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Abstract

There is a growing concern around student attrition worldwide, includ-
ing South African universities. More often than not, the reasons for stu-
dents not completing their degree in the allocated time frame include
academic reasons, socio-pschyo factors, and lack of effective transition
from the secondary education system to the tertiary education systems.
To overcome these challenges, the tertiary educational institutions en-
deavor to implement interventions geared toward academic success.
One of the challenges, however, is identifying the vulnerable students
in a timely manner. This study therefore aims to predict student perfor-
mance by using a learner attrition model so that the vulnerable students
are identified early on in the academic year and are provided support
through effective interventions, thereby impacting student success pos-
itively.

Predictive machine learning methods, such as support vector machines,
decision trees, and logistic regression, were trained to deduce the stu-
dents into four risk-profiles. A random forest outperformed other clas-
sifiers in predicting at-risk student profiles with an accuracy of 85%,
kappa statistic of 0.7, and an AUC of 0.95.

This research argues for a more complex view of predicting vulnerable
learners by including the student’s background, individual, and school-
ing attributes.

Keywords: Attrition, At-risk, Machine learning
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Chapter 1

Introduction

In this first chapter, we introduce our research. We will look at the background,
the problem statement, the motivation of the study, outline the aims and objectives
and, finally identify the limitations and assumptions of this research.

1.1 Background

Many students struggle to complete school on time, due to various reasons or fac-
tors. For the education institutions to address this issue, they will need to intervene
in order to assist students. Intervention can be in the form of support programs
that will be applied to assist students in getting back on track or cope at academic
institutions. With particular reference to the first years, as they are the most affected
Kuzilek et al. [24] and Johnson et al. [21]. To best apply the intervention programs,
universities need to identify the contributing factors to risk status, and also identify
vulnerable students as early as possible and refer them to appropriate intervention
programs.

The report by Bongekile Macupe [27], in Appendix A figure A.1, showed the
completion rates of students who enrolled for first year studies in 2013. Rhodes
university is leading with completion rate of 73.6%, followed by university of Zu-
luland with 71.6%; and the higher education institution with least completion rate
is the university of South Africa with 16.5%. These completion rates are across all
university faculties.

Identifying vulnerable (at risk) student profiles is of great benefit to the student,
the lecturer, the university, and the government or funders. Studies define at risk
concepts differently. Many studies define at risk students as those who drop out
or leave before the programs enrolled for complete [8]. This study will adopt the
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definition of vulnerable learners as those whose interrelations of biographical, indi-
vidual, and schooling characteristics have a higher probability of failing to meet the
minimum requirements to obtain an undergraduate degree in record time (3-years)
[1, 5].

A student who enrolls in a higher education program can fall into any of the
four risk profiles that are associated with the probability of completing their pro-
gram. The Risk profiles: ‘Lowest risk’ - where the student is expected to complete
their degree in the minimum time (3 years); ‘medium risk’ - where the student is ex-
pected to complete in more than the minimum time; ‘high risk’ - where the student
fails or drops-out before the minimum time; and ‘highest risk’ - where the student
fails in more than the minimum time.

1.2 Problem Statement (or Research Hypothesis)

In a report by Michael and Susan Dell Foundation in 2017, about 32% of students
who are financially supported complete their degree after five years [30]. A
spokesperson at the University of Capetown agrees to the fact that some courses
experience different rates of dropout in their students. Students in Bachelor of
Social Science have the highest dropout occurrences; this is followed by Bachelor
of Commerce, while the least occurrence is in Bachelor of Business Science.

Research Questions :

• Is student attrition (risk profile) affected by the background, individual, and
schooling attributes ?

• Can we apply machine learning classification algorithms to predict (classify)
student risk profiles using background, individual, and schooling character-
istics ?

• Which model better or correctly classifies risk profiles ?



3

1.3 Research Aims and Objectives

This section identifies the aims and objectives of this study. It covers the main goals
that we are trying to achieve and how we are going to achieve them.

1.3.1 Research Aims

The main aim of this study is to explore the relationship between background, in-
dividual, and schooling characteristics on learner attrition, as per learner attrition
model proposed by Tinto [42]. These attributes are then used as input variables
to predict student attrition by classifying a learner into four risk profiles: ‘Lowest
risk’, ‘Medium risk’, ‘High risk’, and ‘Highest risk’, as described on Background
section.

This study will also compare the predictive accuracy of the Machine Learning
algorithms. We will identify which algorithm best deduces the student attrition into
the four risk statuses.

Finally, we will use the best model, with high predictive accuracy, to deduce the
most significant (important) factors in predicting risk status. The Information Gain
(IG) measure will be used to rank the feature contribution, from highest to least
important.

1.3.2 Objectives

The research objectives help us achieve our aims stated above :

• Obtain student trajectory data with background, individual, and schooling
characteristics, then clean and prune it accordingly.

• Research on the background and current studies from literature.

• Train / build predictive classification (ML) models using the combination of
background, individual, and schooling characteristics.

• Use background, individual, and schooling characteristics to predict / classify
risk profiles.

• Research previously used models from literature.
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• Compare results of our models with the literature results.

• Choose the best model, with high predictive power, from our trained models.

1.4 Limitations

• This study is only limited to students who enrolled at university from the pe-
riod of 2008 to 2018 and registered for any undergraduate Bachelor of Science
degree.

• This is a theoretical model, and its results do not refer to the actual student
population.

1.5 Assumptions and Definitions

The assumptions that were made during this research are :

• The synthetic, simulated dataset that was was used to train our models repre-
sents the actual population of people who enroll at higher education institu-
tions.

• The duration of a degree is exactly 3 years.

• Enrollment programmes are in the science degrees (BSc) only.

1.6 Overview

In this chapter, we have introduced our topic and highlighted the components that
will be covered in our study. The following chapters: Chapter 2 will look at the
background and the related work in studying the effect of biographical characteris-
tics, individual attributes, and schooling factors; on student attrition. Basically we
look at what work has been done on this field, and what are the findings of those
studies; Chapter 3 will focus on the methods that will be applied to execute our plan
to achieve our aims and objectives, i.e., the data that will be used, the models that
will be fitted, and how the whole research was executed; Chapter 4 we present and
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discuss the significance of our results and findings; and Chapter 5 we summarise
all the findings, contribution of the paper, and the future work.
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Chapter 2

Literature Review

This section expands from the introductory background section that addresses the
current literature of the stated problem.

The study of student attrition dates back to the early 1900s by the researchers like
Tinto [42] and Mwamwenda [32], till recent studies by Ajoodha and Jadhav [4] and
Ajoodha, Jadhav, and Dukhan [5]; where the authors explored the factors affecting
student academic performance. However, there is a growing demand for more
advanced ways of analyzing educational data and incorporate more information.
Student performance is an important metric used to track student and institutional
goals, both long term, and short term educational goals.

2.1 Student Attrition

The progress of a student at a tertiary institution is determined by their course fi-
nal mark or grade, which indicates progress to higher courses Downs et al. [17].
In higher education institutions, there are countless factors within and outside of
school that affect the performance of students. The factors that came forward are
socio-economic and psychological factors Hijazi and Naqvi [19].

In recent years many studies have focused on distinguishing the critical factors
in the student factors that ensure success academically. Characteristics, for example,
psychological wellness and social abilities, in particular, self-viability, inspiration,
frames of mind and conduct, scholarly competence, communication abilities, team
effort, participation, and group capacities, are among the significant highlights for
the students to strive or cope at university Hijazi and Naqvi [19]. Students with
these aptitudes can work viably with others and deal with their studies produc-
tively Hijazi and Naqvi [19] and Lust and Moore [26].
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In this research, we adopt the conceptual framework model by Tinto [42], where
he relates the background or family, individual attributes, and pre-schooling at-
tributes, to the drop out decisions, Figure 2.1. These features are then used as input
to predict student attrition. The combination and relation of these features influ-
ence the student’s commitment to their goals and school commitment. The input
features (i) background or family characteristics, (ii) individual attributes, and (iii)
pre-college attribute’s impact has been quite explored in previous studies, and pro-
vide a right prediction for student performance at higher education institutions.

FIGURE 2.1: The Conceptual Framework Model of Tinto [42] that
shows the relationship between background or family characteristics,
individual attributes, and pre-schooling attributes to the drop out de-

cisions.

