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Abstract 

Deafness is one of the most commonly occurring birth conditions in children worldwide 

creating an increasingly significant global health concern. Failure to early identify hearing loss 

and provide subsequent intervention services will likely have negative consequences on 

language, cognition, and socio-emotional development. Current approaches in detecting 

neonatal hearing loss are limited specifically in developing countries such as South Africa. 

Machine learning offers an opportunity to create models which could predict the likelihood of 

a hearing loss occurring in high-risk neonates allowing for early identification and intervention 

to occur. Thus, the main aim of the current study was to use predictive modelling to predict the 

likelihood of hearing loss in high-risk neonates. The study sample comprised of 12 044 male 

and female hearing and deaf and/or hard-of-hearing South African children who either formed 

part of the HI HOPES or universal newborn screening programme implemented at the Netcare 

Hospital Group. A nonexperimental, predictive modelling design was employed for the 

purpose of the current study. Predictive variables used in the current study included mode of 

delivery, prematurity, gestational age, family history of hearing loss, extracorporeal membrane 

oxygenation (ECMO), in-utero infections, craniofacial anomalies, physical findings, 

syndromes associated with hearing loss, neurodegenerative disorders, cultural-positive 

infections, meningitis, maternal and/or infant HIV infection, and ototoxic medication. The 

results from several Chi-Square (X2) analyses showed significant correlations between each 

birth type (i.e., natural, elective caesarean, emergency caesarean), prematurity, family history, 

ECMO, in-utero infection, craniofacial anomalies, physical findings, syndromes associated 

with hearing loss, cultural-positive postnatal infections, meningitis, maternal and/or HIV 

infection, and ototoxic medication.  The predictive models for hearing loss in high-risk 

neonates were developed using logistic regression and random forest (RF) classifiers. The 

major predictors of neonatal hearing loss determined by both models were prematurity, family 
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history, cultural-positive infections, and meningitis. The final reduction of error rate for the 

logistic regression was 90% with a prediction rate of 92%. In contrast, the random forest 

performed slightly poorer with an out-of-bag error rate of 14.8% and a prediction rate of 88%. 

The results of the current study demonstrated that machine learning algorithms can be used as 

potential tools for the evaluation and prediction of hearing loss in high-risk neonates.  
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Chapter 1: Introduction and Literature Review 

1.1. Introduction 

Hearing loss is one of the most increasingly significant global health concerns. It has 

long-term effects in the domains of cognition, language, psychosocial development, and brain 

organization (Kotby, Tawfik, Aziz, & Taha, 2008; Copley & Friderichs, 2010; Olusanya, 

Neumann, & Saunders, 2014). There is an overall and universal understanding that the first 

few years of an infant’s life is crucial to laying down the foundation for optimal future 

development and growth (Storbeck & Moodley, 2010). Failure to early identify hearing loss 

at birth (or shortly thereafter) and provide subsequent intervention before the age of 6 months 

will likely have negative consequences on language, cognitive and socio-emotional 

development, as well as future scholastic achievement (Morgan & Vernon, 1994). Future 

effects are noted in the areas of vocational attainment (Bezuidenhout, 2016) and societal 

integration (Storbeck & Calvert-Evans, 2008). Thus, early identification of hearing loss can 

significantly minimize, if not avoid, the adverse consequences of congenital and early 

acquired hearing loss (Olusanya, 2008). 

 

1.2. Newborn and Early Childhood Hearing Loss 

 Deafness has been reported as the most commonly occurring birth condition in 

children worldwide (Khan, Joseph, & Adhikari, 2018). Global estimates from the World 

Health Organisation (WHO) indicate that close to 466 million (5%) individuals worldwide 

are deaf or hard-of-hearing, with 34 million (7%) being children (WHO, 2020). Developing 

regions such as South Asia, Asia Pacific, and Sub-Saharan Africa have the highest prevalence 

of deafness (in varying degrees), with two-thirds of the world’s deaf and hard-of-hearing 

population residing in these regions (Tucci, Merson, & Wilson, 2010; WHO, 2020). Sub-
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Saharan Africa in particular is comprised of the underdeveloped countries in the world 

(McPherson & Swart, 1997). Due to the higher prevalence of environmental risk factors and 

scarcity in resources, children in Sub-Saharan Africa are more susceptible to pathologies 

related to childhood deafness (McPherson & Swart, 1997; Olusanya et al., 2014). These risk 

factors include: pre-, peri-, and postnatal complications; ototoxic medication; and infectious 

diseases such as meningitis, rubella, and measles (HPCSA, 2018). While the high prevalence 

of deafness in Sub-Saharan Africa may be explained by these risk factors, notable causes of 

deafness have not been well-documented (Kanji, 2016). Half of congenital and early-onset 

deafness is attributed to genetic causes with other contributing risk factors and causes likely 

varying between countries (Olusanya, 2011).  

Although more than 50% of the risk factors associated with childhood deafness are 

preventable, resources in developing countries are often preferentially allocated to funding 

the prevention and intervention of life-threatening diseases such as the Human 

Immunodeficiency Virus (HIV) and Acquired Immune Deficiency Syndrome (AIDS), 

Tuberculosis (TB), and malaria (Abdalla & Omar, 2011). Despite the significant burden the 

effects of deafness pose on both the individual and society at large, it is not considered a 

priority. As a result, early identification, prevention, and intervention services for the deaf 

and hard-of-hearing population are largely neglected (Mackenzie & Smith, 2009; Abdalla & 

Omar, 2011). Furthermore, the criteria used to classify deafness in terms of laterality, 

frequency and intensity is not universal and may vary between countries which may account 

for the lack of urgency regarding the impact of childhood deafness (Berninger & Westling, 

2011).  
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1.3. Defining Childhood Deafness 

 While there is much controversy surrounding the correct terminology to use when 

referring to hearing difficulties, for the purpose of the current study the term “hearing loss” 

will be used when referring to deaf and hard-of-hearing children regardless of whether it 

occurred congenitally or was progressive/acquired1. Furthermore, the term “hearing loss” as 

used in the current study is inclusive of children who are deaf (i.e., having a profound hearing 

loss) and hard-of-hearing (i.e., having a hearing loss ranging from mild to severe). 

 In South Africa, the minimum criterion for diagnosing hearing loss in children is a 

permanent hearing threshold of at least 40 decibels (dB) or greater averaging over 

frequencies of 0.5, 1.2, and 4 kilohertz (kHz) (HPCSA, 2018). This definition, however, 

excludes hard-of-hearing children with unilateral and/or milder forms of hearing loss 

(Bezuidenhout, 2016). While these children may experience developmental delays of a lesser 

degree when compared with those with a more severe hearing loss, they should still be 

considered important, especially for children with prelingual hearing loss. Early-onset 

hearing loss in children may occur congenitally or by manifesting postnatally as a late-onset, 

progressive, or acquired hearing loss (Olusanya, Luxon, & Wirz, 2005). Regardless of the 

aetiology, hearing loss occurs in varying degrees of severity ranging from mild to profound 

and affecting one (unilateral) or both (bilateral) ears (Nunez-Batalla, Jaudenes-Casaubon, 

Sequl-Canet, Vivanco-Allende, & Zubicaray-Ugarteche, 2016). Moreover, based on the 

locality of the hearing loss in the auditory system, hearing loss can be mixed, sensorineural, 

conductive, or auditory neuropathy (Kanji, 2016). Since it has been shown that all types, 

causes, and severities of hearing loss have an impact on development, there has been an 

international drive towards early identification and intervention services with the goal to 

 
1 The WHO uses “hearing loss” as an umbrella term to refer to individuals with hearing thresholds which 

deviate from normal. This term of “hearing loss” is used regardless of type, laterality, or degree of hearing loss, 

and whether the hearing loss is congenital or acquired (WH0, 2020) 
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sustain typical development outcomes for deaf and hard-of-hearing children (Moodley, 

2016).   

The development of deaf and hard-of-hearing children takes place in the context of 

complex systematic interactions between numerous factors within the physical, social, and 

cultural spheres of life (Kossewska, 2016). As such, understanding deafness through an 

ecological perspective aids in the identification of the factors within these biopsychosocial 

levels that influence the development of deaf and hard-of-hearing children and how they can 

be rectified to promote optimal and normative development (Harvey & Dym, 1987). An 

ecological view of deafness is presented below.  

 

1.4. Ecological View of Deafness 

 Generational changes in children’s status has led to an international recognition of the 

importance of children’s rights (Melton, 2008), notably leading to the establishment of the 

United Nations Convention on the Rights of Children in 1989. Unfortunately, the principles 

set out in the Convention have not been fully and effectively implemented globally. Millions 

of children under the age of 5 years continue to suffer violations of their basic human rights 

by living in adverse environmental conditions (Grantham-McGregor et al., 2007). As a result, 

many children fail to reach their optimal development potential due to poverty, poor and 

unstimulating living conditions, inadequate sanitation, lack of adequate healthcare, 

malnutrition, and exposure to chronic and incurable diseases (Grantham-McGregor et al., 

2007; Olusanya, 2011). These developmental barriers have detrimental long-term effects on 

the key interdependent domains of cognitive, sensorimotor, emotional, and psychosocial 

development (Johnson & Blasco, 1997; Grantham-McGregor et al., 2007; Olusanya, 2008; 

Olusanya, 2011).  
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 Childrens’ trajectories for physical, psychosocial, and cognitive development are set 

extremely early in life. The first 3 to 5 years of a child’s life are vital as it marks the period in 

which brain development is highly and continuously influenced by the interaction between 

intrinsic (gene) and extrinsic (environmental) factors (Johnson & Blasco, 1997; Olusanya, 

2011). These neurodevelopmental patters occur predictably and sequentially with each 

developmental skill building on the former (Johnson & Blasco, 1997). Minor delays in one or 

more stages of these processes can have long-term consequences on the structure and 

functionality of the developing brain (Johnson & Blasco, 1997). Fragile foundations for later 

developmental achievement may lead to a deficit in cognition, low educational enrollment 

and achievement, lack of vocational attainment, and ultimately, a substandard quality of life 

(Grantham-McGregor et al., 2007; Olusanya, 2011). 

