2
https://developer.nvidia.com/cuda-toolkit
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

89

[49] Johannes J. Naudé and Deon Joubert. The Aerial Elephant Dataset. May 2019.
DOI: 10.5281/zenodo.3234780. URL: https://doi.org/10.5281/zenodo.
3234780.

[50] Alexandre Robicquet et al. “Learning Social Etiquette: Human Trajectory Un-
derstanding In Crowded Scenes”. In: vol. 9912. Oct. 2016, pp. 549–565. ISBN:
978-3-319-46483-1. DOI: 10.1007/978-3-319-46484-8_33.

[51] S. Feldstein and Carnegie Endowment for International Peace. The Global Ex-
pansion of AI Surveillance. Carnegie Endowment for International Peace, 2019.
URL: https://books.google.be/books?id=W9JQzQEACAAJ.

[52] Stuart Hargreaves. “Online Monitoring of ’Localists’ in Hong Kong: A Return
to Political Policing?” In: Surveillance & Society 15 (Aug. 2017), p. 425. DOI:
10.24908/ss.v15i3/4.6619.

[53] Stefan Schneider, Graham W. Taylor, and Stefan C. Kremer. “Deep Learn-
ing Object Detection Methods for Ecological Camera Trap Data”. In: CoRR
abs/1803.10842 (2018). arXiv: 1803.10842. URL: http://arxiv.org/abs/
1803.10842.

[54] Joseph Redmon and Ali Farhadi. “YOLOv3: An Incremental Improvement”.
In: CoRR abs/1804.02767 (2018). arXiv: 1804.02767. URL: http://arxiv.org/
abs/1804.02767.

[55] Alexey Bochkovskiy, Chien-Yao Wang, and Hong-Yuan Mark Liao. YOLOv4:
Optimal Speed and Accuracy of Object Detection. 2020. arXiv: 2004.10934 [cs.CV].

[56] Tong Yu and Hong Zhu. Hyper-Parameter Optimization: A Review of Algorithms
and Applications. 2020. arXiv: 2003.05689 [cs.LG].

https://doi.org/10.5281/zenodo.3234780
https://doi.org/10.5281/zenodo.3234780
https://doi.org/10.5281/zenodo.3234780
https://doi.org/10.1007/978-3-319-46484-8_33
https://books.google.be/books?id=W9JQzQEACAAJ
https://doi.org/10.24908/ss.v15i3/4.6619
https://arxiv.org/abs/1803.10842
http://arxiv.org/abs/1803.10842
http://arxiv.org/abs/1803.10842
https://arxiv.org/abs/1804.02767
http://arxiv.org/abs/1804.02767
http://arxiv.org/abs/1804.02767
https://arxiv.org/abs/2004.10934
https://arxiv.org/abs/2003.05689

	Declaration
	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Background
	Research Question (or Problem Statement)
	Research Area
	Research Problem
	Research Aims and Objectives

	Limitations of this research investigation

	Literature Review
	Regions with Convolutional Neural Network(RCNN)
	The Architecture of the Model
	Test Time Deduction for RCNN
	Run-time Analysis for RCNN
	Supervised pre-Training
	Domain Fine Tuning of the RCNN
	Object Category Classifiers of the RCNN.

	Faster RCNN
	The Region Proposal Network
	Generating Anchors
	Translation-Invariant
	Multi-Scale Anchors
	Loss Function for Training RPNs
	Training Hhase for the RPN

	Exchanging Features between the Fast RCNN as well as the RCNN
	4-Step Alternating Training.
	Implementation Details

	YOLO
	Training the model with inputs of multiple scales

	SSD
	Model for the SSD
	Training for the SSD

	Research Methodology
	Introduction
	Research Design

	Methodology
	Proposed Method
	Methodology for RCNN
	Methodology for Faster RCNN
	Methodology for YOLO
	Methodology for SSD

	Datasets
	Analysis

	Technical Specifications
	Limitations
	Ethical Considerations
	Conclusion

	Results, Discussion and Limitations
	Results
	Results for the PASCAl VOC training dataset
	Results for the Udacity self driving car training dataset
	Results for the Eastern North American 24 dataset
	Results for the Snapshot Serengeti training dataset
	Results for the DOTA dataset
	Consolidation of results

	Discussion
	Regions with Convolutional Neural Networks
	Faster Regions with Convolutional Neural Networks
	You Only Look Once
	Single Shot MultiBox Detector

	Conclusions and Future Work
	Conclusions
	Future Work

	Bibliography