Family or Background attributes explored by previous studies include: age, gen-
der, race description, language, family background, living location, parent’s occu-
pation and qualifications; to predict the student performance, ( Abu Tair and El-
Halees [3], Ajoodha and Jadhav [4], Pal [36], Pandey and Pal [37], Downs et al.
[17], Mwamwenda [32], Steenkamp, Baard, and Frick [40], Alfan and Othman [6],
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Yukselturk, Ozekes, and Türel [49], Pandey and Pal [37], Abed, Ajoodha, and Jad-
hav [1], and Ajoodha, Jadhav, and Dukhan [5]). The findings are quite consistent;
gender was found to be a high influencing factor in school drop out, with 68% prob-
ability [36]. Similarly, Mwamwenda [32]’s findings showed statistically significant
gender anxiety and academic achievement among South African university grad-
uate students. Steenkamp, Baard, and Frick [40] and Downs et al. [17] the English
language was found as one of the contributing factors to poor performance, among
other factors. More evidence on language issue was discovered by Downs et al.
[17], that students from disadvantaged backgrounds (rural areas) perform well on
multiple-choice questions, and poorly on essay and short question sections in as-
sessments.

Hard work, self-inspiration, self-viability (effectiveness), student’s attitudes and
behavior, time the board, and commitment in-class exercises are the variables that
fall under individual attributes and contribute significantly to student attrition
Stewart [41], Womble [47], and Ajoodha and Jadhav [4]. A large portion of those re-
searches has concentrated on student performance in the U.S. and Europe regions.
In any case, since social contrasts may play a role in forming the elements that in-
fluence student’s performance, it is essential to investigate features according to the
region or country Hijazi and Naqvi [19].

In terms of pre-schooling attributes, quite an extensive research has been done
on this section by assessing the students’ summative assessments ( Abu Tair and
El-Halees [3], Pal [36], Pandey and Pal [37], Downs et al. [17], Steenkamp, Baard,
and Frick [40], Alfan and Othman [6, 7], Kabakchieva [22], and Ajoodha and Jadhav
[4]). These factors include entry qualifications and the subjects taken by the student
before college. Entry qualifications, and the pre-taken subjects before university
show variability in the performance of the students [6]. Pre-taken subjects like eco-
nomics, mathematics, and accounting subjects are essential in helping the students
in choosing the courses in both business and accounting programs [6]. The South
African universities solely rely on these attributes (matric results aggregates) as a
schooling system measure for acceptance.
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2.2 Predictive Modelling in Education

Predictive modeling is the use of historical data to train the model, to discover
patterns and behavior, then use that information to infer the likelihood of from
the combination of observed (predictor) data. Many types of research have quite
adopted the use of machine learning or rather data mining predictive models than
traditional statistical models. This is due to the flexibility of machine learning mod-
els and their ability to incorporate vast and complex datasets.

In the field of education data mining, many authors have applied a lot of pre-
dictive modeling like K-Nearest Neighbourhood (KNN) ( Yukselturk, Ozekes, and
Türel [49] and Mayilvaganan and Kalpanadevi [29]); Decision Trees (DT) (Yuksel-
turk, Ozekes, and Türel [49], Nghe, Janecek, and Haddawy [33], and Mayilvaganan
and Kalpanadevi [29]); Naive Bayes (NB) (Yukselturk, Ozekes, and Türel [49],
Pandey and Pal [37], Abu Tair and El-Halees [3], Mayilvaganan and Kalpanadevi
[29], and Ajoodha and Jadhav [4]); Neural Networks (NN) ( Yukselturk, Ozekes,
and Türel [49] and Ajoodha and Jadhav [4]. These models have been widely used
for predicting drop out ( Yukselturk, Ozekes, and Türel [49] and Bhardwaj and Pal
[10]); prediction of student grade Abu Tair and El-Halees [3]; and predicting per-
former or under performer Pandey and Pal [37].

In terms of relating the features used by previous authors as per the Tinto [42]
conceptual framework, i.e. (i) biographical or background, (ii) individual, and (iii)
pre-college or schooling attributes; to the machine learning models used to predict
learner attrition, by previous studies, and also the model performance.

Nghe, Janecek, and Haddawy [33] extensively researched applying the Bayesian
network and decision tree in the forecast of learner’s academic behavior. The re-
search reveals that the decision tree performed better than the Bayesian network.
However, Kabakchieva [22] discovers that when considering the rates of prediction,
the applied data mining algorithm’s performances are quite similar. The outcome
of the research by Yukselturk, Ozekes, and Türel [49] reveals that k-NN performed
more than the other algorithms having a sensitivity of about 87%, decision tree also
performed excellently with 79.7%, followed by Neural Network (NN) with 76.8%,
while Naive Bayes got 73.9%; on the investigation of the dropout scenario of an on-
line study platform. The Naive Bayes applied by Bhardwaj and Pal [10] achieved
excellent outcomes with a dropout precision of 0.917 and a recall of 0.924.
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Chapter 3

Research Methodology

In this chapter we will briefly look into the methods that were used to analyse and
model our data.

3.1 Research Hypothesis

Background, individual, and schooling attributes can together be used to predict
undergraduate learner attrition. This will contribute (produce) to a more complex
view of predicting student attrition, rather than only relying on pre-schooling char-
acteristics as a primary schooling system measure for student placement at univer-
sity or higher education institutions.

3.2 Research Design

In the figure 3.1, we define the pipeline for classifying student risk profiles (attri-
tion). The figure shows the involved stages (phases): data preparation and pruning,
feature selection, model training and validation using k-fold cross validation with
10 folds, model testing using test dataset, and model predictions.

FIGURE 3.1: The research methodology pipeline.
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3.3 Data

The data that was used in this study is synthetically simulated from a learned
Bayesian Network structure, on the study by Ajoodha and Jadhav [4]. The forward
sampling algorithm was applied when generating the data. The values of the par-
ent nodes are sampled from their unconditional distribution, and then the children
nodes values are sampled from the parent’s sets. The sampling process is iterative
until all the nodes values are generated.

The continuous variables were simulated using Gaussian distribution. The
Gaussian distribution, well known as Normal distribution, is a continuous func-
tion with mean (µ) and standard deviation (σ) and assumes normality in the data.
Hence, that is why continuous variables values contained negative values, for ex-
ample, aggregate marks and probabilities. The negative values are removed from
the dataset; we could not modify them as that would temper the distribution of the
network. The discrete variables were simulated using tabular conditional probabil-
ity density (CPD), where you specify the factor levels.

3.3.1 Data Preparation and Pruning

The missing values accounted for about 20% for urban or rural variable and 10%
for home province variable. All the observations with missing values were removed
entirely on the dataset.

The complete dataset came to 24 variables and 2000 observations, after prun-
ing. We then performed analysis and modeling using the complete dataset, with no
missing values.

3.3.2 Theoretical Framework and Features Used

The study adopts the conceptual framework 3.2 to explain the assumption of causal
relationships of the variables and the target variable, risk status. The framework
hypothetically assumes that the contributing factors to student performance are (i)
Biographical characteristics, (ii) Pre-College Observations, and (iii) University En-
rolment Observations.
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FIGURE 3.2: The theoretical framework.

The table 3.1 summarises the features used under each category. For (i) Bio-
graphical characteristics, we have the gender, race of the person, the age at first
year, home language, home province, home country - where the person originates
from, and whether the person is from rural or urban areas. (ii) Pre-College Obser-
vations include school quintile - which indicates school poverty with quintile one is
the poorest and quintile five as the least poor school, core mathematics, English first
additional language, computer studies, technical mathematics and national bench-
mark tests (NBTAL, NBTMA, NBTQC) - which measure the student’s academic
readiness for university. Finally, for (iii) University Enrolment Observations; the
year the degree was started, plan description - the professional career, probabil-
ity of being successful in different science streams (mathematics, physical science,
earth science, and biological science), aggregate for course marks, and the number
of years spent to complete the degree.

The description of the features and their possible values are attached in Ap-
pendix A, table A.1.
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TABLE 3.1: List of features used in the study.

Biographical Characteristics Pre-College
Enrollment

Observations

Gender School Quintile Year Started
Race Mathematics Major Plan Description

Age at first year English FAL
Prob of ( Math,
Physics, Earth,

Biological)
Home Language Computers Aggregate

Home Province Additional Maths
Number of years in

degree
Home Country NBTAL, NBTMA, NBTQC
From Rural / Urban

3.4 Methods

In this section, we describe the procedure that was applied during this research. We
will look into detail the instruments and or software used to carry out modeling,
also the methods that were used to model or analyze the data, and finally discuss
the metrics that were used to evaluate our trained models.

3.4.1 The Models

In this section, we discuss the predictive models that were used in training our data.

A. Random Forests

Random Forests (RF), also referred to as random decision forests, are an ensem-
ble learning method for classification and regression. They fit several decision tree
classifiers on various sub-samples of the dataset and uses averaging to improve
the predictive accuracy and control over-fitting, which was the weakness of deci-
sion trees [35]. Breiman [11] introduced the bagging method and the randomness
of feature selection. The bagging method improved decision trees by lowering the



14

variance and thereby controlling over-fitting. Assuming that we have a training set
X = x1,2,...k, response variable θi , and training tree hk .

FIGURE 3.3: The Random Forest Example [2].

Figure 3.3 shows an example of a random forest model with X dataset, N fea-
tures, and the number of trees is 4. The random forest uses the majority class voted
by the trees, as the predicted label.

