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Abstract

The Large Hadron Collider (LHC) generates petabytes of data per second during

each data taking period and has long term data storage in the order of exabytes.

Sophisticated machine learning (ML) techniques are used at the trigger and final state

level to analyse this data. Boosted Decision Trees (BDTs) in particular, have been the

default ML tool for this task. However, in the recent past, more modern techniques

such as Deep Learning have emerged and there has been growing justification for their

use in High Energy Physics (HEP). We conduct a comparative study between BDTs

and (Deep Neural Networks) DNNs in classifying signal and background events in

the H → γγ + χ decay channel. A comparison between a fully supervised and weakly

supervised model is also conducted. Results suggest that DNNs outperform BDTs and

the fully supervised model is outperformed by the weakly supervised model though it

is more robust.
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Chapter 1

Introduction

1.1 Background

The Standard Model (SM) is one of the most successful physics theories that describes

fundamental forces in nature and categorizes fundamental particles governed by these

forces1. The SM Higgs boson is the latest success of the SM and marked a milestone

when it was discovered in 2012. According to the European Organization for Nuclear

Research (CERN) website2, the Higgs boson is an elementary particle that exists in

the Higgs field where it has no electric charge, is scalar and has a spin of zero [7]. At

the LHC, the Higgs boson is mainly produced by proton-proton collisions, however, it

can also be produced by the fusion of two gluons, Vector Boson Fusion or the decay

of W or Z bosons [8]. Another recent and promising discovery in High Energy Physics

(HEP) is the Madala boson, which we discuss further in the next paragraph.

The Madala boson is a heavy scalar which was first hypothesised by physicists at the

University of the Witwatersrand in 2015/2016 as a result of observed discrepancies

in LHC data and SM predictions [9, 10]. According to the Madala Hypothesis, this

heavy scalar has more than twice the mass of the SM Higgs boson at 272 GeV and

interacts with dark matter. In the literature, the Madala Hypothesis is said to be an

extension of the Two Higgs Doublet Model (2HDM) which postulates the existence of

a new heavy scalar H that disintegrates into the Higgs boson (h) and a scalar boson

(S) [1]. This model seeks to explain discrepancies found in LHC data from ”Run 1

1https://home.cern/about/physics/standard-model
2https://home.cern/about/updates/2013/05/basics-higgs-boson
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and Run 2” [9, 11, 12]. A recent compelling article by Von Buddenbrock et al. dis-

cusses evidence of this heavy scalar originating from anomalies in multiple leptonic

final states in proton-proton collisions at the LHC [13].

At the beginning of December 2018, Long Shut Down 2 (which is the second shutdown

of the CERN accelerator complex) commenced and upgrades to the LHC in prepa-

ration for Run 3 started in January 2019. These upgrades are aimed at increasing

interactions per bunch-crossing which leads to higher energy levels and in turn leads

to increased luminosity. This luminosity generates fake missing energy which pollutes

the signal, making the discrimination of signal and background events more challeng-

ing given that trillions of events are produced per second [1]. Since it is impossible

for available computing and storage systems to process and store all this data (which

amounts to petabytes), the events are filtered using a system called the Trigger and

Data Acquisition System (TDAQ) and only a couple of gigabytes remain for process-

ing [14, 15]. In light of these large data volumes, machine learning techniques can be

a useful tool in assisting physicists in their various analyses of LHC data.

Most HEP problems can be cast as ML problems because of the way in which the data

is structured [16]. In general, the idea behind ML is to find a mapping f : X → Y ,

which describes the relationship between X and Y and can optimize some predefined

loss function, say L(y, ŷ), where X is the feature space, Y the output space, y the

ground truth label and ŷ the predicted label. An important objective in machine

learning is to find a model that generalizes very well and not necessarily the one that

achieves the highest accuracy on the specific data sets used to train and validate it

[16, 17]. Tree Based and deep learning algorithms have been found to generalize better

than most algorithms and for this reason, ML can make a significant contribution in

HEP.

In Guest et al. [16] deep learning is described as a group of algorithms that create hier-

archical representations of input data. Given that the processes that generate particle

physics data at the LHC structure it in a hierarchical fashion, it is plausible to believe

that Deep Neural Networks (DNNs) are well suited for HEP classification problems.

For example, many LHC events are made up of jets, and jets are made up of hadrons.