 This is particularly apparent in sensory deficits such as hearing loss where it is 

considered that undetected hearing loss not only compromises optimal development in 

linguistic and communicative domains but in all other developmental domains as well 

(Olusanya, 2011; Storbeck & Moodley, 2011). As this is the case, both the JCHI and the 

HPCSA have provided guidelines and benchmarks for early detection and intervention 

services (HPCSA, 2018; JCHI, 2019). Regardless of these principles, the issue of early 

detection and intervention in South Africa is magnified by the lack of adequate healthcare 

services, parental lack of awareness, as well as individual perceptions and cultural beliefs 

(Olusanya, 2008). While deafness begins as a physiological condition, the way it affects an 

individual depends on how they effectively engages in their physical, social, and cultural 

environment (Harvey & Dym, 1987; Olusanya, 2008). Hence, it is therefore important to 

understand the experience and outcome of deafness on childhood development from an 

ecological perspective (Harvey & Dym, 1987). 
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1.4.1. Bronfenbrenner’s Bioecological Theory of Human Development 

 Urie Bronfenbrenner’s bioecological theory of human development is one of the most 

widely known theoretical frameworks of human development (Velez-Agosto, Soto-Crespo, 

Vizcarrondo-Oppenheimer, Vega-Molina, & Coll, 2017). Bronfenbrenner (1994) argued that 

for one to understand human development, one must consider the ecology wherein children 

exist and how it influences their growth and development (Stuart, 2009; Visser & Moleko, 

2012). Bronfenbrenner (1979) describes this environment where development takes place as a 

set of systems fitting into each other like Russian Nesting Dolls. Higher levels contain the 

lower levels, and all levels are interrelated and interdependent on one another (Visser & 

Moleko, 2012). He proposed that factors influencing optimal development such as the 

aetiology of the illness, disability, or disorder; the application of effective intervention 

methods to deal with such difficulties; and promoting optimal health can only be understood 

if the ecological system of the child was considered (Stuart, 2009). This system is comprised 

of 4 subsystems that are related to and interact with one another (Bronfenbrenner, 1994) (see 

Figure 1). The synergy between each subsystem affects the entire system as a whole, which 

together supports and guides human growth and development (Visser & Moleko, 2012).  
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Figure 1 

Bronfenbrenner’s Ecological Systems Model 

 

(Morris, 2010) 

 

1.4.1.1. The Microsystem 

 The microsystem is the immediate environment wherein the child exists and which 

has the most influence on development (Bronfenbrenner, 1979). Interpersonal relationships, 

activities, and social roles experienced in the microsystem through face-to-face family, 

school, and peer group settings influence both the child’s perception of their environment and 

in shaping future interactions (Bronfenbrenner, 1979; Bruyere & Garbarino, 2010). Most 

importantly perhaps, are the reciprocal interactions which occur between the child and their 
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caregiver (Bruyere & Garbarino, 2010). The purpose of these interactions generally leads to 

the formulation of an attachment relationship and subsequently, the construction of ‘working 

models’ or internal representations of the self and others (Ainsworth & Bowlby, 1991; Levy 

& Blatt, 1999; Bruyere & Garbarino, 2010). These internal mental representations lay the 

foundation for future healthy or unhealthy development to occur (Ainsworth & Bowlby, 

1991). Internal and external factors which affect parenting/caregiver behaviour will ether 

pose as a risk or as an opportunity to optimal childhood development (Bruyere & Garbarino, 

2010). Familial behavioural patterns, perceptions about deafness, emotional responses to 

deafness, and the overall interactions family members have with the deaf and hard-of-hearing 

child have powerful influences on their development (Harvey & Dym, 1987). Research has 

found that deaf and hard-of-hearing children are at increased risk to various forms of child 

maltreatment including physical, sexual, and emotional abuse and neglect (Kvam, 2008; 

Knutson, Johnson, & Sullivan, 2004; Schenkel, Rothman-Marshall, Schlehofer, Towne, 

Burnash, & Priddy, 2014). Barriers to adequate communication between parents and their 

deaf or hard-of-hearing child is likely to add strain to the parent-child relationship. This may 

add to increased levels of frustration and harsher physical discipline strategies which could 

subsequently lead to emotional and physical abuse (Schenkel et al., 2014). For example, 

mothers of children who are deaf or hard-of-hearing are more likely to use physical 

punishment in response to destructive behaviour than mothers of normal hearing children 

(Knutson et al., 2014). Additionally, their inability to communicate effectively make deaf and 

hard-of-hearing children easy targets for abuse and maltreatment as they are less likely to 

report instances of victimisation to parents or other adults (Schenkel et al., 2014). Many 

children who fall victim to maltreatment experience both short- and long-term 

socioemotional and physical difficulties (Cicchetti, Toth, & Maughan, 2000; Lansford, 

Dodge, Pettit, Bates, Crozier, & Kaplow, 2002; Olusanya, 2008). Poor parent-child 
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relationships have been found to be associated with greater mental health outcomes, poorer 

quality of life, negative self-perception, and re-victimisation amongst deaf and hard-of-

hearing children (Burnash, Rothman-Marshall & Schenkel, 2010; Kushalnagar, Topolski, 

Schick, Edwards, Skalicky, & Patrick, 2011). Understanding the early trauma and 

victimisation of deaf and hard-of-hearing children can facilitate the implementation of more 

effective and tailored prevention and intervention services.  

 

1.4.1.2. The Mesosystem 

 The mesosystem is comprised of the linkages between microsystems 

(Bronfenbrenner, 1994). Bronfenbrenner (1979) stressed that childhood development will be 

enhanced if the settings in which the child exists are strongly linked. The strength of these 

linkages depends on the reciprocal transactions between settings (Bronfenbrenner, 1994). 

Mothers who have actively engaged with medical health professionals through regular 

prenatal visits are able to form relationships with preofessionals who can provide them with 

vital information on their developing child both before and after birth (Bruyere & Garbarino, 

2010). In South Africa, the majority of these consultations are conducted by nursing 

professionals at local clinics where pregnant and lactating women, children with disabilities, 

and children under the age of 6 can receive free access to healthcare services. It is within 

these settings where children who are deaf and hard-of-hearing (or who are at-risk for 

developing a hearing loss) can be early identified and receive referrals for appropriate 

intervention services (Moodley, 2012). Mothers who are made aware of their child’s hearing 

status can assist their child’s development by creating learning-rich environments and explore 

ways in which to communicate with their child. This awareness will stimulate a typical path 

of development for the developing child. Through this, parental frustration and stress may be 

minimized; and any form of child maltreatment may be avoided. Unfortunately, the 
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likelihood of mothers engaging effectively with healthcare professionals regarding the health 

and wellbeing of their children is limited due to the poor allocation of funding, shortage of 

medical staff, and lack of adequate healthcare facilities in South Africa (Moodley & 

Storbeck, 2012; Olusanya et al., 2014; Moodley & Storbeck, 2017).  

 

1.4.1.3. The Exosystem 

 The exosystem consists of the interconnections between the micro- and mesosystems 

as well as those systems with which the developing child has no direct contact but which may 

indirectly influence the processes within their immediate setting (Bronfenbrenner, 1979; 

Bronfenbrenner, 1994). Exosystems are both informal and formal such as the parent’s 

workplace, social networks, and neighbourhood characteristics (Algood, Hong, Gourdine, & 

Williams, 2011). The quality of the parent-child relationship can be highly influenced by both 

parenting stress and parental social support (Crouch & Behl, 2001). Parents who have little to 

no social support due to low socioeconomic status and unemployment are more likely to feel 

overwhelmed and unable to cope with the responsibility of raising a deaf or hard-of-hearing 

child. These children often fall victim to neglect and derogatory labelling from family 

members (Olusanya, 2008). As low socioeconomic status is attributed to residency in 

impoverished areas, deaf and hard-of-hearing children are at an increased risk for 

malnutrition, poor housing and sanitation, chronic illness, and lack of adequate healthcare 

and education (Swanepoel & De Beer, 2012). This subsequently hinders their development 

and growth. 
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1.4.1.4. The Macrosystem 

 The macrosystem consists of the micro-, meso-, and exosystems each of which is 

influenced by the morals, values, social class, ethnic group, and culture to which the 

developing child belongs (Bruyere & Garbarino, 2010; Visser & Moleko, 2012). 

Bronfenbrenner (1979) highlights the importance of understanding the social and 

psychological features of culture as it can influence processes which occur at the 

microsystem level (Algood et al., 2011). Cultural beliefs can influence parental perceptions 

about the meaning and causes deafness often being viewed as a disability (Kapitanoff, 

Lutzker, & Bigelow, 2000). Deafness in some cultures has been attributed to superstitious 

beliefs, ‘evil forces’, or atonement of sin (Olusanya, 2008). Parents and caregivers are then 

more likely to turn to traditional healers for a cure which often exposes their children to 

potentially harmful therapies (de Andrade & Ross, 2005; Olusanya, 2008). Deaf and hard-of-

hearing children tend to be sent away to live with extended family members in rural villages 

due to the stigma attached to having a ‘disabled’ child (Olusanya, 2008). 

By defining the various levels of the various levels of the environment, it is clear to 

see that these levels interact with and influence one another. Thus, it is important to 

understand the deaf and/or hard-of-hearing child at all levels of their environment in order to 

assist them in reaching their optimal development and to bring about systematic change. This 

proves important in early hearing detection and intervention (EHDI) programmes which aim 

to provide early hearing detection and subsequent therapeutic intervention services to the deaf 

and hard-of-hearing child. 
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1.5. Early Hearing Detection and Intervention (EHDI) and Universal Newborn 

Hearing Screening (UNHS) Programmes 

The adverse consequences of late identified hearing loss on childhood development has been 

well-documented (Yoshinaga-Itano, Sedey, Coulter, & Mehl, 1998a; Yoshinaga-Itano, 

Apuzzo, 1998b; Moeller, 2000; Yoshinaga-Itano, 2004; Horn, Pisoni, & Miyamoto, 2006). In 

an attempt to combat the adverse developmental outcomes and to ensure timely transition 

from identification to intervention, the Early Hearing Dectection and Intervention framework 

was introduced (Moodley, 2016). The primary focus of any EHDI programme has been on 

the implementation of newborn screening (NHS) (Moodley, 2016). The earlies work on NHS 

dates back to when paediatric pioneer Dr Marion Downs implemented the first large scale 

NHS programme in 1963 (Hall, 2015). Her efforts in raising awareness of the implementation 

of EHDI on childhood development had led to the formulation of the first American 

diagnostic guidelines in 1982 (i.e., the Joint Committee on Infant Hearing (JCIH) Position 

Statement: Principles and Guidelines for Early Hearing Detection and Intervention) 

(Northern, 2015). Since then, many countries have adopted the recommendations laid out by 

the JCIH. The guidelines state that all infants should be screened within the first month of 

age, diagnosed by 3 months of age, and referred to an early intervention programme before 

the age of 6 months (JCIH, 2019). These guidelines have been adopted worldwide with NHS 

programmes being implemented in countries such as the United Kingdom (Kennedy, 2000); 

Australia (NSW Department of Health, 2011; Beswick, Driscoll, Kei, & Glennon, 2012); 

Spain (Benito-Orejas, Ramirez, Morais, Almaraz, & Fernández-Calvo, 2008), and Belgium 

(Vos, Senterre, Lagasse, & Levêque, 2015). The goal of these programmes is to identify 

infants with hearing loss in a quick and cost-effective manner, thus setting 

electrophysiological testing as a gold standard. 
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1.5.1. Electrophysiological Testing in UNHS 

 Audiological evaluations consist of behavioural, electroacoustic, and 

electrophysiological procedures (Jacob-Corteletti, Araújo, Duarte, Zucki, & Alvarenga, 

2018). Technological advancements in neonatal hearing screening technology and the 

implementation of newborn hearing screening (NHS) programmes has provided more 

objectively-determined measures to identify infants who may be deaf or hard-of-hearing 

within the first few months of life (Cone-Wesson et al., 2000; Imam, El-Farrash, & Bishoy, 

2013; Jacob-Corteletti et al., 2018). These electrophysiological measures consist of a set of 

examinations which record and analyse the physiological responses in the auditory system to 

determine hearing thresholds, locate lesions in the auditory pathways and diagnose 

retrocochlear injury (Bakhos, Marx, Villeneuve, Lescanne, Kim, & Robier, 2017). While 

several electrophysiological measures exist, automated otoacoustic emissions (OAE) and 

automated auditory response (AABR) technologies have been endorsed by the JCIH (2019) 

and the HPCSA (2018) for use in neonatal auditory screening. 