The random forest parameters (in Caret and ranger R packages [23, 48]) are :
mtry - "is the number of variables randomly sampled as candidates at each split",
split - rule applied at each node splitting, and min.node.size - minimal node size.

B. Coarse Decision Trees

Coarse Decision Trees are the simplest of decision trees. They provide very low
model flexibility, only have a few leaves to make a coarse distinction between
classes, the maximum number of splits is 4. Decision Trees (DT) are mostly well
known as Classification and Regression Trees (CART). DT are tree-like graph mod-
els based on possible conditional outcomes. Building a tree requires (involves) de-
cisions on selecting features and deciding the conditions to use for dividing nodes
or splitting.

The coarse decision tree parameters (in Caret and rpartScore R packages [23, 18]
) are : complexity parameter (cp) - controls over fitting, number of splits, split - split
function, and prune - pruning measure.
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FIGURE 3.4: The Decision Tree Example [15].

C. Linear Logistic Regression

Logistic regression is of the most popular and simplest models used to model the
linear relationship between the dependent variable (Y) and the independent vari-
ables (Xi’s). The ‘logistic’ refers to a categorical response variable; for two cate-
gories, it is a binary or dichotomous (binomial/binary logistic regression). It could
have more than two classes (multinomial logistic regression).

The dependent variable Yi is our risk status with categories: lowest risk,
medium risk, high risk, and highest risk; and independent variables Xi’s are bio-
graphical characteristics, pre-college, and enrollment observations as per table 3.1.

Yi = β0 + β1X1 + β2X2 + ... + βnXn

Yi = log
Pr(lowest)
Pr(highest)

for lowest risk category vs highest risk

Yi = log
Pr(medium)

Pr(highest)
for medium risk category vs highest risk

Yi = log
Pr(high)

Pr(highest)
for high risk category vs highest risk

Where Highest risk category is the reference category
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The parameters of the linear logistic classifier (in caret and CaTools R packages
[23, 46] ) is the number of iterations.

D. J48 (C4.5) Decision Trees

The J48 (C4.5) decision trees is a supervised classification algorithm that is an exten-
sion of Quinlan’s earlier Iterative Dichotomiser 3 (ID3) algorithm used to generate
a decision tree developed by Quinlan [39]. This method is originally applicable
in Weka software, but R studio software also provides an RWeka package that al-
lows the implementation of Weka machine learning algorithms. The C4.5 algorithm
works well with all data types, continuous, discrete, and text (factor), and it also
handles missing observations, meaning it can train with a dataset that has missing
values.

Like a typical decision tree algorithm, the C4.5 uses the information gain to se-
lect the splitting criteria (attribute), during the tree growth, which is the first step of
building (constructing) a tree — followed by the tree pruning, which is the final step
of constructing a tree, where the algorithm reduces the error rate by substituting the
internal node by a leaf node Podgorelec et al. [38].

The J48 (C4.5) decision trees parameters (in Caret and RWeka R packages [23,
20] are : C - confidence threshold, and M - minimum instance per leaf.

E. Extreme Gradient Boosting Tree

Extreme Gradient Boosting, well known as (XGBoost) is an algorithm that makes
use of gradient boosting decision tree algorithms. It computes residuals of prior
fitted models, then use this to create new models, that will correct these errors, and
thereby improving each new model, until they can no longer be improved. XGBoost
applies the gradient descent algorithm to reduce the training error on new models.
Therefore this is called gradient boosting [13, 14, 44].

XGBoost is designed for model training efficiency, i.e., train faster and performs
better than other tree classifiers, because of gradient boosting. Application and
result analysis of XGBoost is elementary and straightforward. They have an ad-
vanced functionality of finding the important variables in the model and rank them
from the highest to the least important variable and subset the variable list [13, 14,
44].



17

The Extreme Gradient Boosting decision trees parameters (in Caret and xgboost
R packages [23, 14] are : nrounds - boosting iterations, lambda - L2 regularization,
alpha - L1 regularization, and eta - learning rate.

F. Support Vector Machines

Support Vector Machines (SVM), are a type of supervised learning algorithm that
is applied to both regression and classification problems. They are usually applied
to classification problems.

SVM’s create a linear line (plane) that separates different (distinct) classes, and
that line is called hyperplane. They can be more than one hyperplanes, depending
on the number of features used in training the model. The algorithm then finds
points that lie closest to the classes, and closest to the hyperplane, the points are
called support vectors. The main objective is to find the optimal hyperplane and
thereby maximizing the margin, which is the gap between support vectors and hy-
perplanes.

The Support Vector Machines (SVM) parameters in Caret and e1071 R packages
[23, 16] are : kernel, and cost.

FIGURE 3.5: The example of a Support Vector Machine (SVM) [31].
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Figure 3.5 illustrates an example of the application of SVM in classifying two
classes: blue circles and black circles. The thick black line in the figure, is the op-
timal hyperplane, and the support vector points are located (lie) on the lines, and
also the margin indicated by the distance between two support vector lines [31].
Support Vector machines are well known for their effectiveness when solving high
dimensional problems, and also their memory efficiency.

3.4.2 Model Training

In this section, we look at the smaller components that play a part in model training.
We will look at the Instruments and software we used for training our models, and
also the decisions and procedures followed.

• Instruments : The softwares that we used for modelling our data are: R /
R-studio, Weka and Matlab.

1. R / R-studio is an open source software for statistical computing or pro-
gramming.

2. R-studio packages: caret and RWeka for model training; and ggplot2 for
graphics.

3. Waikato Environment for Knowledge Analysis(Weka) is a free open
source machine learning software, originally by the University of
Waikato, New Zealand.

4. Matrix laboratory (Matlab) is originally a numeric computing software,
but provides toolboxes for machine learning and graphic interfaces.

• Training/testing split : Our data was split into two parts, 75% for training
our model, and 25% for testing our models. We used splitting by target vari-
able (risk status) into equal class proportions. For example, if class A is 10%
in the original dataset, then this split will result in class A proportion of 10%
in both training and testing datasets.

• Model Validation : For evaluating our model performance, we used k-fold
cross-validation, with k = 10 folds, where k is the number of groups to split
the data. The data is then randomly partitioned into k subsets of equal size.
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Each subset is used in turn to validate the model fitted on the remaining k
- 1 subset. A lower expected loss value is better Tsamardinos, Brown, and
Aliferis [45] and Berger [9].

• Class Imbalance : The distribution of the target variable, Risk status shows
class imbalance, and the High Risk class is most dominant with 67%, followed
by Medium Risk with 16%, then Lowest Risk is 9%, and the lowest is Highest
Risk with 8%.
The models were first trained with an imbalanced dataset, then followed by
applying the sub-sampling technique, the synthetic minority over-sampling
(SMOTE). This method basically over samples the minority class synthetically,
and then also under-sample the majority class randomly Chawla et al. [12].

• Feature Selection : We first trained our models, then select the best model
with the highest predictive accuracy. Then used the best model to deduce
the most contributing factors (features) with high Information Gain (IG). A
higher IG, when compared to other features, indicates higher importance in
prediction. IG scale ranges from zero to one, with zero least contributing and
one most contributing (highest IG).
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3.5 Analysis

This section describes the tools and metrics used to evaluate the results of the
trained models. It provides the baselines that were used to determine the signif-
icance of the results.

Metrics

In this section, we describe in detail the metrics that we used to evaluate how well
the models fit the data.

A. Confusion Matrix

A confusion matrix is a table that is used to describe the performance of a classifica-
tion model (or “classifier") on a set of test data for which the true values are known.
By known we mean the ‘actual’ risk profile is pre-defined, i.e we knew when the
student graduated, how long it took to complete the qualification (graduate), and
also it was known whether they were successful (qualified) or not. The following
algorithm shows how actual risk was defined:

Algorithm 1 : Risk = f (isQualified, numberOfYears)

Ensure: Risk = f (isQuali f ied, numberO f Years)
if (isQualified = yes ) then

if (NumberOfYears = 3 ) then
Risk = “lowest risk"

else
Risk = “medium risk"

end if
else

if (isQualified = no ) then
if (NumberOfYears < 3 ) then

Risk = “high risk"
else

Risk = “highest risk"
end if

end if
end if
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TABLE 3.2: An example of a confusion matrix with n classes [28].

Actual Class
Predicted Class

Class 1 Class 2 · · · Class n

Class 1 X11 X12 · · · X1n

Class 2 X21 X22 · · · X2n
...

...
...

...
...

Class n Xn1 Xn2 · · · Xnn

Where values for each class i:

The True Positive Rate (TP) =
n

∑
j=1

Xjj (3.5.0.1)

The True Negative Rate (TN)i =
n

∑
j=1
j 6=i

n

∑
k=1
k 6=i

Xjk (3.5.0.2)

The False Negative Rate (FN)i =
n

∑
j=1
j 6=i

Xji (3.5.0.3)

The False Positive Rate (FP)i =
n

∑
j=1
j 6=i

Xij (3.5.0.4)

The precision metric, equation 3.5.0.5 helps us answer the question of when
the model predicts the class positively (correct), how often is it correct? In simple
terms, this metric gives us the rate at which positive predictions made are correct.