2



Hadrons produce tracks that are normally reconstructed by detectors and those tracks

are made up of hits. All this data is naturally organised into a hierarchical structure

that can be fed into a DNN relatively easy [16].

Currently at CERN, ML is employed in track finding, various reconstruction processes,

object identification (both at the trigger and final state level), data and detector simu-

lations, as well as event classification to mention a few [18]. Since the High Luminosity

LHC (HL-LHC) is expected to produce 100 times the current data volumes, simulation

requirements are expected to exceed available computational resources [19]. There-

fore, fast simulation through deep learning techniques such as Generative Adversarial

Networks (GANs) can be probed to address this challenge. Already 3D convolutional

GANs, CaloGAN and the GeantV project have shown promising results for fast and

full simulation [19, 20, 21].

Often, the goal of recent HEP studies is to discover new particles Beyond the Standard

Model (BSM) and/or measure properties of those already confirmed with a higher pre-

cision. This is a challenging task since most HEP problems are too complex for us

to simply use rectangular cuts on event variables to make a classification. Effectively,

highly reliable data sets and analysis tools are needed to achieve these goals. As

mentioned above, machine learning can provide solutions for many of these problems,

although with some acceptable degree of error.

In summary, we connect the motivation for the application of ML in HEP to the

broader physics motivation. As is widely known, the convention in physics is to build

a rigorous and mathematically sound theoretical model that can be used to hypothesize

about the components of nature and the universe. Then experiments are designed and

carried out to prove what the theory claims to be true. Since the SM is complete

and there is no standing theory that accurately explains physics BSM, some physicists

believe that a new approach, where the formulation of a theory is done in parallel to

experimentation, can yield interesting results in a shorter period of time. This research

follows this proposed approach in as far as experimentation is concerned, in an effort

to confirm the Madala hypothesis. This is because it could very well take decades to

formulate another theoretical model capable of explaining physics BSM.

3



1.2 Problem Statement

Ideally, we want to use ML algorithms that are easy to implement and are highly

interpretable such as Decision Trees and Random Forests. To make training easy, we

also require fully labelled data sets with no class imbalances. This situation is, however,

a departure from the reality of most physicists and machine learning practitioners

because simple models such as decision trees are often unable to learn complex non-

linear relationships in HEP data sets, which are notoriously class imbalanced and have

high dimensionality. Furthermore, generating reliable HEP data sets with ground truth

labels is challenging and time consuming. As a result, we turn to deep learning models

to try and build a robust model for discriminating between signal and background

events. This is because these models are known to handle high dimensionality and

large data volumes very well. To circumvent the problem of finding labelled data sets

for a fully supervised algorithm, we explore weakly supervised learning, which allows

us to train a model on data with either incomplete or inaccurate labels.

1.3 Research Aims and Objectives

This section contains the aims and objectives of this research. Section 1.3.1 outlines

the research aims and Section 1.3.2 the research objectives in that order.

1.3.1 Research Aims

The aims of this research are twofold. The first is to compare a tree based model

against a deep learning model. In particular, to compare BDTs implemented via the

TMVA library against vanilla DNNs implemented using Keras3 with TensorFlow as

the backend. Secondly, it is to compare the performance of a fully supervised model

against a weakly supervised model. We will perform a hyperparameter search to

optimize the models and compare their respective performance.

3https://keras.io/

4
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1.3.2 Research Objectives

• Train supervised BDTs and perform hyperparamter search to find the optimal

configuration of the model.

• Train supervised DNNs and tune the hyperparameters to find the optimal con-

figuration of the model.

• Generate ROC curves for both supervised models to compare their performance

in terms of Area Under the Curve (AUC) and Recall.

• Train weakly supervised BDTs with optimal hyperparameters and generate ROC

curves.

• Compare the performance of the fully supervised and weakly supervised BDTs

in terms of AUC and Recall.

1.4 Definitions

In this section, we provide some definitions of important physics concepts that come

up frequently in this document and are not necessarily related to machine learning.