 

1.5.1.1. Automated Otoacoustic Emissions (OAEs) 

 Otoacoustic emissions (OAEs) are low level sound waves emitted by the motion of 

the outer hair cells (OHC) of the cochlear in response to sound (Cunningham, 2011). OAE 

screening technology measures the functionality of the peripheral auditory system through a 

probe which is inserted into the external auditory canal (Bakhos et al., 2017). OAEs are 

subdivided into two types of measures: transient evoked otoacoustic emissions (TEOAE) and 

distortion product otoacoustic emissions (DPOAE). TEOAEs are produced by the OHC of 

the cochlear in response to brief clicks or other otoacoustic stimuli across a broad range of 

frequencies (McCreery, 2013). DPOAEs are induced by simultaneously presenting two tones 
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at different levels and frequencies (McCreery, 2013). The response, or DPs, are emitted by 

the cochlear at a third frequency which is then measured by the device and analysed (Nazir, 

Gupta, Mir, Jamwal, Kalsotra, & Singh, 2016). Different frequency combinations may elicit 

different responses from different regions in the cochlear (McCreery, 2013). 

 

1.5.1.2. Automated Auditory Brainstem Response (AABR) 

 Auditory brainstem responses (ABRs) are electrophysiological responses to 

otoacoustic stimuli which is measured through electordes and transducers which are applied 

to the forehead (Neumann & Indermark, 2012). In comparison with OAE measures, AABR 

devices are able to measure the status of the peripheral auditory pathways which extend 

beyond the cochlear into the lower brainstem and thus allows for the detection of auditory 

neuropathy (Benito-Orejas et al., 2008).  

These electrophysiological measures provide reliable and objective information 

regarding the underlying physiological activity in the auditory function (JCIH, 2019). he 

technology underlying the OAE and AABR devices make use of binomial automated 

response algorithms (i.e., “pass” or “refer”) and statistical software (e.g., the Quickscreen 

programme, Madsen-Gn, Otometrics, and DPGRAM software) to provide a statistical 

confirmation of the presence or absence of auditory activity (Benito-Orejas et al., 2008; 

MAICO Diagnostics, 2009; Nazir et al., 2016).  

While both OAE and AABR measures have been successfully implemented in NHS 

programmes, differences between the two exist as the mechanisms they examine differ 

accordingly (Hall, 2015). A significant drawback of OAE testing is that it exclusively 

evaluates the functioning of the peripheral system. As a result, infants who may be at-risk for 

auditory neuropathy will be missed (Bezuidenhout, 2016). AABR testing accounts for this, as 



21 
 

it is able to measure both the functioning of the cochlear as well as the neurophysiological 

responses from the brain’s response to sound (Hall, 2015). An additional disadvantage of 

OAE screening is that OAE signals tend to be highly sensitive to the presence of fluid and/or 

debris in the ear canal after birth (Kemp, 2002). It is therefore recommended that infants are 

only screened a minimum of 48 hours after birth (Benito-Orejas et al., 2008). However, due 

to shorter hospital stays particularly in public hospitals, babies who do not require neonatal 

care are being screened much earlier. This, in turn, increases the number of false-positives 

and a high number of referral rates (Benito-Orejas et al., 2008; Bezuidenhout, 2016). As 

AABR devices are sensitive to both cochlear and retrocochlear pathology, ABRs can be 

recorded after a few hours of birth when OAEs cannot (Kemp, 2002). As such, AABR 

screening is often used as a follow-up procedure if the infant failed the initial OAE test 

(Olusanya et al., 2005). However, AABR devices are costly to purchase and require a much 

longer examination time by an experienced audiologist., compared to OAEs which are 

relatively time efficient and simple to perform by both audiologists and non-audiological staff 

(Benito-Orejas et al., 2008). Both measures are highly sensitive to environmental factors such 

as ambient acoustic sound which often result in high failure rates (Hall, 2015; Van Dyk, 

Swanepoel, & Hall, 2015). It is thus important to understand the origins of each of the 

respective responses and limitations of each technique. By using the two as a two-step or 

“cross-check” procedure, it will significantly reduce the number of both false-positives and 

false-negatives (Hall, 2015). While this is ideal, it is difficult to implement in resource-poor 

or developing countries due to the high cost and maintenance of these devices. This has 

ultimately hindered UNHS in countries like South Africa (Bezuidenhout, 2016). 
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1.5.2. EHDI and UNHS in South Africa 

 The endorsement of the EHDI framework through the integration of the 

interdisciplinary systems of UNHS, diagnosis, and intervention has become the gold standard 

of care to children who are deaf and hard-of-hearing (Kamal, 2013). There has been much 

evidence with regards to the benefits of both UNHS and EHDI programmes on the 

achievement of developmental milestones, academic performance, and socioemotional and 

communicative functioning in developed countries (Khoza-Shangase, 2019, p. 73). 

Unfortunately, developing countries face numerous challenges in implementing both EHDI 

and UNHS programmes. In an attempt to spark the EHDI drive in South Africa, the 

Professional Board for Speech, Language, and Hearing Professions released a position 

statement providing specific guidelines with regards to EHDI in South Africa in 2007 

(HPCSA, 2018). However, NHS is not mandated by the Department of Health, and there are 

additional challenges such as financial constraints, lack of manpower and resources, and poor 

implementation of NHS protocols by hospital staff (Bezuidenhout, Khoza-Shangase, De 

Maayer, & Strehlau, 2018). Due to these constraints, UNHS in South Africa, particularly in 

public hospitals, may be unfeasible to implement (Bezuidenhout, 2016; Kanji, 2016). As 

such, it has been recommended that a risk-based newborn screening approach should be used 

as an interim to UNHS. This risk-based approach should be offered to targeted groups who 

have one or more known risk-factors for hearing loss (Olusanya, 2011b; HPCSA, 2018).  

 Targeted newborn hearing screening (TNHS) aims to identify and screen any infants 

who are considered to be at-risk for having and/or developing a hearing loss based on 

established risk factors (Olusanya et al., 2005). Endorsing a targeted-based approach to 

newborn screening allows for the identification of deaf and hard-of-hearing children in areas 

whether UNHS programmes have not yet been implemented. Additionally, TNHS further 

allows for the identification and monitoring of children who may require additional medical 
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and/or audiological care (Kanji & Khoza-Shangase, 2019, p. 53) due to an underlying 

comorbid disorder (HPCSA, 2018, p. 18) and/or likelihood of developing a late-onset hearing 

loss. Despite the advantages of endorsing TNHS as a first step towards the implementation of 

a full UNHS programme, at least 50% of hearing loss occurs in babies who have no known 

cause or risk factors related to deafness (Durieux-Smith & Whittingham, 2000; Hyde, 2005). 

Consequently, TNHS results in a significant number of deaf and hard-of-hearing children 

being unidentified (HPCSA, 2018). An additional challenge of implementing TNHS are the 

risk factors with which the programme is based. Kanji and Khoza-Shangase (2019) argue that 

while the risk factors presented in the JCIH have been considered applicable for use 

internationally, context-specific risk factors have not yet been established. While it is 

estimated that half of congenital and early-onset hearing loss has been attributed to genetic 

causes, context-specific risk factors are important to establish as the risk factors may vary 

from country to country (Olusanya, 2011b). As such, risk factors applicable in developed 

countries may exclude potential risk factors related to those in developing countries such as 

infectious diseases (e.g., HIV/AIDS, TB, malaria) as well as additional risk factors related to 

socioeconomic status, culture, and poverty (e.g., maternal hypertension disorder, premature 

birth, and low-birth weight) (Khan et al., 2018). The HPCSA (2018) has provided a high-risk 

registry (HHR) which contains a recommended list of risk factors associated with neonatal 

hearing loss. These risk factors have been derived from the high-risk registry (HHR) 

proposed by the JCIH (2019) and modified to include the risk factors considered contextually 

relevant to South Africa (Kanji, 2016).  

 However, the context-specific risk factors are limited. This may be accounted for by 

the absence of an online data management system to log audiological data from screening 

initiatives in South Africa (Melton, 2008; Moodley & Storbeck, 2017). Data management 

involves the process of collecting, storing, and modelling medical data with the intent to 
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develop and implement future EHDI programmes (Moodley & Storbeck, 2017). A national 

data management system would not only provide a platform for infants and children to be 

monitored from diagnosis to intervention (Moodley & Storbeck, 2017), but for crucial 

information (such as risk factors) to be collated and modelled to determine the risk factors 

present specifically in a South African context. Due to a lack of funding, a shortage of 

trained/skilled staff, limited access to electricity, and poor internet connection in South Africa 

(Olusanya, 2008; Moodley & Storbeck, 2017) such a system would be difficult to implement 

at a national scale in both private and public healthcare.  

 Nevertheless, the identification and diagnosis of childhood hearing loss is a crucial 

task for preserving later development. It is therefore of benefit to the field of audiology to 

develop predictive tools to examine and identify this potential risk. Through the introduction 

of machine learning tools and techniques to audiology, large amounts of medical data can be 

explored and modelled and then used to predict diagnostic results on unseen medical data in 

order to support future decision-making (Alonso et al., 2018) especially in poor-resourced 

regions of South Africa. 

 

1.6. Machine Learning in Healthcare 

 The term “machine learning” was coined in 1959 by American computer and artificial 

intelligence (AI) pioneer Arthur Samuel. With the ever-advancing nature of computational 

technologies, machine learning has increasingly become predominant in the field of research 

(Shew, New, Wichova, Koestler, & Staecker, 2019). The general goal of machine learning is 

to provide systems with the ability to automatically process large amounts of data in order to 

understand its basic structure. Moreover, it allows for this data to be fit into meaningful 

statistical models without being explicitly programmed (Serra, Galdi, & Tagliaferri, 2017; 
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Wallace, Noel-Storr, Marshall, Cohen, Smalheiser, & Thomas, 2017). Machine learning 

techniques are versatile in that they are able to derive models from large amounts of data 

without prior knowledge of the relationships between variables (van der Heide et al., 2019). 