The Precision(i) =
TPall

TPall + FPi
(3.5.0.5)

The Recall metric equation 3.5.0.6, also known as sensitivity, tells us about the
stability of the model in distinguishing classes, which helps us answer the question
of how good is our model at detecting the positives. In simple terms, a change in
the dataset, how much does it affect the predictions made.
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The Recall(i) =
TPall

TPall + FNi
(3.5.0.6)

The precision and recall are significant metric scores, but it is difficult to maxi-
mize both of them, so one has to trade off one metric. However, there is an F - score
which is a harmonic mean of precision and recall, one can be able to find the right
model, that maximizes F1 score, equation 3.5.0.7.

The F Score = 2 ∗ Precision ∗ Recall
Precision + Recall

(3.5.0.7)

The accuracy metric is one of most commonly used and important metrics used
to measure the performance (correctness) of the model.

The Overall Accuracy =
TPall

Total number of test sets (labels)
(3.5.0.8)
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C. Kappa Statistic

The kappa statistic is a metric used to asses the classifier performance, especially
imbalanced class datasets. This metric compares the agreement between predicted
classifications and actual true class labels.

For example, suppose a dataset has two classes, 95% class 1, and 5% class 2
labels. The predictive classifier model achieves 95% accuracy, which in theory, that
is a perfect model. However, taking a closer look, the model is only able to detect
all class 1 instance but fails to detect (capture) any class 2 observations, that is not
a good model, even though the accuracy rate is the best. Hence, that is when the
kappa statistic is able to judge the performance of this classifier as not good at all.

The kappa value close to zero means no agreement; the classes are randomly
assigned; kappa value close to 1 means close total agreement, and the assignment
of classes to of the labels is not random.

The formula :

K =
N ∑n

i=1 mi,i − ∑n
i=1(GiCi)

N2 − ∑n
i=1(GiCi)

(3.5.0.9)

Where :

i - is the class number.
n - total number of classes. N - is the total number of classified values compared to
the true class labels.
mi,i - is the number of values belonging to the actual class i that have also been
classified as i (True Positives).
Ci - is the total number of predicted values belonging to class i
Gi - is the total number actual class labels belonging to class i.

Interpretation :
For kappa values interpretation, we will adopt the interpretation table by Landis
and Koch [25], for (k) values: −1 ≤ 0 ≤ 1
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Kappa (k) Interpretation

< 0 poor or no agreement, random
0.01 − 0.20 slight agreement
0.21 − 0.40 fair agreement
0.41 − 0.60 moderate agreement
0.61 − 0.80 substantial agreement
0.81 − 1.00 almost prefect agreement

TABLE 3.3: Kappa values Interpretation, according to Landis and Koch
[25] recommendations.

D. AUC / ROC Curves

The Area Under the Curve (AUC) - Receiver Operating Characteristics (ROC) curve
is a function of sensitivity plotted against 1- specificity at a specific decision thresh-
old. A good model (test), is the one with a ROC curve that passes through the top
left corner, where sensitivity and specificity are equal to one. This implies that the
ROC curves closer to the top left corner, have a higher overall accuracy of the model
[50].
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Chapter 4

Results and Discussion

In this chapter, we present and discuss the significance of our results and findings.

4.1 Descriptive Analysis

In this section, we will look at the descriptive statistics, or rather an analysis of
the relationship between variables. We also explore how the independent variables
relate to each other and the target variable (risk status).

(A) The doughnut pie chart of the variable
Year started. (B) The doughnut pie chart of the gender

variable.

FIGURE 4.1: The distribution of the variable year started and that of
gender variable.

The figure 4.1 shows the distribution of the variables year started and the gen-
der of the learner. The year started feature ranges from 2008 to 2018, with fairly
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distributed data over the years, there is no class imbalance. The distribution of gen-
der shows that the proportion of male gender is 55%, and that of females if 44%.
The gender variable is evenly distributed.

(A) The doughnut pie chart of the race de-
scription of the learner.

(B) The histogram showing distribution of
the age at first year of the learner.

FIGURE 4.2: The distribution of the race description and the age at first
year enrollment.

In figure 4.2, we describe the distribution of the race description and the age of
the students at first year enrollment. The proportions of the race descriptions show
that the highest proportion is black or African (67%), followed by White (20%),
Indian (10%), Coloured (2%), and the least is Chinese (1%). The distribution of age
at first year enrollment shows that the age between 20 to 30, is the most common
age group for first time enrollment.

(A) The bar graph of the frequency distribu-
tion of home language.

(B) The bar graph of the frequency distribu-
tion of home province.

FIGURE 4.3: The frequency distributions of the home (native) language
and the home province (state) the student originates.
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In figure 4.3, we describe the distribution of the home language and home
province variables. The majority of the students are English home language (35%),
followed by the isiZulu home language speaking ( 15%), and the rest are around
8% and lower. The majority of the enrolled students originate from the Gauteng
province (state) more than 60%, followed by Limpopo province (10%), and the rest
are much below 10%.

FIGURE 4.4: The distribution of the target variable risk profile (status).

The target variable risk profile has four risk profiles: lowest risk profile, where
the student is expected to complete the degree in minimum time (three years);
medium risk profile, the student is expected to complete the degree in more than
minimum time; the high risk profile, the student is expected to complete the degree
after failing and after a long time (maybe 6 years); and the highest risk profile, the
student is expected not to complete the degree, i.e., will fail to meet the minimum
requirements of the degree and will drop out. Figure 4.4, describes the distribution
of our target feature, risk status. It is what our machine learning problem is about.
The study aims to classify or deduce the students into the four risk profiles. The
classification algorithms are applied to predict this feature or the risk status of the
student.
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In our dataset, the distribution of the risk profile classes is: the most substan-
tial proportion is high risk profile (67%); followed by medium risk profile (16%);
then the lowest risk profile (9%); and the least proportion is the highest risk profile
(8%). Hence, this shows that this problem has an imbalanced class dataset. Machine
learning algorithms tend to be biassed and favor the high proportion class, which
is why there will be an application of class balancing techniques before training our
machine learning models.

FIGURE 4.5: The relationship between the age at first year, gender and
the risk profile.

The average age at first year enrollment at higher education institutions is 27
years old, with a minimum of 15 years and maximum is 45 years, with extreme age
of over 50 years. Figure 4.5 describes the relationship between the age at first year,
gender, and the risk profile. The distribution of gender shows no much variation
with respect to the age of first year enrollment students. However, when looking at
the risk profile, there is quite some variation, especially for the lowest risk profile
and medium risk profile. For the lowest risk profile, the average age in the first year
is 30 for females, and it is less than 25 for males. For the medium risk profile, the
average age for females is around 26 years, and for males, its higher than 30 years.
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FIGURE 4.6: The relationship between the performance, gender and
the risk profile.

The average aggregate mark is 50% across all genders and risk profiles. The
variance of performance is very low for both males and females, but females seem
to be getting higher aggregates than males for most of the risk profiles.

FIGURE 4.7: The relationship between the performance and the risk
profile.

The variable qualified has two statuses: qualified and failed, where they refer to
whether the student has qualified for the degree or not (which means has failed).
Figure 4.7 describes the relationship between the performance and the risk profile.
The distribution of qualified significantly differs for different levels of risk profiles.
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For high risk profile, there is a higher proportion of failed than qualified; then, for
the highest risk profile, the range of aggregate mark is higher for qualified when
compared to failed for the same risk profile. The lowest risk profile and the medium
risk have no failed learners under their class.

FIGURE 4.8: The relationship between the performance, race and the
risk profile.

The study dataset has five race descriptions with their respective proportions:
Black (65.7%), Chinese (1%), Coloured (2.4%), Indian (10.2%), and White (20.7%).
For the high risk profile and highest risk profile, Blacks perform better than the
other races (have higher aggregates); for the lowest risk profile, Coloureds perform
way better than other racial groups. The lowest risk profile has an overall higher
aggregate for all race descriptions across all risk profiles.
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4.2 Feature Importance

This section explores the contribution of each feature in classifying risk profile (sta-
tus) using Information Gain (IG) or entropy. Table 4.1 shows the ranking of the fea-
tures according to their contribution to classifying the risk profiles of the student.
The first column (Rank), is the ranking of features from 1 to 24, most significantly
contributing (high IG), to the least contributing (lowest IG). The second column is
the feature name associated with the ranking. The last column represents the Infor-
mation Gain (entropy), which is the value 0 ≤ e ≤ 1 , with 0 as no information
gain, and 1 highest IG.