1.4.1 Missing Transverse Energy

”Missing Transverse Energy, which we denote by Emiss
T , can be described as energy

which is not recognised inside the detector but is known to be there due the laws of

conservation of energy and momentum. Emiss
T can be calculated from the negative

vector sum in the transverse plane of the momenta of all detected objects” [2]. Math-

ematically, Emiss
T can be expressed as

”Emiss
x(y) = Emiss,calo

x(y) + Emiss,µ
x(y) (1.1)

where

Emiss,calo
x(y) = Emiss,calo,e

x(y) + Emiss,calo,γ
x(y) + Emiss,calo,τ

x(y)

+ Emiss,calo,jet
x(y) + Emiss,calo,µ

x(y) + Emiss,calo,cellout
x(y) ” (1.2)

In Equation 1.2 above,

5



• Emiss,calo,e
x(y) denotes missing energy from electrons in the calorimeter

• Emiss,calo,γ
x(y) denotes missing energy from photons in the calorimeter

• Emiss,calo,τ
x(y) denotes missing energy from τ -leptons in the calorimeter

• Emiss,calo,jet
x(y) denotes missing jets in the calorimeter.

1.4.2 Fake Missing Transverse Energy

”Fake Emiss
T occurs when unidentified physics objects are rejected by the jet vertex

tagger (JVT) and pileup algorithm. The JVT algorithm was developed to remove

pileup jets in the central region of the ATLAS detector”. ”While using this technique,

physicists found that in some cases it failed due to false identification of physics par-

ticles. As a result, the Emiss
T reconstruction algorithm reconstructs fake Emiss

T due to

rejection of physics objects” [1, 2]

Figure 1.1 Schematic depicting real and fake Emiss
T [1]

Figure 1.2 Schematic showing the reconstruction Emiss
T [2]

6



1.4.3 Event selection

”The event selection for both the signal and background data used was conducted in

the same way. The nominal h→ γγ selection from event duplication check to events

with invariant mass of the diphoton system in mγγ ∈ [105, 160] GeV [1]. The transverse

momenta of jets selected was 20 GeV and the JVT algorithm was not implemented in

all data sets because JVT related variables are already incorporated in the analysis”

[22].

1.5 Limitations

The only limitation during the implementation of this research was computational re-

sources. Initially, we had access to a GPU cluster based at the University of Chicago

through CERN, however, the cluster administrators generally prioritise jobs originat-

ing from the university and jobs from outside are put on queue, which often took as

long as four weeks. Another problem was that whenever the code met an error during

execution, it got terminated and we had to fix it and wait again in the queue for weeks.

Though the CERN lxplus cluster is available, it is mainly configured for ROOT and

does not have GPU support. This means we have to set up our own environment for

Python and all the tools required to run our jobs had to be installed manually which

is time consuming. As a result, most of the results were generated in separate chunks

on our personal machine.

1.6 Overview

The rest of this research project is structured as follows: Chapter 2 contains the lit-

erature review which discusses learning paradigms and the mathematical framework

behind our chosen algorithms. Chapter 3 discusses the research methodology to be

followed which includes data pre-processing, the selected features, tuneable hyperpa-

rameters, software used to implement the algorithms and performance metrics. Chap-

ter 4 presents the results and discusses them. Chapter 5 presents the conclusions and

future work. The appendices make up the last part of the document.

7



Chapter 2

Literature Review

2.1 Supervised, Semi-supervised and Unsupervised

learning

Supervised learning describes the set of tasks aimed at training models using la-

belled data in order to predict targets on future data previously unseen by the model

[23, 24, 25]. In the supervised learning paradigm, the objective is to learn a mapping

f : Rn → Rm, that captures the relationship between the inputs and outputs from

some training data set D = {(x1, y1), (x2, y2), ..., (xn, yn)}, where X = {x1, x2, ..., xn}

is the input vector space and Y = {y1, y2, ..., ym} is the output vector space [26]. This

means X ⊆ Rn and Y ⊆ Rm. For binary classification, m = 2, and for multiple

classification, m = q > 2.

Semi-Supervised learning (or incomplete supervision) refers to the task of training

a classifier using data that consists of both labelled and unlabelled examples. An

ensemble of clustering and supervised algorithms are normally used for semi-supervised

learning tasks. Unsupervised learning on the other hand uses completely unlabelled

data (i.e. data without ground truth labels) to train a classifier. This means the model

has to learn the underlying distribution of the input data in order to make predictions

of the desired output [23]. Clustering techniques such as K-means and its variants are

normally used for this type of learning.