Furthermore, these techniques are able to process large amounts of data with fewer statistical 

assumptions (van der Heide et al., 2019, p. 9409).  

Borrowing from the disciplines of computer science, mathematics and statistics, 

machine learning was originally created as a mechanism to mimic human intelligent 

behaviour (Han, Pei, & Kamber, 2011). It has since become a valuable prediction tool in 

many fields with applications in childhood development and education (Kotsiantis, 2012; 

Ambili & Afsar, 2016; Amrit, Paauw, Aly, & Lavric, 2017), finance (Heaton, Polson & 

Witte, 2016), and in the allocation of scarce resources (Ware, 2018; Kube, Das, & Fowler, 

2019). More commonly, machine learning has played a particularly important role in 

healthcare and medical research (Yoo et al., 2012; Luo, Wu, Gopukumar, & Zhao, 2016; 

Alonso et al., 2017).  

The increasing popularity in the use of electronic health records to improve the 

effectiveness and efficiency of healthcare providers has resulted in petabytes of unstructured 

medical data (Jha et al., 2009). By analyzing this accumulated medical data through the use 

of machine learning techniques has the potential to increase research possibilities and 

enhance healthcare services (Luo et al., 2016). Machine learning may provide opportunities 

for the development of predictive models, reduction of risks, individualized treatment 

services, and discovering patterns of behaviour (Alonso et al., 2017). Successful applications 

of machine learning by medical researchers and organisations have helped to predict 

insurance fraud and abuse (Kose, Gokturk, & Kilic, 2015); epidemiology (Wiens & Shenoy, 

2018); and in the prognosis, diagnosis, and treatment of diabetes (Kavakiotis et al., 2017), 
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cancer (Kourou et al., 2015), cardiovascular disease (Weng, Reps, Kai, Garibaldi, & Qureshi, 

2017), and psychiatric disorders (Iliev, Dehghani, & Sagi, 2015; Alonso et al., 2018).  

 

1.6.1. Machine Learning in Audiology 

 In the field of audiology, machine learning techniques have been used to extract and 

apply useful information to practical problems. A recent study conducted by Shew et al. 

(2019) used machine learning to develop a model to predict the presence of sensorineural 

hearing loss in inner ear pathologies using microRNA expression profiles. Machine learning 

models were developed to assist otologists in the diagnostic process of otoneurological 

diseases such as Meniere’s Disease, benign positional and traumatic vertigo, vestibular 

neuritis, and sudden deafness (Juhola et al., 2001). Zhao et al. (2019) used support vector 

machines (SMV), multilayer perceptron (MLP), adaptive boosting (Adaboost), and random 

forest (RF) to demonstrate the feasibility of using machine learning to predict noise-induced 

hearing loss in industrial workers. In terms of amplification, machine learning as been 

applied to determine factors influencing which patients would most benefit from hearing aid 

fittings (Anwar, Oakes, Wermter, & Heinrich, 2010; Panchev, Anwar, & Oakes, 2013). 

Although machine learning techniques have been applied to various subdomains in 

audiology, the use of these techniques specifically in the subdomain of neonatal and early 

childhood deafness has been underutilized. 

 Despite the advantages of machine learning, studies in the area of neonatal and early 

childhood deafness have mostly been conducted using traditional quantitative and qualitative 

techniques to analyse the risk factors associated with deafness (Yoshikawa, Ikeda, Kudo, & 

Kobayashi, 2004; Martinez-Cruz, Poblano, & Fernández-Carrocera, 2008; Kanji & Khoza-

Shangase, 2012; Beswick et al., 2013; Swanepoel, Johl, & Pienaar, 2013; Kuschke, 
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Goncalves, & Peer, 2018; Kanji & Khoza-Shangase, 2019), aetiology of deafness (Admiraal 

& Huygen, 1999; Derekoy, 2000; Egeli et al., 2003; Riga et al., 2005; Gruss, Berlin, 

Greenstein, Yagil, & Beiser, 2007; Kim, Choi, Han, & Choi, 2016), views of healthcare 

workers and parents of deaf and hard-of-hearing children (Moodley, 2012; Moodley & 

Storbeck, 2017; Davids & de Jager, 2018; Khan et al., 2018; Bhamjee et al., 2019; Gardiner, 

Laing, Mall, & Wonkam, 2019), early hearing detection and intervention (EHDI) services 

(Swanepoel, Storbeck, & Friedland, 2009; Findlen, Hounam, Alexy, & Adunka, 2019; 

Khoza-Shangase, 2019), and newborn hearing screening (NHS) programmes (Ciorba et al., 

2008; Colgan et al., 2012; Olusanya et al., 2005; Gabriel et al., 2020; Bezuidenhout, 2016).  

 

1.6.2. Extending Qualitative Research in Neonatal and Early Childhood 

Audiology with Machine Learning 

 An explicit comparison between machine learning and quantitative methods are 

difficult to achieve as although both methods seek to create models from data, each does so 

for a different purpose (Fawcett & Hardin, 2017). A common purpose in quantitative research 

is to draw formal conclusions about the relationship between variables to contribute 

scientifically to the field of study (Fawcett & Hardin, 2017). The aim is to provide a better 

understanding about the phenomenon and provide a framework with which better decisions 

and planning can be made (Fawcett & Hardin, 2017; Stewart, 2019). Quantitative research is 

rarely concerned with the prediction of future data, a common goal in machine learning 

(Stewart, 2019). Even if quantitative models are used to determine whether a causal 

relationship between variables exist, the relationship is evaluated by significance and the 

interpretation is final. In contrast, the main purpose of machine learning is to create a model 

which can generate the best repeatable prediction so that decisions can be made automatically 

and applied practically (Stewart, 2019).  
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 Several studies in audiology have examined the risk factors which are associated with 

childhood hearing loss in order to understand the implications that it has for the planning and 

implementation of early identification and intervention services (Kanji, 2016). The current 

study aimed to extend on previous work by identifying and examining the risk factors present 

in a cohort of South African children and applying it to two classification models to predict 

the likelihood of high-risk children having or developing a hearing loss. Furthermore, the 

study sought to contribute to the development of a high-risk registry (HHR) for the South 

African population by examining the risk factors which have the most predictive influence on 

hearing loss. 

1.7. The Current Study 

1.7.1. Study Aims 

 The main aim of the current study was to use predictive modelling to predict the 

occurrence of hearing loss in high-risk neonates. This aim is two-fold: 

1. To develop a model which predicts the occurrence of hearing loss in high-risk 

neonates; 

2. To demonstrate the feasibility of using machine learning in predicting the future 

occurrence of hearing loss in high-risk neonates. 

1.7.2. Study Objectives 

The above-mentioned aim was achieved through the following objectives: 

• Build and train two predictive models using the Random Forest (RF) classifier and 

Logistic Regression to predict the occurrence of hearing loss in high-risk infants. 

• Test the trained models to predict the occurrence of hearing loss in neonates who have 

not yet been diagnosed with a hearing loss but may or may not present with one or 

more associated risk-factors. 
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1.7.3. Research Question 

Based on the increase in popularity of the use of machine learning techniques as 

clinical risk prediction models in the medical, and more specifically, audiological domains, 

the following research question has been answered: Can the occurrence of neonatal hearing 

loss be predicted in high-risk neonates using machine learning techniques? 
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Chapter 2: Methodology 

 

Examining the contribution of the variables related to neonatal hearing loss requires a 

dynamic approach which is firmly rooted in both quantitative and machine learning 

epistemologies. The inclusion of both quantitative and machine learning epistemologies 

increases the possibility of objectively identifying infants who are at risk for having a hearing 

loss (whether it is congenital or acquired), while reducing the subjective bias of healthcare 

workers where the risk of hearing loss going undetected may be high. This chapter provides a 

description of the adopted research design and analysis, and data and patient record 

characteristics. A thorough description of the data processing and statistical and machine 

learning analyses procedures are presented. The chapter ends with a discussion of ethical 

considerations adhered to for the duration of the study. 

 

2.1. Dataset Description 

2.1.1. Sampling Methods 

 A secondary, convenience sampling method was utilized. Data from two pre-existing 

secondary datasets were used to create predictive models to predict hearing loss in high-risk 

neonates. Convenience sampling is a non-probability sampling method where members of the 

target population are selected for inclusion in the sample study due to close proximity, 

availability, and accessibility (Etikan, Musa, & Alkassim, 2016). It is noted that there are 

several relating to the secondary use of data. With the data not have been collected for the 

specific purpose of the current study, the methodology of the initial data collection, data 

accuracy, period of data collection, purpose for which the data was collected, and the content 

of data needs to be evaluated for reliability and validity (Tripathy, 2013). This was addressed 

by thoroughly examining the provenance of the secondary datasets through careful inspection 
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of each programme’s strategic research framework which included, but was not limited to: 

research aims objectives, conceptual framework, and research strategy and design. On the 

grounds of the manner in which the data was collected, the nature of the variables that were 

to be used in the current study, and the prominence of both organisations, there were no cause 

for concern regarding the reliability and validity of the data used in the current study. 

 

2.1.2. Secondary Datasets: HI HOPES and Netcare Hospital Group 

 The secondary datasets consisted of: (1) longitudinal data from an early hearing 

intervention programme and; (2) data collected through a newly implemented universal 

newborn screening programme. It is to be noted that both of these programmes are the first of 

their kind to be launched in South Africa (Storbeck & Young, 2016; Netcare, 2019).  

  

2.1.2.1. HI HOPES Dataset. 

Launched in Gauteng 2006, HI HOPES (Home Intervention Hearing and language 

Opportunities Parent Education Services) is the first home-based family-centred early 

intervention programme in South Africa (Storbeck & Young, 2016). Based on the SKI-HI 

Model of Early Intervention (SKI-HI Institute, 2004), the HI HOPES programme provides 

support to families of deaf and hard-of-hearing children (aged 0 to 3) with unilateral and 

bilateral hearing loss ranging from mild to profound (Storbeck & Young, 2016). The HI 

HOPES programme aims to empower families by providing them with a holistic 

understanding and skillset to advocate and make informed decisions for their child whenever 

deemed necessary (Storbeck & Young, 2016). The programme is non-discriminative, 

providing services to all families regardless of healthcare status (public or private) at no 

additional cost (Storbeck & Young, 2016). 
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The dataset consists of structured longitudinal data pertaining to deaf and hard-of-

hearing children and their families who were enrolled in the HI HOPES programme over a 

12-year period (September 2006 – December 2018). The dataset is comprised of a 

comprehensive history of each individual child and includes family demographic and 

socioeconomic variables. All information pertaining to each child and their family is updated 

at regular intervals throughout the child’s enrollment in the programme (Storbeck & Young, 

2016). While the dataset consists of numerous variables related to each child and their 

families, the current study will only make use of the associated risk factors for hearing loss 

listed by the HPCSA (2018) and birthing information, namely: birth type (natural, elective 

caesarian, emergency caesarian) and gestational age (to determine prematurity). 