In table 4.1, the features are color-coded differently; biographical characteris-
tics are light blue; pre-college observations are coded light purple; and individual
characteristics are blank, is not shaded, as per Tinto [42] framework. The top 3 con-
tributing features are (i) plan description, the student’s career choice, (ii) the year
started the program, which falls under the individual’s characteristics, and (iii) the
home language, which is the student’s native language. The features ranked from
4 to 7 are (iv) home province, the province/state student originates from; (v) home
country, the students country of origin; (vi) the gender of the student; and (vii)
the race description; these are biographical characteristics. The top 8 ranked fea-
tures suggest that biographical characteristics are the most dominant in deducing
the student risk status, followed by some few individual attributes. The pre-college
attributes show no or minimal effect on student risk profiles.



32

TABLE 4.1: The Information Gain (entropy) ranking of features.

Rank Feature Information Gain (e)

1 Plan Description 0.25
2 Year Started 0.24
3 Language 0.12
4 Home Province 0.08
5 Home Country 0.04
6 Gender 0.03
7 Rural or Urban 0.02
8 Race Description 0.02
9 Prob Of Mathematics Streamline 0.00

10 Prob Of Physics Streamline 0.00
11 Prob of Earth Streamline 0.00
12 Prob of Biology Streamline 0.00
13 Aggregate 0.00
14 Number Of Years for Degree 0.00
15 Age at First Year 0.00
16 Quintile 0.00
17 Mathematics Matric Major 0.00
18 English HL 0.00
19 English FAL 0.00
20 Computers 0.00
21 Additional Mathematics 0.00
22 NBTAL 0.00
23 NBTMA 0.00
24 NBTQL 0.00
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4.3 Machine Learning Classification Algorithms

In this section, we look at the results from the six fitted machine learning classifi-
cation algorithms: random forests, linear logistic regression, coarse decision trees,
extreme gradient boosted trees, support vector machines, and J48 (C4.5) decision
trees. The different metrics that were used to evaluate the predictive performance
of our models are confusion matrices, classification accuracy, Kappa statistic, sensi-
tivity, Precision, F-1 score, Area Under the Curve (AUC), and ROC curves.

Classification Accuracy

The classification accuracy is the metric used to measure how many predictions
were correctly classified from all the predictions made.

FIGURE 4.9: The bar graph of the accuracy for the six fitted models.

The accuracy was evaluated using 10-fold cross validation method. Figure 4.9
describes the results of the classification accuracy for the six fitted machine learning
classification algorithms: random forests classifier, linear logistic classifier, coarse
decision trees classifier, extreme gradient boosted trees classifier, support vector
machines classifier, and the J48 (C4.5).

The bars are color coded green represent the predictive accuracy of the models
trained with class imbalanced train dataset: lowest risk: 9% , medium risk: 16%,
high risk: 67%, highest risk: 8%; and the bars color coded grey represent the smote
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accuracy, which is the accuracy obtained from the models trained with a corrected
class imbalance dataset using SMOTE algorithm, where the minority class is syn-
thetically over sampled, and the majority class is under-sampled, leading to a class
balanced dataset: lowest risk: 31%, medium risk: 43%, high risk: 14%, highest risk:
12% . The SMOTE algorithm was introduced (applied) to reduce the class imbal-
ance so that we do not have over estimated training.

Comparing the green bars (predictive accuracy) and grey bars (smote accuracy),
by model, we can see that the predictive accuracy for most models is higher than
the smote accuracy except for the linear logistic regression and the XGBoost model.
This can imply that the actual dataset with imbalanced classes, performs better or
rather achieves greater predictive accuracy than the smote’d dataset with balanced
classes. This such contrary to improving class imbalance is a well known remedy
for improving model accuracy. This phenomena can be explained by the process
applied by the the smote algorithm when generating new points or synthetic ex-
amples, it does not take into consideration the neighbouring examples from other
classes, which this then results in overlapping of classes and introduces noise in
the dataset. This then results in poor performance of models in distinguishing the
different classes.

Figure 4.9 is arranged in descending order by predictive accuracy. Random for-
est is ranked as number one, which means it has the highest predictive accuracy
using the testing dataset. It correctly maps or classifies 85% of the instances from
all the predictions made, which means that 425 observations were correctly labeled
out of the 500 testing data observations across all classes. When looking at the cor-
responding smote accuracy, we can see that it achieves 70% classification accuracy,
which means than its 15% less accurate compared to the imbalanced class random
forest trained model.

Coarse decision trees achieves the second highest predictive accuracy of 82%,
following the random forest classifier. This means that the Coarse decision trees
correctly deduces 410 instances into the correct (actual) class labels across all the
classes. In comparison to the smote accuracy, the Coarse decision trees achieves 9%
accuracy, which very low compared to the accuracy of the class imbalanced sets.

The J48 (C4.5) decision trees has the third highest predictive accuracy of 82% af-
ter the random forest and the Coarse decision trees. This implies that it can correctly
predict 410 instances to the actual risk profiles across all classes. When comparing
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to the J48 (C4.5) decision trees trained using a smote’d dataset, which means bal-
anced classes, the model achieves 64% accuracy, which is not so bad but yet lower
than the accuracy of the class imbalanced set. This could potentially mean that the
J48 (C4.5) decision trees model fails to classify risk profiles for balanced datasets cor-
rectly, or the synthetic method of generating minority class might affect the dataset
and therefore affect the model training.

The linear logistic classifier have the fourth highest predictive accuracy of 81%
after the random forest, coarse decision trees, and J48 (C4.5) decision trees. The lin-
ear logistic classifier correctly maps 405 instances to their actual risk profile classes.
When compared to the linear logistic classifier trained with the balanced dataset,
smote accuracy is 81%, which is the same as the predictive accuracy achieved with
the imbalanced class dataset. This means that the model is not biased in terms of
class proportions, whether the data is balanced or not, but it will be able to deduce
the risk profile 81% times correctly.

The extreme gradient boosted trees have the fifth highest predictive accuracy of
76% after the random forest, coarse decision trees, J48 (C4.5) decision trees, and the
linear logistic classifier. The xgboost correctly maps 380 instances to their actual risk
profile classes. When compared to the xgboost trained with the balanced dataset,
smote accuracy is 76%, which is the same as the predictive accuracy achieved with
the imbalanced class dataset. This means that the model is not biased in terms of
class proportions, whether the data is balanced or not, but it will be able to deduce
the risk profile 76% times correctly.

The support vector machines have the least predictive accuracy, with predic-
tive accuracy of 62%. This means that the SVM correctly maps 310 instances to
their actual risk profile labels. In comparing to the model trained with a balanced
dataset, the SVM achieves accuracy of 54%, which is less than the predictive ac-
curacy achieved with an imbalanced dataset. The method used to generate the
minority class synthetically could have an impact on the training dataset, leading
to low predictive power (accuracy).
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Kappa Statistic

Kappa statistic is one of the most important metrics for measuring classifier perfor-
mance, more particularly imbalanced class dataset. It is a good indicator of how
the classifier performed across all classes because relying on the accuracy of the im-
balanced skewed class dataset can give biased results. A kappa value of less than
0 means poor or no agreement, 0 means random agreement, and close to 1 means
perfect agreement between predicted classifications and actual class labels.

FIGURE 4.10: The bar graph of the Kappa statistic for the six fitted
models.

Our dataset has imbalanced classes: lowest risk: 9%, medium risk: 16%, high
risk: 67%, and highest risk: 8%. The re-sampled dataset using the smote algorithm
contains controlled class proportions of lowest risk: 31%, medium risk: 43%, high
risk: 14%, and highest risk: 12%.

Figure 4.10 describes the kappa statistics from both the imbalanced dataset and
the smote balanced dataset. The bars of the graph are color coded differently,
the green bars represents the kappa statistic from models trained with imbalanced
datasets, and the grey coded bars represent the kappa statistic from models trained
with the class balanced dataset.

The figure 4.10 is ordered by the kappa statistics obtained from the imbalanced
dataset models in descending order. The random forest model is ranked number
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1, which means it has the highest kappa value of 0.70, which is interpreted as sub-
stantial agreement according to [25] interpretation. When comparing the kappa
statistic and smote kappa for the same model, random forest, the kappa value for
the imbalanced dataset is higher than the one for the balanced class dataset.

The kappa statistic for the coarse decision tree is 0.61, which is interpreted as
substantial agreement according to [25] interpretation, which means that this clas-
sifier performed substantially across all classes (instances). However, when com-
pared to the smote kappa value of 0.00, it can be seen that for the balanced dataset,
the coarse decision tree has poor or no agreement between predicted classification
and actual class risk profiles. There is quite a substantial difference between the
statistics.

The kappa statistic for the J48 (C4.5) decision tree is 0.64, which is interpreted as
substantial agreement according to [25] interpretation, which means that this clas-
sifier performed substantially across all classes (instances). However, when com-
pared to the smote kappa value of 0.18, it can be seen that for the balanced dataset,
the J48 (C4.5) decision tree has poor or no agreement between predicted classifica-
tion and actual class risk profiles. There is quite a substantial difference between
the statistics.