8



2.2 Weakly Supervised Learning

Traditionally, HEP data samples used for analysis are Monte Carlo (MC) simula-

tions generated using simulation tools such as PYTHIA, HERWIG, MAD-GRAPH

and SHERPA which make use of MC sampling [27, 28, 29, 30]. When generating data

samples, the parameter settings of the simulator are known which means that simu-

lations come with ground truth labels [16]. It is, however, important to note that the

process of generating simulated data is laborious and computationally expensive. It is

also true that in general, finding an accurate and fully labelled data set is challenging.

For these reasons, we may want to make use of algorithms and learning paradigms that

do not necessarily require a fully labelled data set. The concept of weakly supervised

learning becomes relevant and we discuss it further below.

In general, weakly supervised learning is not well studied in the literature but it is

an important subject matter because sometimes we only have labels for a few in-

stances in the data set or we have poorly labelled instances. It can be described as

a learning paradigm that attempts to train models by learning with weak supervision

[31]. Weakly supervised learning was first applied to HEP in [32], where the authors

discriminated jets initiated by quarks from those initiated by gluons using weak su-

pervision.

Often the process of correctly labelling all instances in a data set can be tedious and

expensive, and thus training by weak supervision is very attractive. In the article of

Metodiev et al. [33] the authors demonstrate that algorithms trained by weak su-

pervision can produce performance equivalent to that of fully supervised algorithms

and that weak supervision is robust against mismodeling of discriminating features by

state of the art simulation tools [32, 33]. According to Metodiev et al. this approach

can increase performance and is robust in the absence of reliable simulated data.

In Zhou [31], three common types of weak supervision are reviewed, including incom-

plete supervision (where the training data sample is mostly unlabelled and has few

labelled examples), inexact supervision (training data labels are high level and not

specific) and inaccurate supervision (labels of the training data are not always true).

Incomplete supervision is a type of weak supervision which refers to semi-supervised

9



learning in the traditional sense [25, 26, 34, 35], where the data has a small fraction

of labelled instances and the majority of the data has unlabelled instances. In mathe-

matical terms, the task is to develop a function g : X ⊆ Rn → Y ⊆ Rm from labelled

training data Xlabelled = {xi, yi}, where i = {1, .., k}, and unlabelled training data

Xunlabelled = {xj, yj} where j = {k + 1, .., n} and n >> k.

Inexact supervision is a way of supervising an algorithm based on inexact data. Sup-

pose that we want a large image data set with ground truth labels. Ideally we want

each object in the image to be labelled, however, we often only have a label for the

image as a whole. A practical example could be an image with red apples, plums and

peaches with the label ”fruits” instead of a label for each one of the fruits. Inaccurate

supervision on the other hand is the a learning paradigm where a model is trained on

data with inaccurate or poor labels. This usually happens when the data annotator/s

lack knowledge about the ground truth labels, for example when crowdsourcing is used

to obtain labels and some of the individuals are spammers who are only interested in

earning money [31, 36]. The authors emphasize that often in practice, these different

types of weak supervision tend to occur simultaneously and are not necessarily sepa-

rate.

It is sometimes the case that we have more knowledge about the proportions of the

classes than the characteristics of each class. In [32] class proportions are the only

input fed into the ML algorithm and the class labels are completely ignored. Another

approach to weak supervision is Learning with Label Proportions which relies on the

concept of Multi-Instance Learning (MIL) [37, 38]. The idea behind MIL is that we

have bags of individual examples without labels. It has previously been demonstrated

in [38] that labels are not necessary for classification. For example, suppose we have

a binary classification problem with classes 1 and 0. For the training data, we have

information about the number of instances from class 1 inside the bag. The algorithm

is then configured in such a way that it can find at least one instance from class 1 in

a previously unseen bag [32].
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2.3 Artificial and Deep Neural Networks

Artificial Neural Networks (ANNs) are inspired by the biological architecture of the

human brain consisting of neurons, axons and dendrites. Research into artificial intelli-

gence has allowed ANNs to evolve to better mimic their biological counterparts though

not with comparable performance [39, 40]. The first neural network that resembled

the human brain was the perceptron network with a single layer. However, after some

time, the limitations of such a simple network became clear to scientists when it could

not learn complex non-linear relationships [24]. This is when the multilayer ANN was

established. The main difference between the human brain and ANNs is the number

of neurons, connectivity and overall complexity.