Ethical approval for the creation and analysis of the HI HOPES project and relevant 

data has previously been obtained by the key gatekeepers at the Centre for Deaf Studies, 

University of the Witwatersrand, from the Wits Human Research Ethics Committee (Non-

Medical) for creation of the dataset (Protocol number 2007 ECE20).  

 

2.1.2.2. Netcare Hospital Group Dataset. 

Netcare Hospital Group, one of the leading private healthcare groups in South Africa, 

launched a UNHS programme in 37 of its hospitals spanning across 7 provinces on the 1st of 

June 2019 (Netcare, 2019). Newborn hearing screening is offered to every child born at 

participating Netcare hospitals before being discharged in order to follow the ‘universal’ 

hearing screening principle. The UNHS programme is linked to a maternity passport which 

offers basic OAE screening. Babies referred to the neonatal intensive care unit (NICU) are 

offered both OAE and AABR screening procedures. All screening data is logged onto a data 

management application and includes birthing information, parent and child details, screening 

methods and results, and risk factors associated with hearing loss. The current study will only 
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make use of the associated risk factors for hearing loss listed by the HPCSA (2018) and 

relevant birthing information such as birth type (e.g., natural, elective caesarian, emergency 

caesarian) and gestational age. It is important to note that regardless of whether the infants 

included in the dataset passed or failed their initial screening test, none have any known 

diagnosis of a hearing loss at this stage. 

Permission to use the data for secondary analysis of this dataset was obtained from the 

key gatekeepers at the Centre for Deaf Studies, University of the Witwatersrand. Ethical 

approval for the collection of this data was previously obtained from the Wits Human 

Research Ethics Committee (Medical).  

 

2.1.3. Patient Records 

 The total sample included in the current study comprised 12 044 patient records of 

neonates who were part of the HI HOPES programme (89%, n = 10 700) or the Netcare 

UNHS programme (11%, n = 1 344). All children who formed part of the HI HOPES 

programme or the Netcare UNHS programme and who had complete data for all predictor 

and outcome variables were eligible to be included in the current study.  
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2.2. Research Design 

 For the purpose of the current study, a nonexperiemental, predictive modeling design 

was employed. Predictive modeling, as defined by Geisser (1993) refers to the process of 

developing a mathematical model to best predict the probability of an even or outcome 

occurring. The practice of predictive modelling is concerned with developing a model in such 

a way that future events or behaviour can be accurately forecasted. It involves the assessment 

of variables at one point in time so as to predict the occurrence of a phenomenon associated 

with those variables at a later point in time (Kuhn & Johnson, 2013). As the current study 

was concerned with creating a model which predicts the likelihood of a hearing lows 

occurring in high-risk neonates, the chosen design, which uses predictive modelling, aligns 

with the research aims and objectives.  

 

2.2.1. Outcome and Predictor Variables 

 Independent variables are variables that cause, affect, or influence changes in a 

phenomenon whereas the dependent variable is the outcome or results of the influence of the 

independent variable (Creswell, 2003). Nonetheless, the term predictor is often used in 

nonexperimental research to refer to a variable that can predict another variable (i.e., the 

independent variable) (Flannelly, Flannelly, & Jankowski, 2014). The term predictor is useful 

as it does not imply that the predictor causes change in the outcome variable even though it 

may (Flannelly et al., 2014). For the purpose of the current study, the independent variables 

will be referred to as the predictor variables and the dependent variables will be referred to as 

the outcome variables. 

 The dichotomous outcome variable was hearing status (i.e., hearing or deaf). The 

predictor variables used to predict hearing status included: birth type (natural, elective 



35 
 

caesarean, emergency caesarean), gestational age, premature birth, family history, 

extracorporeal membrane oxygenation (ECMO), hyperbilirubinemia requiring exchange 

transfusion, in-utero infections, craniofacial anomalies, physical findings (such as white 

forelock and distinctive facial features), syndromes associated with hearing loss or 

progressive/late-onset hearing loss, cultural-positive postnatal infections, maternal and/or 

infant HIV infection, meningitis, and exposure to ototoxic medication. All predictor 

variables, save for gestational age, were categorical (e.g., “Infant has a family history of 

hearing loss” – Response: Yes or No).  

 

2.2.2. Classification: A Machine Learning Technique 

Classification is a popular supervised learning technique which has been extensively 

used in the medical field to aid in the diagnosis, prognosis, and treatment plan of health 

outcomes (Harper, 2005; Yoo et al., 2012). Classification involves the process of deriving 

models, called classifiers, which predict class labels of given data points (Asiri, 2018). These 

‘classes’ are the attributes in a dataset which are of most interest and is more commonly 

known as the dependent variable in statistics (Yoo et al., 2012). Classification occurs a two-

step process in which: (1) a model is constructed by analyzing training data containing class 

labels and classification rules (the learning step) and; (2) the model is examined for accuracy 

or its ability to classify unseen data (the classification and/or training step) (Han et al., 2011; 

Yoo et al., 2012). While predictive accuracy it an important criterion for a good classification 

model, the model’s ability to provide an understanding of the underlying predictive structure 

of the data is of equal importance. In neonatal audiology, finding out which key 

characteristics and risk factors contribute to the risk of infants developing a hearing loss 

would not only provide assistance in classifying infants some certainty into risk groups, but 
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to more generally advance the knowledge and understanding of the causes and/or risks of 

hearing loss.  

Many different classification techniques are in existence such as Artificial Neural 

Networks (ANNs), Naïve Beyes classifier, Decision Trees (DT), Support Vector Machine 

(SVM), Association Rules (ARs), Regression Models, and Discriminant Analysis (DA). 

However, their merits and practicality for usage especially in the medical field remain unclear 

(Harper, 2005). Two classification techniques namely, Random Forest and Logistic 

Regression, have been considered in the current study to evaluate their relative performance 

in predicting hearing loss in high-risk neonates. A brief synopsis of each is provided below. 

 

2.2.2.1. Logistic Regression. 

In general, regression analysis seeks to predict the relationship between a response 

variable and one or more predictor variables in the presence of random error (Abdulqader, 

2017). In situations where the response variable is dichotomous (binary), logistic regression 

is used. Logistic regression uses the theory of binomial probability to model the chance of an 

outcome occurring based on individual variable characteristics (Sperandei, 2014). It applies 

the maximum-likelihood estimation (MLE) algorithm to search for the best coefficients 

which would result in a model which would predict a value very close to 1 (i.e., the 

event/outcome occurring) and 0 (i.e., the event/outcome not occurring). By seeking the best 

coefficient estimates of the logistic regression, the error predicted by the model is minimized.  

 Logistic regression has been successfully used in many healthcare instances 

(Abdulqader, 2017) and is an especially powerful tool in epidemiologic studies as it allows 

for multiple predictor variables to be analysed simultaneously while reducing the effect of 

confounding factors (Sperandei, 2014).  
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2.2.2.2. Random Forest. 

 Random Forest (RF) is a classification technique which uses the ensemble machine 

learning algorithm to aggregate the predictive ability of multiple classifiers (Husain & Xin, 

2016). Put simply, it builds a “forest” consisting of multiple random decision tress where 

each tree in the forest produces a class prediction after searching for the best features 

amongst a random subset of features present (Donges, 2020). The class prediction with the 

most votes in the entire forest becomes the overall models class prediction (Yiu, 2019). This 

ensemble method results in a more comprehensive classifier (Hussain & Xin, 2016).  

 An important feature of the Random Forest classifier is its ability to calculate variable 

importance. The classifier can analyse each attribute and reveal the importance of the 

attribute in making the correct classification of the model (Livingson, 2005). This allows 

researchers to filter out unnecessary attributes which could save time during data collection 

and data analysis (Livingson, 2005, p. 2). 

 The Random Forest approach has shown good accuracy in overall performance 

(Sarica, Cerasa & Quattrone, 2017). In general, it produces a higher prediction accuracy, is 

robust to overfitting, and is considered more stable in the presence of outliers and high 

dimensional parameter spaces than any other classification technique (Hussain & Xin, 2019).  

 

2.3. Procedure 

Prior to conducting statistical and predictive analyses, pre-processing techniques were 

conducted on each individual dataset in Microsoft Excel to ensure accuracy, completeness, 

and consistency in the data. Any missing values, noise, and inconsistencies which may bias 

the final dataset and consequently result in statistical and classification underperformance 

(Husain et al., 2016) were dealt with as described below. Once both datasets were verified 
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and validated, the datasets were carefully integrated so as to reduce and avoid redundancies 

and inconsistencies in the resulting dataset. The data was then exported into R Version 1.3 

(RStudio.com, 2020) for analysis. 

 

2.3.1. Handling Missing Values 

Missing values are a universal problem in the analysis of large datasets across many 

research domains (Abidin, Ismail, & Emran, 2018; Schmidt, Niemann, & Trzebiatowski, 

2015). Missing values are very common and occur due to data corruption, measurement error, 

non-response from participants or failure to record data (Kumar, 2020). Unfortunately, in 

medical data, missing values are unavoidable. This poses a problem in the results of statistical 

and machine learning methods which often assume completeness of data (Kumar, 2020; Ding 

& Simonoff, 2006). Missingness in data imposes undesirable effects on statistical and 

machine learning results by introducing the element of uncertainty by distorting the final 

results and causing a biased statistical analysis (Schmidt et al., 2015; Abidin et al., 2018). 

Previous researchers have proposed several ways in which to manage missing data 

(Liu, White, Thompson, & Bramer, 1997; Batista & Monard, 2003; Kim & Yates, 2003; 

Zhang, Qin, Ling, & Sheng, 2005; Ding & Simonoff, 2006; Saar-Tsechansky & Provost, 

2007; Schmidt et al., 2015; Abidin et al., 2018). The most traditional method of dealing with 

missing values is to discard the missing instances (Ding & Simonoff, 2006; Saar-Tsechansky 

& Provost, 2007; Schmidt et al., 2015; Abidin et al., 2018). Through this method, cases with 

missing values are omitted leaving the remaining data complete and statistical and machine 

learning techniques can be applied without further issues (Schmidt et al., 2015; Abidin et al., 

2018).  
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The challenge of missing or unknown data affecting the accuracy of the models in the 

current study was addressed by excluding cases where large volumes of data was missing on 

key predictors. As one of the objectives of the current study is to assess the performance of 

using machine learning methods in predicting the likelihood of a hearing loss occurring in 

high-risk neonates, this strategy was deemed appropriate (Saar-Tsechansky & Provost, 2007). 

While handling missing data with this method is the easiest and thus default option in most 

statistical and machine learning methods, it may lead to a loss of critically important 

information and may bias parameters and estimates (Abidin et al., 2018). 