The linear logistic classifier has a kappa value of 0.49, which is interpreted as
moderate agreement according to [25] interpretation, which means that this classi-
fier performed moderately across all classes (instances). The Kappa statistics corre-
sponds (is equal) to the smote kappa statistic, which means that the logistic classifier
is not affected by the class imbalance.

The extreme gradient boosted trees model has a kappa statistic of 0.49, which
means the agreement is moderate, according to [25] interpretation. This implies that
the classifier performed moderately across all risk profile classes. When compared
to the smote kappa of 0.54, we find that the kappa for the class imbalanced dataset
is lower than that of a smoted dataset.

The support vector machines have a kappa statistic of 0.24, which according to
Landis and Koch [25] interpretation, the agreement is fair, meaning the classifier
performed fairly across all instances. As it happens with the smote kappa value,
which is 0.19, meaning there is a slight agreement across all the classes. The svm
model has the least kappa statistic.
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Confusion Matrices

In this section, we discuss the results of the confusion matrices of the classification
models. A confusion matrix is also known as the error matrix, which is a table
used to summarize pre-known predicted labels. It is used to evaluate a classifica-
tion model using the testing dataset. This metric is used to describe the confusion
between the classes. The n ∗ n matrix; rows represent actual class labels, and the
columns represent predicted class. The confusion matrices are computed from the
models trained with the imbalanced class datasets since the models trained with im-
balanced class dataset achieved higher accuracy and higher kappa statistic, which
makes them best compared to models trained with balanced class data using smote
algorithm. The following tables describe the confusion matrices for the six fitted
models and their respective predictive performances.

Table 4.2 illustrates the confusion matrix of the random forest classifier, and the
model attains 85% predictive accuracy using the 10-fold cross-validation. This clas-
sifier achieves the highest predictive accuracy compared to the other five models
fitted on this study. Describing each class performance in detail, we will look at the
diagonals that are color coded in green. The diagonals represent the percentage of
labels correctly classified into the actual class labels. Beginning from the top cell
of the diagonal, we can see that the lowest risk class achieves 30% accuracy; the
medium risk class achieves 84% accuracy, high risk class achieves 96%, and highest
risk class achieves 55% accuracy. The high risk class achieves the highest predictive
accuracy, followed by the medium risk accuracy, then the highest risk class, and
the lowest risk class has the lowest predictive accuracy. The lowest risk class and
the highest risk class are mostly confused with the medium risk class, with 40%
and 27%, respectively. The accuracy and kappa statistic were used to select the best
model parameters using the largest values, with mtry = 113, split rule = extra trees,
and min.mode.size = 1 as the hyper parameters.
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TABLE 4.2: A confusion matrix describing the performance of the ran-
dom forest model.

Actual
Predicted

Lowest Medium High Highest

Lowest 30% 40% 30% 0%

Medium 0% 84% 16% 0%

High 0% 4% 96% 0%

Highest 18% 27% 0% 55%

Table 4.3 illustrates the confusion matrix of the coarse decision tree classifier, and
the model achieves 82% predictive accuracy using the 10-fold cross validation. This
classifier achieves the second largest predictive accuracy after the random forest,
compared to the other fitted models on this study. Looking at the accuracy of each
class; the high risk class achieves the highest accuracy of 100%, which means it can
correctly distinguish this class from all the other classes; followed by the medium
risk class with 68% predictive accuracy; then the highest risk class with 45% ac-
curacy; and the lowest risk class achieves 0% accuracy, meaning that the coarse
decision tree model fails to deduce this class. The lowest risk class is mostly con-
fused with the medium risk class. The accuracy and kappa statistic were used to
select the best model parameters using the largest values, with cp = 0.05982, split =
abs, number of splits = 4, and prune = mr as the hyper parameters.

TABLE 4.3: A confusion matrix describing the performance of the
coarse decision tree model.

Actual
Predicted

Lowest Medium High Highest

Lowest 0% 70% 30% 0%

Medium 0% 68% 32% 0%

High 0% 0% 100% 0%

Highest 0% 55% 0% 45%
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Table 4.4 illustrates the confusion matrix of the J48 (C4.5) decision trees classifier,
and the model achieves 82% predictive accuracy using the 10-fold cross validation.
This classifier achieves the third highest predictive accuracy after random forest,
and coarse decision trees; compared to the other fitted models in this study. Look-
ing at the accuracy of each class; the high risk class achieves the highest accuracy of
96%, which means it can correctly distinguish this class 96% of the time from all the
other classes; followed by the highest risk class with 64% predictive accuracy; then
the medium risk class with 63% accuracy; and the lowest risk class achieves 20%
accuracy. The J48 (C4.5) decision trees model confuses the lowest risk class with the
medium and high risk class. The accuracy and kappa statistic were used to select
the best model parameters using the largest values, with C = 0.255, and m = 3 as the
hyper parameters.

TABLE 4.4: A confusion matrix describing the performance of the J48
(C4.5) model.

Actual
Predicted

Lowest Medium High Highest

Lowest 20% 30% 30% 20%

Medium 21% 63% 5% 11%

High 0% 4% 96% 0%

Highest 0% 36% 0% 64%

Table 4.5 illustrates the confusion matrix of the linear logistic classifier, and the
model achieves 81% predictive accuracy using the 10-fold cross validation. This
classifier achieves the fourth highest predictive accuracy after random forest, coarse
decision trees, and J48 (C4.5) decision trees . The diagonals are color coded in green,
representing the proportion of labels correctly classified into their correct risk pro-
file classes. The medium risk class and the high risk class are the top performing
classes on the logistic regression classifier with 37%, and 88% classification accu-
racies respectively, followed by the lowest risk profile with an accuracy of 20%,
and the highest risk profile class has the least accuracy with 0% correctly classi-
fied labels. The logistic regression classifier confuses the lowest risk class and the
highest risk class with the medium class and high risk class, as 55% of the highest
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risk labels classified as the high risk class. The model fails completely to predict
the highest risk class. The accuracy and kappa statistic were used to select the best
model parameters using the largest values, with number of iterations = 7 as the
hyper parameters.

TABLE 4.5: A confusion matrix describing the performance of the lin-
ear logistic regression model.

Actual
Predicted

Lowest Medium High Highest

Lowest 20% 20% 10% 0%

Medium 11% 37% 5% 0%

High 1% 4% 88% 0%

Highest 0% 27% 55% 0%

Table 4.6 describes the confusion matrix of the extreme gradient boosted (xg-
boost) decision trees classifier and the model achieves 76% predictive accuracy us-
ing the 10-fold cross validation. This classifier achieves the fifth largest predictive
accuracy after random forest, coarse decision trees, J48 (C4.5) decision trees, and
the linear logistic classifier compared to the other fitted models on this study. The
performance of the xgboost by class shows that the high risk class has the highest
accuracy of 95%, followed by medium risk class with 58%, then the lowest risk class
has 30%, then the highest risk class is the least performing with an accuracy of 0%.
The model fails to recognise this class. The accuracy and kappa statistic were used
to select the best model parameters using the largest values, with nrounds = 100,
lambda = 1e-04, alpha = 0, and eta = 0.3 as the hyper parameters.
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TABLE 4.6: A confusion matrix describing the performance of the XG-
Boost tree model.

Actual
Predicted

Lowest Medium High Highest

Lowest 30% 40% 30% 0%

Medium 16% 58% 11% 15%

High 0% 4% 95% 1%

Highest 19% 36% 45% 0%

Table 4.7 illustrates the confusion matrix of the support vector machines (SVM)
classifier, and the model achieves 62% predictive accuracy using the 10-fold cross
validation. This classifier achieves the sixth largest predictive accuracy compared
to the other fitted models in this study. The SVM classifier best predicts or classifies
the high risk class with 82% accuracy, following with the medium risk class with
accuracy 21%. The lowest risk class has 20% accuracy, closing with the highest risk
at 18% accuracy. The accuracy and kappa statistic were used to select the best model
parameters using the largest values, with kernel = linear, and cost = 0.5 as the hyper
parameters.

TABLE 4.7: A confusion matrix describing the performance of the sup-
port vector machine model.

Actual
Predicted

Lowest Medium High Highest

Lowest 20% 40% 30% 10%

Medium 26% 21% 42% 11%

High 8% 2% 82% 8%

Highest 9% 18% 55% 18%
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Sensitivity/Recall Metric

The sensitivity or recall is the measure of the proportion of actual positives that are
correctly classified. Table 4.8 illustrates the recall metric for the six trained models
and each risk profile class. This will help us describe which models correctly clas-
sify risk profiles and which risk profile classes have a higher proportion of correctly
classified labels.