A Neural Network (NN) consists of connected layers of neurons [17, 23]. For a fully

connected layer each neuron is connected to at least one other node and this connec-

tion is assigned a weight. Neurons can be categorized into three types, namely input,

hidden and output. The input layer will have one neuron for each feature of the data

we are passing into the NN. The hidden layers are usually dense or fully connected

and their purpose is to establish the relationship that exists between the input-output

pairs such that the output neuron with the highest probability score corresponds to

the correct label. Every layer is activated by an activation function, which determines

if that neuron’s output will be passed onto the next layer or not. Activation functions

are discussed in detail in section 2.3.2.

Deep Neural Networks (DNNs) can learn complex, non-linear relationships [41]. DNNs

are very flexible and their power can be attributed to the fact that they can learn em-

beddings of the feature space and perform transformations that will categorize all data

points as belonging to one of the classes of the output space [17, 24]. DNNs have a

similar structure to a simple NN and only differ by depth and complexity. Figure 2.1

shows the general structure of a DNN. A simple NN may be thought of as a computa-

tional graph called a Directed Acyclic Graph made of tensors and operations [42, 43].

The aim is to optimize the loss function and learn optimal weights for the model.
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Figure 2.1 General Structure of a DNN [3]

2.3.1 Weight Initialization

The initialization of the weight matrix is a critical aspect of building a good neural

network. Often people initialize weights randomly which may hamper the model’s

learning abilities. The following are two typical scenarios when initializing weights.

• Initialize all weights to zero

This initialization makes your model no different from a linear model. When all

weights are initially set to zero the derivative with respect to the loss function is

identical for every w in the weight matrix W l. Effectively, all weights will have

the same values in the next epoch, making the hidden units symmetric and this

pattern will propagate through the remaining epochs [17].

• Initialize weights randomly

This type of initialization introduces stochasticity in the network but can expose

it to the undesirable problems of vanishing and exploding gradients. By defini-

tion, random numbers are assigned to the weights, including very small values.

In this case, we might encounter vanishing gradients. On the other hand, larger

values could result in gradient explosions [17].

By initialising weights to zero, we may be starting them off too small such that the

signal fades away with successive layers and the network is unable to learn properly.

Similarly, by initialising weights randomly, we may start off with a very high signal

which will grow with every successive layer and thereby affecting the networks ability

to learn. As a result, machine learning practitioners have developed some generally

12



accepted techniques for handling weight initialization in a prudent way. A few common

ones are listed below.

1. Heuristics

Depending on the activation function applied, we could draw from a normal

distribution with variance k
n

(where k is a value dependent on the activation

function) instead of drawing from a standard normal distribution. This technique

will not solve vanishing or exploding gradients completely but it should mitigate

them significantly.

• For ReLU activations

Make use of He’s weight initialisation [44]. Multiply the random weights

with

√
2

nh
, (2.1)

where nh is the size of hidden layers.

• For Tanh activations

Make use of Xavier (or Glorot) weight initialisation heuristic [45]. Multiply

your random weights by

√
1

nh
, (2.2)

where nh is the size of hidden layers.

• For any other activation function, we can make use of the following weight

initialisation heuristic. Multiply the random weights by

√
2

nh + nL
, (2.3)

where nh is the size of hidden layers and nL is the size of all layers.

It is worth noting that the bias term can safely be initialized to zero. The gradients

of the cost function with respect to the bias term ( d
db
C(θ)) depends only on the linear

activation function of that specific layer so the risk of fading or exploding gradients is

non-existent.
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2.3.2 Activation Functions

Activation functions are functions that give the output of neurons of a NN. There are

mainly two types of activation functions, i.e. linear and non-linear. A key characteris-

tic of activation functions is that they must be continuously differentiable [16]. Linear

activation functions are normally used for relatively simple problems like regression.

Non-linear activation functions are the most commonly used because of the complex

nature of relationships in most data problems. Below we discuss a few popular acti-

vation functions, some of which we will use in our models.

1. Linear

This activation function is suited to regression-type problems where the relation-

ship between variables is mostly linear. Its main drawback, however, is that the

functions’ derivative is constant and thus, gradient descent is constant through-

out. Since the activation is linear, having two or more hidden layers with a

linear activation function will not improve learning anymore than a one layer

NN would. The linear activation function can be mathematically expressed as

h(x) = x. (2.4)

2. Sigmoid (Logistic)

The sigmoid is a monotonically increasing and continuously differential function

with a range between zero and one. It is a logistic function with an S-shape and

is given by the mathematical expression

h(x) =
1

1 + e−x
, (2.5)

where x is the result of the weight matrix multiplied by the input vector X.