 

2.3.2. Handling Class Imbalance 

After analysing the cleaned dataset, class imbalance was detected. Class imbalance 

occurs when the number of instances in one class, usually the one which is of more interest, 

or the ‘positive class’ is significantly outnumbered by the majority class (Zhu et al., 2019). In 

the current study, the deaf and hard-of-hearing class was greatly outnumbered by the hearing 

class by 1:8. Class imbalance poses a major challenge for classification techniques as it can 

decrease the effectiveness of the classification model (Chen et al., 2004). As such, 

classification models ran on imbalanced data often results in a high overall accuracy rate but 

a low accuracy rate for the positive or minority class (Chen et al., 2004; Zhu et al., 2019). 

This is because classification models are more biased towards the majority class as they aim 

to minimize the overall error rate rather than considering the importance of the minority class 

(Zhu et al., 2019). Hence, a process for handling imbalanced data before constructing and 

running the two classification models proposed in the current study was required. Common 

solutions to handle class imbalance include random oversampling which, in effect, resamples 

the data present in the underrepresented class and, random under-sampling which downsizes 
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the over-represented class by removing training examples from that class (Kotsiantis et al., 

2006).  

Based on the ratio of the positive to negative instances in the data used for the current 

study, the under-sampling method was eliminated as the positive class (i.e., deaf and/or hard-

of-hearing) was substantially lower than the negative class (i.e., hearing). This would have 

resulted in a drastic decrease in sample size and a loss of potentially important information. 

Therefore, ROSE (version 0.0-3), a popular package for binary imbalanced learning, was used 

to resample the data of the underrepresented class (Lunardon et al., 2014). This process was 

executed by the ROSE package (version 0.0-3) by randomly oversampling the data with 

replacement until the specified sample size reached (Lunardon et al., 2014).  

 

2.3.3. Statistical and Machine Learning Analyses  

Descriptive data analyses were conducted to describe the neonate profile (i.e., hearing 

status, gender, programme, and healthcare status), mode of delivery, gestational age, and risk 

factors associated with hearing loss. The categorical variables were presented as frequencies 

and percentages while the continuous variable (i.e., gestational age) was presented by the 

mean, standard deviation, and range. 

The association between the HPCSA risk factors with the addition of mode of 

delivery, prematurity, and gestational age and hearing loss was determined using the Chi-

Squared Test of Contingencies (X2). A simple logistic regression model was computed to 

determine the relationship between gestational age and hearing loss. Predictor variables with 

a p-value of < 0.05 were included in final classification models. 

Two classification models namely, logistic regression and random forest, were built 

with the dataset consisting of both hearing and deaf and/or hard-of-hearing children who may 
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or may not have presented with the risk factors associated with neonatal hearing loss. Each 

child was given a class label which indicated their hearing status, thus resulting in two 

distinct classes namely, “HL = 0” for hearing children and “HL = 1” for deaf and/or hard-of-

hearing children. To construct, test, and compare the two classification techniques, the 

balanced study dataset was split into a ‘training’ set in which the models were derived, and a 

‘testing’ set in which the models were applied to and tested. The sample was randomly split 

into two parts for training (70%) and testing (30%). The development of the classification 

models in the training set, and the application of the classification models to the testing set, 

was conducted in R using the library packages caret (version 6.0-86) and randomForest 

(version 4.6-14). Model performance for both models were assessed using accuracy, 

specificity, and sensitivity scores. Internal validation of the models was assessed using 10-

fold cross-validation with 10 repeats (Moons et al., 2015). Cross-validation was used to 

adjust for overfitting in the predictive ability of each model (Moons et al., 2015). 

 

2.4. Ethical Considerations 

 Permission to conduct the current study using the datasets described above was 

obtained from the head researchers at the Centre for Deaf Studies and Netcare Hospital 

Group respectively. Ethical clearance for the current study was obtained from the Wits 

Human Research Committee (Medical) (protocol number: M200516 MED 20-05-051) (see 

Appendix B) upon acceptance of the current study by the Faculty of Humanities.  

 Both datasets contain sensitive information pertaining to a vulnerable population as 

the patient records included neonates who are underage, with some being deaf and/or hard-of-

hearing. However, previous ethical clearance has previously been obtained for the creation 

and analysis of both datasets respectively as described above. Moreover, in conforming with 
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the ethical principle of anonymity and confidentiality, the data provided for secondary data 

analysis has been pseudo-anonymized with numbers being used as infant identifiers. Only the 

key gatekeepers have access to all infant information. Additionally, any data in the principal 

researcher’s possession will be retained only as long as it is necessary to complete the current 

research project and possible publications which may arise from it.  
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Chapter 3: Results 

This chapter presents the data analysis and results from the current study followed by 

a discussion of the findings presented in the next chapter. The data analysed to develop 

predictive models which predict the occurrence of childhood hearing loss based on the risk 

factors associated with childhood hearing loss.  

 

3.1. Descriptive Analyses 

3.1.1. Patient Records 

 A combined total of 25 992 patient records were initially included in the current 

study. Of these 25 992 records, 13 948 were excluded from the total sample due to high 

volumes of missing or unknown data. This left 12 044 patient records eligible for inclusion in 

the final sample. Of the 12 044 patient records, 10 700 (88%) neonates were hearing and 

were part of the Netcare UNHS programme, while 1 344 (11%) neonates were deaf and/or 

hard of hearing and were part of the HI HOPES programme. For the purpose of the current 

study, the patient records from both datasets were combined into a single sample and thus the 

demographics described further form part of the combined sample. The sample consisted of 

more males with 6 204 (51.5%) of the neonates being male and 5 840 (48.5%) being female. 

Ten thousand eight hundred and fifty-three (90%) of the neonates had access to private 

healthcare whereas 1 164 (9.7%) of the neonates having access to public healthcare. The 

remaining twenty-seven neonates (< 1%) had access to both private and public healthcare. 

3.1.1.1. Mode of Delivery 

Three thousand and ninety-three neonates (26.5%) were delivered via natural birth 

and 8 851 (73.5%) were delivered via caesarean section. Of the 8 851 delivered via caesarean 

section, 6 408 (72%) were delivered via elective caesarean, 2 385 (27%) were delivered via 
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emergency caesarean, and fifty-eight participants (1%) were delivered via unspecified 

caesarean section. 

3.1.1.2. Gestational Age 

 The mean gestational age was 38.04 weeks (SDGestationalAge = 2.22, RangeGestationalAge = 

20 – 48 weeks). To analyse the relationship between hearing loss and prematurity, the 

neonates were classified into preterm (i.e., born prior to the completed 37th week of 

gestation), full-term (i.e., born between the 37th and 41st week of gestation), and post-term 

(i.e., born after the 41st week of gestation) groups (Fleischman, Oinuma, & Clark, 2010; 

Jacob et al., 2017). One thousand six hundred and nineteen neonates (13.4%) were classified 

as preterm, 10 335 (86%) were classified as full-term, and 92 were classified as post-term (< 

1%). 

3.1.2. Risk Factors 

 The current study made use of the risk factors defined by the HPCSA (2018) with the 

addition of mode of delivery (i.e., natural, elective caesarean, emergency caesarean), 

prematurity, and gestational age in all subsequent statistical and machine learning analyses. 

The frequencies and percentages of the HPCSA risk factors present in the cohort are 

presented in Table 1. The most frequently reported risk factor in the cohort was ototoxic 

medication with (24.06%) of children having this risk factor. Family history (19.45%) and 

ECMO (18.07%) were the next most frequently reported risk factors in the cohort. The next 

most common risk factors were cultural-positive postnatal infections (9.91%), meningitis 

(8.64%), maternal and/or infant HIV infection (5.03%), physical findings (3.92%), 

craniofacial anomalies (3.29%), in-utero infection (3.23%), syndromes associated with 

childhood hearing loss (2.38%), hyperbilirubinemia requiring exchange transfusion (1.75%). 

The least reported risk factor was neurodegenerative disorders (0.26%) with only 5 children 
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having this risk factor. Due to the low presence of neurodegenerative disorders in the study, 

this risk factor was dropped from any further analyses. 

 

Table 1 

Frequencies and Percentages of HPCSA Defined Risk Factors Present in Sample (n = 1887) 

HPCSA Defined Risk Factors Present in Sample N % 

Family History of Permanent Childhood Hearing Loss 367 19.45 

Extracorporeal Membrane Oxygenation (ECMO) 341 18.07 

Hyperbilirubinemia Requiring Exchange Transfusion 33 1.75 

In-utero Infections 61 3.23 

Craniofacial Anomalies 62 3.29 

Physical Findings 74 3.92 

Syndromes Associated with Hearing Loss or Progressive/Late-Onset 

Hearing Loss 

45 2.38 

Neurodegenerative Disorders 5 0.26 

Cultural-Positive Postnatal Infections 187 9.91 

Meningitis 163 8.64 

Maternal and/or Infant HIV Infection 95 5.03 

Ototoxic Medication 454 24.06 

 

3.1.3. Statistical Analyses 

Several Pearson’s Chi-Square (χ2) Test of Contingencies (with α = .05) were 

computed to evaluate the association between each of the individual risk factors and the 

occurrence of hearing loss. The results from the χ2 analysis presented in Table 2 showed 
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significant correlations between each birth type (i.e., natural, elective caesarean, emergency 

caesarean), prematurity, family history, ECMO, in-utero infection, craniofacial anomalies, 

physical findings, syndromes associated with hearing loss, cultural-positive postnatal 

infections, meningitis, maternal and/or HIV infection, and ototoxic medication. However, the 

association between hyperbilirubinemia requiring exchange transfusion (χ2(1) = .53, p = .46) 

was nonsignificant. As a result, hyperbilirubinemia was excluded from any further analyses. 

 

Table 2 

Pearson’s Chi-Square (χ2) Test of Contingencies Associations Between Risk Factors and 

Hearing Loss 

 df χ2 p 

Natural Birth 1 1459.53 <.001 

Emergency 

Caesarian 

1 16.62 < .001 

Elective Caesarian 1 1124.09 < .001 

Premature Birth 1 559.63 < .001 

Family History  1 981.24 < .001 

ECMO  1 20.66 < .001 

In-Utero Infection  1 255.30 < .001 

Craniofacial 

Anomalies  

1 212.90 < .001 

Physical Findings  1 441.58 < .001 

Cultural-Positive 

Infections  

1 1060.64 < .001 

Syndrome 1 27.11 < .001 

Meningitis  1 1140.09 < .001 

Maternal and/or 

Infant HIV Infection 

1 13.9 < .001 

Ototoxic Medication 1 12.92 < .001 
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Hyperbilirubinemia 

Requiring Exchange 

Transfusion 

1 .53 .46 

 

To determine the relationship between hearing loss and gestational age, a simple 

logistic regression analysis was conducted. The omnibus model for the logistic regression 

analysis was statistically significant χ2 (1) 131.02, p = .000. Coefficients are presented in 

Table 3.  