The model that has the best (highest) overall recall is the random forest (0.66),
followed by the J48 (C4.5) decision trees (0.61), then the coarse decision trees (0.53),
then the linear logistic classifier (0.51), then the xgboost decision tree (0.46), and
the SVM has the least recall (0.35). This implies that the random forest has the
highest proportion of correctly classified risk profile labels. The svm the least recall,
meaning that they have a lower proportion of classes correctly classified as their
actual label.

Describing the recall rate by classes, shows that the high risk profile class has the
highest recall, which means that most of the observations labeled at high risk class
are actually high risk profiles; followed by medium risk profile; then highest risk
profile; and lastly the lowest risk profile, meaning that the observations classified as
lowest risk profiles, are actually not lowest risk label. The lowest risk profile class
has the highest miss classification rate across all the models, and the high risk class
has the most significant classification rate.

TABLE 4.8: The Sensitivity (Recall) of the six trained models.

Model Lowest Medium High Highest

Random Forest 0.30 0.84 0.96 0.55
Linear Logistic Regression 0.40 0.70 0.95 0.00
Coarse Decision Trees 0.00 0.68 1.00 0.45
Extreme Gradient Boosted Trees 0.30 0.58 0.95 0.00
Support Vector Machines 0.20 0.20 0.82 0.18
J48 (C4.5) Decision Trees 0.20 0.63 0.96 0.64
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Precision Metric

The precision refers to the percentage of the results which are relevant, meaning
that if the model predicts a true class, how often is it correct? Table 4.9 illustrates the
results of the precision metric for the six fitted models, and the different class levels
( risk profiles). The higher the precision value, the better the model is at predicting
relevant risk profiles quite often. In table 4.9, the first column is the model name
or description; and the following four columns represent the risk profile classes:
lowest risk, medium risk, high risk, and highest risk profile.

TABLE 4.9: The Precision of the six trained models.

Model Lowest Medium High Highest

Random Forest 0.60 0.62 0.93 1.00
Linear Logistic Regression 0.40 0.47 0.90 NA
Coarse Decision Tree NA 0.50 0.90 1.00
Extreme Gradient Boosted Tree 0.38 0.50 0.89 0.00
Support Vector Machines 0.13 0.33 0.80 0.18
J48 (C4.5) Decision Trees 0.33 0.55 0.95 0.64

We will first look at the performance of each model for each risk profile class.
The random forest model has the highest overall precision (0.79), and the highest
across all risk profile classes; followed by the J48 (C4.5) decision trees (0.62), then the
coarse decision trees (0.60), then the linear logistic classifier (0.44), then the xgboost
(0.44), and the least is the svm (0.36). The svm has the least precision meaning that
this models prediction’s are often not correct, high miss classification rate.

The class with the highest precision is the high risk profile class, followed by the
medium risk profile class, then the highest risk profile, and lastly, the lowest risk
profile with the least precision, which means that most of the models are failing to
predict the lowest risk profile class.
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F-Score

The precision and recall are significant metric scores, but it is difficult to maximize
both of them, so one has to trade off one metric. Taking the mean of these two
metrics is misleading, because take for instance a classifier with a recall of 70%,
and the precision of 10%; taking the average gives us an F score of 40%, whereas
taking the weights into considerations will give us an F score of 18%, which is able
to detect that our classifier is not doing well, which is where the concept of F score
comes from or plays a role at. The F - score is a harmonic mean of precision and
recall, that one can be able to find the right model that maximizes F1 score, and
thereby maximizing both precision and recall.

Table 4.10 is the F score of the six fitted classification models. The first column is
the model name or description, and the following four columns represent the risk
profile classes: lowest risk, medium risk, high risk, and highest risk profile.

TABLE 4.10: The F score of the six trained models.

Model Lowest Medium High Highest

Random Forest 0.40 0.71 0.95 0.71
Linear Logistic Regression 0.40 0.56 0.92 NA
Coarse Decision Tree NA 0.58 0.95 0.63
Extreme Gradient Boosted Tree 0.33 0.54 0.92 NA
Support Vector Machines 0.16 0.26 0.81 0.18
J48 (C4.5) Decision Trees 0.25 0.59 0.96 0.64

In the table 4.10, random forest has the highest F score when compared to the
other five fitted models; and the svm has the lowest F score, which means on over-
all, the model is not performing well in classifying the risk profile classes.



46

Area Under the Curve

The area under the curve (AUC) represents the degree or measure of separability. It
tells how much the model is capable of distinguishing between classes. The higher
the AUC, the better the model is at separating different risk profile classes. An
AUC is a value between 0 and 1, where 1 means a good measure of separability; 0
means the separability is bad, and 0.5 means the model is not able to distinguish
the different classes; it assigns labels at random.

Table 4.11 describes the results of the AUC for each of the six trained models.
The first column is the model name, and the second column is the AUC value in
descending order. The top-ranked model has the highest AUC when compared to
the other models, which is the random forest with AUC of 0.95; followed by the
xgboost decision tree with AUC of 0.92; then the coarse decision tree with AUC
of 0.91; then the J48 (C4.5) decision trees with AUC of 0.91; then the linear logistic
classifier with AUC of 0.83; and the model with the least AUC is the SVM with AUC
of 0.77.

This means that the random forest has the highest measure of separability, and
the svm has the least capability of distinguishing risk profile classes.

TABLE 4.11: The Area Under the Curve (AUC) of the six fitted models.

Model AUC

Random Forest 0.95
Extreme Gradient Boosted Tree 0.92
Coarse Decision Tree 0.91
J48 (C4.5) Decision Trees 0.91
Linear Logistic Regression 0.83
Support Vector Machines 0.77
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Receiver Operating Characteristics (ROC) Curve

The Area Under the Curve (AUC) − Receiver Operating Characteristics (ROC)
curve is a function of sensitivity plotted against 1- specificity at a specific decision
threshold. The main aim of the AUC-ROC curve is to maximize the sensitivity and
1 - specificity.

The ROC curve represents the probability or score curve. The AUC is the mea-
sure of separability between classes. The higher the AUC, the better the model is at
predicting class 1 as class 1 and class 2 as class 2. For the multi-class problem with
N classes, we have N ROC curves, representing N probability curves.

(A) The ROC Curves of the Random forest
risk profiles.

(B) The ROC Curves of the Linear Logistic
Regression risk profiles.

(C) The ROC Curves of the Coarse Decision
Tree risk profiles.

(D) The ROC Curves of the XGBoost Deci-
sion Tree risk profiles.

(E) The ROC Curves of the Support Vector
Machines risk profiles.

(F) The ROC Curves of the J48 (C4.5) Deci-
sion Tree risk profiles.

FIGURE 4.11: The ROC curves of the six fitted models.
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Figure 4.11 illustrates the ROC curves of each class for all fitted machine learn-
ing classification models; also including the micro class which was created by com-
bining all the classes together, thereby converting the multiclass classification into
binary classification problem; and also adding the macro class which was calcu-
lated by taking the average of all the class results, thereby converting to one versus
the rest and then applying linear interpolation between points of the ROC curve.
This then totals six roc curves for the six classes that are color-coded differently; the
lowest risk is coded green, the medium risk is blue, high risk is orange, highest is
yellow, the micro class is pink, and macro class is powder blue.

The random forest roc curve in figure 4.11a, describes the six roc curves for the
four risk profile classes, micro class, and the macro class. The high risk class is the
best performing class when compared to the other classes. In figure 4.11b, we de-
scribe the performance of the different risk profile classes of the logistic classifier,
the medium risk class outperforms the other classes. The micro class is the best
performing class in the coarse decision tree, figure 4.11c, which means that stacking
all the classes together yields better results in the coarse decision tree. The extreme
gradient boosted trees roc curve, figure 4.11d shows that the high risk class better
performs than the other classes. The micro class is the best performing class for
both the support vector machines and the J48 (C4.5) decision trees, implying that
combining the four risk profiles yields better results for both these models. The rest
of the J48 (C4.5) decision trees classes ( figure 4.11f) lie on the margin (benchmark),
which means that the classification to those classes is random, or the model ran-
domly allocates the predicted labels to these classes: lowest risk, medium risk, high
risk, highest risk, and the synthetic class macro class.
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4.4 Discussion

The previous sections discussed the main results obtained from this study. This
section will look at the contribution of this research in the field of education and
computational sciences.

The main aim of this research is to explore the relationship between background,
individual, and pre-college characteristics on learner attrition, as per the model of
leaner attrition by Tinto [42]. These characteristics are then used as input attributes
to predict the student attrition by classifying the students into four risk profiles:
‘Lowest risk’ - where the student is expected to complete their degree in the min-
imum time (3 years); ‘medium risk’ - where the student is expected to complete
in more than the minimum time; ‘high risk’ - where the student fails or drops-out
before the minimum time; and ‘highest risk’ - where the student fails in more than
the minimum time.