The sigmoid outputs a vector where each element is a probability score. It is

most useful when you have a classification task where the label of each input is

not mutually exclusive. The highest probability score in the vector is assigned

to the predicted class. A drawback of the sigmoid function is that it suffers from

the vanishing gradient problem [46].
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3. Tanh

The tanh function is a monotonically increasing and continuously differentiable

function similar to the sigmoid function but it is bounded between −1 and 1.

This is good because it gives us values of different signs which makes it easier to

decide which scores to consider in the next layer and which to ignore. Unlike the

sigmoid, tanh is symmetric about the origin. However, it shares the unfortunate

weakness of vanishing gradients with the sigmoid activation function [46]. The

tanh function slows down exponentially from x = −2 and x = 2, which im-

plies smaller gradients and thus vanishing gradients. Like the sigmoid, the tanh

activation is usually used for binary classification problems. Its mathematical

formulation is given by

h(x) =
ex − e−x

ex + e−x
. (2.6)

4. Softmax

The softmax activation function is a more generalized version of the sigmoid

that takes a vector of N inputs and returns a vector of N probability scores.

This vector represents a probability distribution and all N elements sum up to

one. The softmax is an exponential form that magnifies differences by applying a

transformation that pushes some values closer to one and others closer to zero. It

is often used for problems with multiple mutually exclusive labels [17]. Softmax

produces a vector that is non-negative with all its elements summing to 1. The

mathematical expression for this function is given by

h(x) =
ex∑
j e

xi
. (2.7)

5. ReLU

The Rectified Linear Unit activation is currently the most popular activation

function used in neural networks. It ranges between zero and infinity. ReLU is

best known for being robust against vanishing gradients [4]. It deals with this

problem in the following way; (i) It maps all negative values to zero and (ii) it

maps all positive results to themselves, i.e. y = x. It is essentially a unit ramp

function and is given by Equation 2.8 below
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h(x) =

0, for x < 0

xi, for x ≥ 0

(2.8)

and visualized by Figure 2.2

Figure 2.2 Schematic of the ReLU function [4].

This means ReLU has constant derivatives all over its domain [4, 44]. This is

useful for controlling vanishing gradients, but may give rise to another problem

where the ReLU gets stuck in a state of non-improvement over the domain x < 0

of the function, a phenomenon which some researchers refer to as the graveyard

region of ReLUs. Essentially, when this happens some neurons die out and part

of the network becomes unresponsive. This is called the ’dying ReLU’ problem

[46]. In 2015, scientists from Microsoft Research proposed a solution for this

where instead of having zeros on the negative side of the ReLu function, a small

gradient is permitted to enable learning throughout the training [4].

6. ReLU Variations

Leaky ReLU is a generalisation of ReLU developed to solve the dying ReLU

problem. For small datasets, it has been empirically shown that LeakyReLU

outperforms ReLU [4]. Currently there are three variants, namely, Leaky ReLU,

Parametric Rectified Linear Unit (PReLU) and Randomized Rectified Linear

Unit (RReLU) [44]. Leaky ReLU is a ReLU function with a small predefined

positive gradient, a, over the domain x < 0 in equation 2.9. In Maas et al. the
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authors proposed setting a large value for a such as 100 [47]. The Leaky ReLU

function is expressed as:

h(x) =

a x, for x < 0

x, for x ≥ 0.

(2.9)

PReLU was first proposed in 2015 and differs from ReLU in that the slope over

the domain x < 0 is determined by backpropagation during training and not

predefined as with Leaky ReLU [4, 44]. The equation for the PReLU activation

is similar

h(x) =

a x, for x < 0

x, for x ≥ 0.

(2.10)

The RReLU activation function is similar to PReLU but the value of a is cho-

sen randomly during training and then fixed during testing. RReLu was first

proposed and implemented by the winners of the National Data Science Bowl

in 2015 1. Its robustness comes from its random nature [4]. The mathematical

formulation is given by

h(x) =

a x, for x < 0

x, for x ≥ 0,

(2.11)

where a ∼ U(l, u), l < u and l, u ∈ [0, 1).