 

Table 3 

Logistic Regression Coefficients for Gestational Age as a Predictor of Hearing Loss 

 b SE (b) p Exp (B) 

[95% CI] 

Constant 2.83    

naturalYes -0.13 0.01 .000*** 0.88 [0.86, 0.90] 

 

3.1.4. Classification Models: Logistic Regression and Random Forest 

3.1.4.1. Logistic Regression 

A logistic regression classification model was constructed to predict the probability of 

hearing loss based on risk factors associated with childhood hearing loss. Assumption testing 

prior to constructing the model did not indicate any violations. The model was constructed in 

a two-step process where: (1) the model was built using the training set and then, (2) applied 

to the test data to examine the model’s accuracy and performance. 
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The omnibus model for the logistic regression analysis was statistically significant χ2 

(15) = 8935.14, p < .000, Cox and Snell’s R2 = .45, Nagelkerke’s R2 = .60. The classification 

model had an overall accuracy of 92% in predicting hearing loss in children. The proportional 

reduction in error (PRE) rate was .90, indicating a 90% reduction in error when predicting 

hearing loss. Sensitivity and specificity rates indicated that the model was 74% accurate in 

predicting children who are more likely to have a hearing loss and 84% accurate in predicting 

children who are less likely to have a hearing loss, respectively.  

Internal validation of the model using a 10-fold repeated cross-validation with 10 repeats 

found the model’s accuracy rate was 92%. The cross-validated model remained a good fit for 

the data with the validated model (p < .000) and model coefficients remaining statistically 

significant (p < .05). Coefficients are presented in Table 4.  

As demonstrated in Table 4, family history, ECMO, infection, craniofacial anomalies, 

physical findings, syndrome, cultural-positive postnatal infections, meningitis, and ototoxic 

medication were the only predictors which significantly improved the model’s predictive 

capability. infection (OR: 9.93; CI [4.34, 2.40]) Premature birth (OR: 7.36; CI [5.38, 1.01]) 

ECMO (OR: 9.60; CI [3.73, 2.09]), , craniofacial anomalies (OR: 6.54; CI [3.89, 1.67]), and 

meningitis (OR: 5.41; CI [1.33, 1.42]) were the top five variables which significantly 

improved the model’s prediction with odds ratios over 5. That is, children who had either 

prematurity, ECMO, infection, craniofacial anomalies, and meningitis were over 5 times 

more likely to develop a postnatal hearing loss than children without any of these risk factors.  
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Table 4 

Predictor Coefficients for the Logistic Regression Model Predicting Hearing Loss 

 b SE (b) p Exp (B) 

[95% CI] 

Intercept 13.13 190.06 .94 5.03 [1.68, 1.52] 

naturalYes -15.73 190.06 .93 1.48 [7.02, 7.18] 

electiveCYes -18.49 190.06 .92 9.32 [4.31, 4.51] 

emergencyCYes -17.56 190.06 .93 2.35 [1.09, 1.14] 

prematureYes 2.00 0.16 .000** 7.36 [5.38, 1.01] 

gestationalAge 0.03 0.02 .25 1.03 [9.80, 1.08] 

familyHistoryYes 2.76 0.178 .000*** 1.58 [1.12, 2.24] 

ECMOYes -2.34 0.44 .000*** 9.60 [3.73, 2.09] 

infectionYes 2.30 0.43 .000*** 9.93 [4.34, 2.40] 

craniofacialYes 1.88 0.47 .000*** 6.54 [3.89, 1.67] 

physicalYes 2.62 0.53 .000*** 1.37 [5.12, 2.85] 

syndromeYes 1.04 0.57 .05* 2.83 [8.79, 8.36] 

culturalYes 1.03 0.63 .05* 2.80 [1.39, 9.37] 

meningitisYes 4.00 0.73 .000*** 5.41 [1.33, 1.42] 

HIVYes -0.06 0.44 .89 9.41 [3.80, 2.14] 

ototoxicYes -0.84 0.29 .001** 4.33 [2.34, 7.49] 

Note: CI = Confidence Interval 

* p significant at .05 

** p significant at .001 

** p significant at .000 
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3.1.4.2. Random Forest  

A logistic regression classification model was constructed to predict the probability of 

hearing loss based on risk factors associated with childhood hearing loss. The model was 

constructed in a two-step process where: (1) the model was built using the training set and 

then, (2) applied to the test data to examine the model’s accuracy and performance. 

The random forest classification model had an overall accuracy rate of 88% in predicting 

hearing loss in children with sensitivity and specificity rates indicated that the model was 

72% accurate in predicting children who are more likely to have a hearing loss and 90% 

accurate in predicting children who are less likely to have a hearing loss, respectively. The 

out-of-bag error rate (OOB) was 15.2%.  

Internal validation of the model using a 10-fold repeated cross-validation with 10 

repeats indicated that the model’s best predictive accuracy rate would be obtained by tuning 

the number of predictors chosen at each split (m) to mtry = 8. Recalibration of the model’s 

parameters to mtry = 8 and ntree = 100, found the model’s overall accuracy rate remained the 

same at 88%. However, the out-of-bag error rate decreased slightly from 15.2% to 14.8%. 

Nonetheless, the cross-validated model remained a good fit for the data (p < .000). 

To inspect which variables in the model had the most predictive power, variable 

importance statistics were run. As illustrated in Figure 2, all three modes of delivery (i.e., 

natural, elective caesarean, and emergency caesarean), gestational age, premature birth, 

family history, cultural-positive infections, and meningitis were important predictors in 

predicting hearing loss in children. 
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Figure 2 

Variable Importance Plot of Predictors in Random Forest Risk Model 
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Chapter 4: Discussion 

This chapter provides a discussion of the main findings from the current study in accordance 

with the specific aims and objectives of the study with reference to relevant literature in order 

to substantiate the findings from the current study. Limitations in the research methodology 

and design is also discussed, and recommendations are made for future research. 

 Early identification and intervention of childhood hearing loss is crucial to the well-

being of both children and their families. Early hearing detection and intervention (EHDI) 

services have become an important goal in audiology to avoid or significantly minimise the 

effects of congenital and/or early-onset/progressive childhood hearing loss (Swanepoel, 2009; 

Khoza-Shangase, 2019). Several studies have shown the far-reaching effects of the late 

identification of childhood hearing loss on the achievement of milestones in the interrelated 

domains of language, cognition, and socio-emotional development (Moeller, 2000; Olusanya, 

2008; Swanepoel, 2009; Kanji, Khoza-Shangase, Ballot, 2010; Khoza-Shangase, 2019). 

These effects may lead to ramifications in future scholastic and vocational achievement 

(Olusanya, 2008; Swanepoel, 2009; Kanji et al., 2010). 

 Evidence from the developed world has documented the positive effects of EHDI 

programmes not only on the domains of development but with regards to the interaction 

between parent and child resulting in more secure attachment bonds and a supportive family 

environment (Khoza-Shangase, 2019). This, in turn, results in an overall improvement in 

quality of life (Khoza-Shangase, 2019). However, the implementation of EHDI, particularly 

the endorsement of UNHS, faces many challenges especially within developed countries such 

as South Africa where manpower, financial aid, and technological resources are lacking. 

Consequently, targeted newborn hearing screening (TNHS) has been recommended as an 

interim approach in context such as South Africa where UNHS cannot yet be feasibly 

implemented. Despite the defined a list of risk factors found to be associated with hearing 
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loss proposed by the JCIH (2007), the risk factors applicable to developing countries such as 

South Africa are absent. While the HPCSA (2018) has adapted this list based on contextually 

identified findings in the South African population, these studies have evaluated hearing loss 

risk factors using statistical techniques such as linear regression. Such techniques assume a 

linear relationship between the predictor and dependent variables, thus oversimplifying and 

producing poor predictive power when the data has non-linear attributes (Byeon, 2015). It is 

therefore important to thoroughly identify and examine the risk factors associated with 

neonatal hearing loss through approaches that are able to determine more nuanced 

relationships between these variables.   

 New statistical advancements in machine learning techniques have been successfully 

implemented in various subdomains of audiology (Juhola et al., 2001; Anwar et al., 2010; 

Panchev et al., 2013; Shew et al., 2019; Zhao et al., 2019) and in the allocation of scarce 

resources across health systems (Price & Nicholson, 2014). The current study investigated a 

cohort of high-risk children with the aim of using predictive modelling to predict the 

occurrence of hearing loss using risk factors associated with neonatal hearing loss.  

The risk factors present in the current study are widespread and consistent with those 

listed in the HPCSA (2018), JCIH (2019), and other related studies. Ototoxic medication, 

family history, and extracorporeal membrane oxygenation (ECMO) were the most frequently 

reported risk factors. Interestingly, maternal and/or infant HIV infection was among the top 

10 frequently reported risk factors indicating that the profile of high-risk neonates may differ 

across contexts especially in developing contexts where the burden of disease (such as 

HIV/AIDS) may influence the way in which the risk factors interact with one another. 

Further analysis of these risk factors was conducted in order to establish the risk factors 

which were more likely to determine the occurrence of neonatal hearing loss.  
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 Apart from hyperbilirubinemia, Table 2 clearly shows that all risk factors have been 

found to have statistically significant associations with hearing loss2. However, two risk 

factors namely, prematurity and mode of delivery, which are significantly associated with 

neonatal hearing loss in the current study have not yet been added to the list of risk factors 

listed by the HPCSA (2018) and the JCIH (2019). Notwithstanding, several studies have 

found associations between these prematurity and mode of delivery and neonatal hearing 

loss.  

 Hearing loss has been a commonly quoted consequence of prematurity (Marlow, 

Hunt, & Marlow, 2000; Wroblewska-Seniuk, Greczka, Dabrowski, Szyfter-Harris, & Mazela, 

2017; Wang et al., 2018; Robertson et al., 2009). The pathophysiology of neonatal hearing 

loss in premature infants is complex and, as with other neurological structures, the period 

between 20 – 33 weeks is a critical period in gestation in which audiological function 

development occurs. (Marlow et al., 2000). While prematurity alone may not have a strong 

impact on hearing, it is commonly associated with other risk factors which, in combination, 

may predispose the infant to having a hearing loss. The risk factors which particularly occur 

alongside prematurity include exposure to ototoxic medication (i.e., aminoglycosides, C-

reactive protein, loop diuretics) (Wroblewska-Seniuk et al., 2017; Wang et al., 2018), 

prolonged exposure to noise generated by the life-support machinery in NICU (Wroblewska-

Seniuk et al., 2017), hyperbilirubinemia (Marlow et al., 2000; Wroblewska-Seniuk et al., 

2017), hypoxia (Wroblewska-Seniuk et al., 2017), and the resultant prolonged oxygen use 

(Robertson et al., 2019). 