Our study of deducing the students into the correct risk profiles using biograph-
ical (background), individual, and schooling characteristics; showed that student
attrition or classifying the students into the right risk profiles is dominantly affected
by biographical characteristics; followed by individual attributes. The pre-college
characteristics show minimal or no effect on deducing student risk profiles. Sim-
ilar results were achieved by Ajoodha and Jadhav [4], that the eight most signifi-
cant (contributing) attributes, are biographical and individual characteristics play
a major (important) role in deducing the student into the correct risk profiles, as
per Tinto [42] conceptual model. Moreover, studies by [Abu Tair and El-Halees
[3], Ajoodha and Jadhav [4], Pal [36], Pandey and Pal [37], Downs et al. [17],
Mwamwenda [32], Steenkamp, Baard, and Frick [40], Alfan and Othman [6], Yuk-
selturk, Ozekes, and Türel [49], and Pandey and Pal [37]] also attest to these results,
that family or background characteristics have a high influence on student attri-
tion. The impact of using a subset of features (i.e., features with higher information
gain), in terms of classification accuracies and other measures, would still need to
be investigated.

The observations from the results (section 4.3 ), in general, demonstrate that the
fitted models perform well on an imbalanced class dataset; compared to models fit-
ted with controlled balanced class dataset using SMOTE algorithm, where minority
class is synthetically over sampled and majority class is under sampled. This can be
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due to the process applied by the smote algorithm while generating synthetic sam-
ples, smote does not take into consideration the neighbouring samples from other
classes. It can then result in overlapping of classes and can introduce additional
noise.

The fitted machine learning algorithms were successfully able to detect (deduce)
the different risk profiles. However, the positive class detection rate differs for dif-
ferent class proportions, i.e., majority class (67%), high risk profile has higher rates
of positive (correct) detection of this class; compared to the minority classes (9%
and 8%), lowest and highest risk profiles respectively, have a high negative rate
(miss classification); across all the models. The impact of skewed class sizes of the
training and testing set would need to be investigated on the classification accuracy.

The random forest model achieved the best results with an accuracy of 85%,
kappa statistic of 0.7, overall precision of 0.79, overall recall of 0.66, F-score of 0.69,
and an AUC of 0.95 over the four risk profiles. The accuracy and kappa statistic
were used to select the best model parameters using the largest values, with mtry =
113, split rule = extra trees, and min.mode.size = 1 as the hyper parameters.

The poorest of the results were achieved by the support vector machines, with
accuracy 62%, kappa statistic of 0.24, overall precision of 0.36, overall recall of 0.35,
F-score of 0.35, and an AUC of 0.77 over the four risk profiles. The hyper parameters
used to select the best model with highest accuracy and kappa statistic, with kernel
= linear, and cost = 0.5 as the hyper parameters.

The results are in line with what other authors discovered; [4, 34] achieved accu-
racies ranging from 69% to 76% using background, individual, and schooling fac-
tors to predict student attrition applying data mining algorithms like Naive Bayes,
decision trees, random forests, linear logistic regression, and support vector ma-
chines.

The random forest outperformed the other models because its algorithm creates
multiple decision trees and merges them together to obtain a more stable and ac-
curate prediction. This then avoids over fitting of trees in the model. The support
vector machine may have poorly performed because it works well with linearly
separable datasets, and linearity is no practically applicable on most real datasets.
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4.5 Summary

In this chapter 4, we have discussed the results obtained from applying our meth-
ods discussed in chapter 3. The results describe the output from our trained models.
We found essential or most significant features in classifying risk profile status. The
top eight important features provide evidence that biographical characteristics are
the most dominant in deducing the student risk profile. Models trained with im-
balanced class datasets proved to be better performing in terms of accuracy, kappa
statistic, ability to separate different classes when compared to models trained with
balanced class dataset using Synthetic Minority Over-sampling Technique (smote)
Algorithm. The random forest model outperforms the other models with an ac-
curacy of 85%, kappa of 0.7, AUC of 0.95, and the roc curves closer to the top left
corner; when compared to the linear logistic classifier, xgboost decision tree, SVM,
coarse decision tree, and the J48 decision tree. The following chapter 5 will look at
the conclusions and future works.
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Chapter 5

Conclusions and Future Work

This chapter provides an overview of the research, the summary of the results and
discussions put forward, and finally the future work, where the research can be
improved and done differently to achieve better results.

5.1 Conclusions

This study presents a discussion about predicting student attrition using back-
ground, individual, and schooling attributes as per Tinto et al. [43] framework. A
synthetic dataset simulated using the Bayesian Network of student’s background,
individual, and schooling characteristics were used as input features to predict stu-
dent risk profile. Matlab and R studio are used as the machine learning tools and
graphics interface (visualization) tools. Various machine learning algorithms are
fitted (trained): random forest, coarse decision trees, linear logistic regression, J48
(C4.5) decision trees, extreme gradient boosting trees, and support vector machines.

The dataset has an imbalanced class set, which led to two training sets, whereby
one set is a standard imbalanced class dataset, and the other is a balanced class
set using the SMOTE algorithm. The models were then trained using both sets of
datasets. The models that were trained with an imbalanced class set performed
far better than models that were fitted using a balanced class dataset. The random
forest model performed best compared to the other fitted models, with an accuracy
of 85%, kappa statistic of 0.70, higher recall, precision, and F-score across all the risk
profile classes; and an area under the curve (AUC) of 0.95.

Information gain (IG) shows that predicting student attrition or rather deduc-
ing the student into the correct risk profile is dominantly affected by biographical



53

characteristics, followed by individual attributes, and the pre-college (schooling)
characteristics show minimal or no effect on student attrition.

This research contributes to an argument for a more complex view of predict-
ing undergraduate student attrition by including the student’s biographical, indi-
vidual, and schooling characteristics. We reject the application of only pre-college
attributes (i.e., matric results and or National Bench Mark tests) as a primary school-
ing system measure for student placement at university or higher education insti-
tutions.

The study concludes that student attrition is affected by biographical and indi-
vidual attributes, and therefore these factors should be taken into consideration in
the higher education placement system.

5.2 Future Work

The study of student attrition is one of the most important studies in the educational
sciences. In the future, we would like to work with actual real student enrollment
data. This will help us verify if our theoretical model is applicable in real-world
data, or can distinguish the different risk profiles. It will also shed light on the most
important features or characteristics that affect student attrition.

Currently, our method used the duration it took to complete the degree (quali-
fication), to derive the target variable, risk profile; for example, the longer it takes
to finish the degree, the higher the risk profile. The future study will use the target
variable attrition (dropout) or not, and apply binary classification modeling, then
use the model to get predicted probabilities of attrition; then calibrate (bin) these
probabilities of attrition; for example: 0%− 25% - bin 1, and is the lowest risk pro-
file; 26%− 50% - bin 2, medium risk profile; 51%− 75% - bin 3, high risk profile;
and 76%− 100% - bin 4, highest risk profile. Then evaluate how well the model is
able to deduce students into the correct risk profiles.

We will also build an application where we will deploy our model, such that,
when a student inputs all their background, individual, and schooling attributes,
the model will output a prediction indicating the risk profile of the student.
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Appendix A

The Supporting Figures and Tables

A.1 The Current Attrition Rates

FIGURE A.1: The university completion rates on a cohort of students
who enrolled for first time studies in 2013 [27].
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FIGURE A.2: The bar graph of summary of all the performance met-
rics.

A.2 The Description of Features

TABLE A.1: The description of the features and their possible values.

Attribute Description Possible Values

Risk Status
The risk profile
(target variable)

{low, medium, high,
highest}

Gender sex identity {Male, Female}

Race Race description
{Black, White,

Coloured, Indian,
Chinese}

Age at first year
Age of the student at

first year
{15 to 60}

Home Language Native language
{ All national official

languages}

Home Province
The province (state)

the student
originates

{The 9 south african
provinces, and the

other national states }

Home Country
The originating

country
{All national

countries}

Continued on next page



56

Table A.1 – continued from previous page

Attribute Description Possible Values

Year Started
The year started

degree
{ 2008 to 2018}

Plan Description The career choice
{ All science career

choices.}

Aggregate
The aggregate of

marks
{ 0 to 100 }

Years in degree
Number of years in

the degree
{ 1 to 13}

Prob of streamline
(maths, physics,
earth, biological)

The probability of
being successful at a
particular streamline

{ 0 to 1 }

Rural or urban The school location { urban, rural }

School quintile
The poverty ranking
of schools (quintile)

{1 to 5}

Mathematics major
The core

mathematics
{ 0 to 100 }

Additional
Mathematics

The technical
mathematics

{ 0 to 100 }

English FAL
English first

additional language
{ 0 to 100 }

English HL
English home

language
{ 0 to 100 }

Computers Computer subject { 0 to 100 }

NBTAL, NBTMA,
NBTQC

National benchmark
tests

{ 0 to 100 }
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