 Mode of delivery is an additional risk factor which been revealed to be a determining 

risk factor for neonatal hearing loss in the current study. Several studies examining the role of 

 
2 These associations are purely correlational and thus causality cannot be claimed. 
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birth type on infant hearing status has placed much focus on the differences in the effects that 

caesarean and natural birth have on newborn hearing screening outcomes (Oghan, Guvey, 

Topuz, Erdogan & Guvey, 2020; Xiao, Li, Xiao, Jiang, & Hu, 2015; Mylonas & Friese, 2015; 

Guven, 2019; Farahani, Mahrani, Seifrabiei, & Emadi, 2017; Smolkin et al., 2012; Olusanya 

& Solanke, 2009). The recurrent finding from these studies indicated that infants are more 

likely to fail their first hearing screening test due to the delayed absorption of middle ear fluid 

if they were born via caesarean delivery than via natural delivery (Oghan et al., 2020; Xiao et 

al., 2015; Mylonas & Friese, 2015; Guven, 2019; Farahani et al., 2017; Smolkin et al., 2012; 

Olusanya & Solanke, 2009). Furthermore, studies investigating the blood concentrations of 

the anaesthetics administered during the caesarean section procedure noted that the effects of 

the anaesthetics slowed down the rate of the neurotransmission of sound thus resulting in 

failed screening results (Diaz et al., 1977; Khoza-Shangase & Joubert, 2011). While these 

findings are important in understanding the high referral rates in infants born via caesarean 

birth, it does not necessarily mean that these infants will go on to develop a hearing loss. It 

can be inferred rather that the statistically significant association between caesarean delivery 

and hearing loss in the current study is a result of premature births occurring via caesarean 

delivery. A study conducted by Naidoo and Moodley (2009) on the increasing rates of 

caesarean sections in South Africa found that infants were being delivered via caesarean 

section from as early as 28 weeks for elective caesareans and 27 weeks for emergency 

caesareans. It can be deduced rather, that the prevalence of hearing loss in caesarean 

delivered babies are inversely related to the maturity of the baby rather than the procedure 

itself. On the other hand, the statistically significant association between natural birth and 

hearing loss could be due to the presence of other and/or unknown risk factors present in the 

cohort which, in combination, contribute significantly to the occurrence of hearing loss. 

However, the significant association between mode of delivery and hearing loss is purely 
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correlational therefore causality cannot be claimed (though this could be argued for infants 

born via caesarean section if they are being born prematurely, i.e., before the 37th gestational 

week). 

 The predictive relationship between high-risk factors and neonatal hearing loss has 

not been thoroughly investigated. In the South African context specifically, it is to the 

author’s knowledge that there have been no studies conducted which aimed at developing 

prediction models using machine learning techniques for the prediction of hearing loss in 

high-risk neonates. Artificial intelligence (AI) and its subdomain machine learning have been 

slow in assimilating themselves into healthcare despite their potential to improve care, save 

lives, and cut costs especially in developing countries (Shew et al., 2019). Machine learning 

has enabled researchers to analyse large amounts of high-dimensional data, discover 

associations and patterns within this data, and ultimately build and apply models from this 

data to predict diagnostic results on unseen medical data based on what the model has 

learned. Previous studies in audiology have focused on the inferences related to the causal 

effects that risk factors have on the hearing thresholds of children and how a combination of 

these risk factors relate to one another (Beswick et al., 2013; Ohl et al., 2009; Bielecki et al., 

2011). Machine learning, on the other hand, allows one to supply unanalysed audiological 

data into learned models and subsequently make accurate predictions about neonatal hearing 

loss. By analysing the function of risk factors associated with neonatal hearing loss, one may 

be able to indirectly identify important information about how these risk factors, 

independently and in combination with one another, effect the development of hearing loss in 

early life. 

Two classification models for the prediction of neonatal hearing loss based on the 

high-risk factors associated with it has been presented. Both methods provided prediction 

accuracies between 88% and 92% with the logistic regression model performing slightly 
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better than the random forest model in terms of classification rate. The slight deviance in 

predictive accuracy can be explained by the premises on which each algorithm is based. 

Firstly, random forest models usually perform best when they are constructed using a small 

number of predicting variables (Kirasich, Smith, & Sadler, 2018). This is in contrast to 

logistic regression where, regardless of the number of predictors, the accuracy of the model 

continues to increase (Kirasich et al., 2018). The complexity of the random forest model, due 

to being constructed using several potential risk factors may have resulted in overfitting thus 

decreasing the model’s predictive accuracy. However, the random forest algorithm with 

which the model was built corrects for this issue by using an ensamble of decision tress 

where the values on each tree originate from a random, independent sample (Kirasich et al., 

2018). Moreover, the model was tuned during the training process to achieve the best 

possible prediction accuracy. Lastly, random forest models tend to underperform if the test 

data is far from the range of the testing data (Wickramanoyake, 2017). This means that 

although the model can accurately predict the same data it was trained on, it may 

underperform when applied to data where similar patterns and variations as the training set 

does not exist. On the contrary, logistic regression models has the ability to extrapolate data 

well outside the range of the training data as the logistic regression algorithm is constructed 

on arithmetic function (Wickramanoyake, 2017). The random forest model may have 

underperformed when compared to the logistic regression model as the variables present in 

the training dataset were not adequately presented in the testing dataset.  

Furthermore, both models placed predictive importance on the same variables namely, 

prematurity, family history, cultural positive infections, and meningitis. Although this does 

not relate to the model’s accuracy, it relates to the importance of each predictor making a 

prediction about neonatal hearing loss. While previous studies have examined the risk factors 

related to neonatal hearing loss, they have not specifically measured the predictive 
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importance of each factor. Nonetheless, prematurity, family history, cultural-positive 

infections and meningitis have been consistently reported amongst the most prevalent risk 

factors for hearing loss (Beswick et al., 2013; le Roux, Swanepoel, Louw, & Vinck, 2015; 

Beswick, Driscoll, Kei, & Glennon, 2012; Olusanya, 2011a; Khan et al., 2018; Martines et 

al., 2012; Kanji & Khoza-Shangase, 2019; Beswick, Driscoll, & Kei, 2012; Kuschke & Peer, 

2018). 

 

4.1. Contributions of the Current Study 

The present study has demonstrated the use of machine learning techniques to predict 

the occurrence of hearing loss in high-risk neonates. Understanding the prevalence and 

predictive important of the risk factors associated with neonatal hearing loss is crucial in 

informing further exploration of these risk factors to provide a more comprehensible 

understanding of its effects on audiological functioning. This study has not only provided an 

understanding of the risk factors which may have the most effect on audiological functioning 

in a South African context, but also offers a novel method to identify infants who have a 

potential risk of late onset/progressive hearing loss. Prematurity, family history, cultural-

positive infections, and meningitis have been found in the current study to have the most 

predictive power in determining neonatal hearing loss. These results have provided 

information that can be used as an initial step towards developing a high-risk registry for 

neonatal hearing loss (specifically for South African children). High-risk registries are 

important as it helps to alert medical practitioners to suspect the presence of a late 

onset/progressive hearing loss, which will in turn result in early identification and 

intervention. Results from the current study has shown the potential of using machine 

learning techniques to identify infants who are at increased risk for late onset/progressive 

hearing loss. Implementing these techniques in real time allows practitioners using these 
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models to identify at-risk neonates (especially those who reside in remote areas where some 

form of UNHS is not implemented) and refer them to audiological monitoring or targeted 

surveillance programmes. This will subsequently result in hearing identification and 

intervention services which will minimise the developmental effects of neonatal hearing loss.  

 

4.2. Limitations of the Current Study 

 While implementing machine learning techniques into neonatal audiology offers an 

exciting new prospect, several limitations of the current study must be acknowledged. Firstly, 

the ‘black-box’ nature of machine learning algorithms can be difficult to interpret. While one 

has control over the data inputted into the model and is knowledgeable about what 

predictions one wishes to make (i.e., the output), there is a limited understanding of the 

process which occurs between the two as it is opaque (Shew et al., 2019; Price, 2018). As a 

result, the way in which the risk factor variables interact along with their independent effects 

on the outcome is unknown (Weng et al., 2017) and thus meaningful inferences about how 

the mode is built cannot be determined. Furthermore, apart from regression models, there are 

no confidence intervals or odds ratios equivalent for machine learning algorithms (Shew et 

al., 2019). This means that although predictor variables can be assessed to understand its 

contribution to the model, the extent of this contribution is unknown (Shew et al., 2019). In 

spite of the ongoing efforts to understand and unlock this ‘black-box’ such as improvements 

in data visualization methods, a definite solution has not yet been uncovered (Price et al., 

2018). 

 Secondly, the current study investigated each risk factor in its entirely and did not 

take into consideration the specific indicators which each risk factor consisted of (e.g., 

cytomegalovirus and rubella were both measured as in-utero infection). This limits the 
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understanding of the effect that each individual sub-domain of a risk factor has on 

audiological functioning. Future studies should examine each medical condition which makes 

up the individual risk factor in order to obtain a more comprehensive understanding of 

individual effects on neonatal hearing loss. Moreover, due to the small frequency of certain 

risk factors, hyperbilirubinemia and neurodegenerative disorders could not be included in 

both machine learning models. A more widescale, comprehensive dataset should be used in 

order to successfully analyse these two risk factors.  

Thirdly, while both datasets provide a comprehensive and holistic overview of infant 

hearing loss, the datasets vary in terms of healthcare status. The HI HOPES dataset includes a 

combination of infants in both private and public healthcare whereas the Netcare dataset only 

consists of infants who are in private healthcare. This may affect the accuracy of the model’s 

prediction as certain risk factors may present more often in children from differing 

socioeconomic status groups. Socioeconomic status should be included in future machine 

learning models to determine whether it has an effect on the factors influencing neonatal 

hearing loss. Additionally, the data collected from Netcare is dependent on a data recording 

and management system whereby data may be incorrectly entered into the system due to 

human error. However, this challenge is limited as the data is entered by trained healthcare 

professionals, so the risk of error is limited.  

Lastly, the dataset used in the current study was highly unbalanced with more hearing 

children being represented than deaf and/or hard-of-hearing children. Although this 

imbalance was addressed through oversampling, it is important to note that this is not the 

same as obtaining new data points. In essence, the data of deaf and hard-of-hearing neonates 

were being resampled. As such, the results may not be generalisable to the wider population.  
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Chapter 5: Conclusion 

 

Machine learning has played a unique role in both general healthcare and in the field 

of audiology. Despite its limitations, machine learning has shown its potential role in 

predicting hearing outcomes. The current research study has contributed to existing research 

by examining the risk factors associated with neonatal hearing loss and constructing machine 

learning models to predict the occurrence of hearing loss in high-risk neonates. Results have 

extended and supported previous studies by providing new methodologies to the field of 

neonatal audiology as well as early childhood hearing and detection strategies. 
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