Equation 2.9 and Equation 2.10 are both described by Figure 2.3a, and Equation

2.11 is described by Figure 2.3b.

1https://www.kaggle.com/c/datasciencebowl
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(a) Schematic of Leaky ReLU

and PReLU functions [4]

(b) A schematic representation

of RReLU function [4]

7. SELU

Scaled Exponential Linear Units (or SELUs) is a recent class of activation func-

tion that is very promising. Though not popular, SELUs have more rigorous

mathematical framework than ReLUs [5, 46]. SELUs are usually used to con-

struct Self Normalizing Network (SNN) architectures. SNNs are based on SELUs

because of their self normalizing characteristics and because other activation

functions such as sigmoid, softmax, tanh, ReLU or Leaky ReLU cannot be used

to construct them. SELUs are powerful because they perform internal normal-

ization, that is, the output of the activation is already normalized. SELUs can

adjust variance in a way that prevents vanishing and exploding gradients [5].

The mathematical expression for SELUs is given by

h(x) = λ

x, for x ≤ 0

a(ex − 1), for x > 0,

(2.12)

where λ is a scaling parameter. When λ is larger than one (λ > 1), the gradient

is larger than one and the activation function increases the variance. On the

other hand, near zero gradients can be used to decrease the variance.

Figure 2.4 shows a schematic of the general shape of Equation 2.12
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Figure 2.4 Schematic representation of SELU function [5].

2.3.3 Gradient Descent

Gradient descent is a widely used technique for optimising the objective function of a

problem [3, 24, 48]. In the context of neural networks, it is used to find the optimal

weights and biases of a network iteratively. Gradient descent is generally performed

in the following manner:

• Initialize parameters (weights, biases, learning rate)

• Perform forward propagation

• Compute gradients of the loss function

• Perform backpropagation

• Update parameters

2.3.4 Types of Gradient Descent

1. Batch gradient descent

This calculates the gradient of the cost function for the whole training dataset

in order to make a single update to the weights of the network. This is com-

putationally expensive and intractable when large data sets are involved. A

mitigating factor here is that batch gradient descent guarantees the attainment

of the global minimum for convex functions and local minimum for non-convex

functions [48].
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2. Stochastic gradient descent

This computes the gradient of one randomly chosen example from the training

data instead of using all examples as batch gradient descent does. This technique

gives faster convergence but is erratic and requires many corrections. By reducing

the learning rate in a controlled manner, stochastic gradient descent can exhibit

a similar convergence pattern as batch gradient descent [48]. A recent paper (still

under review) has claimed that SGD can find the global minimum of non-convex

functions through a concept called star convexity [49]. This is interesting because

it promises epochwise convergence which could reduce training time significantly.

3. Mini batch gradient descent

Mini batch gradient descent is very similar to vanilla gradient descent discussed

in point one above but the difference is that small batches of the training data

are used instead of the whole data set. This means we have frequent gradient

updates, more weight updates and therefore better convergence time.

2.3.5 Backward Propagation

Backward propagation is a technique for optimising ANNs that was first developed in

the 1960’s but only gained popularity at the end of the 1980’s through an article by

Rumelhart et al. [24, 50]. It is an algorithm used to iteratively compute gradients

of the loss function in a ANN, which will in turn determine how weights are updated

[3, 23, 24, 43]. This computation uses the gradient descent algorithm to find the

best weights and this process is repeated until the optimal weights are learned. The

word backward comes from the fact that the computation of gradients is done back-

wards after a process of forward propagation. Forward propagation is the process of

transmitting an input xi through the network and its parameters (weights, biases and

activations) so that a prediction is made at the output layer. Using the loss function,

the error between this prediction and the ground truth label is calculated, and then

backpropagation will transmit the information about the error backwards in order to

update the network’s weights [23, 24, 43, 50].
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Suppose we have an input vector

x =


x1

x2

...

xm

 , (2.13)

where m is the number of input features.

We can define the weight matrix W l as

W l =


wl11 wl12 . . . wl1m

wl21 wl22 . . . wl2m
...

...
. . .

...

wln1 wln2 . . . wlnm

 , (2.14)

where each entry wljk is the weight of the connection from the kth neuron in the (l − 1)th

layer to the jth neuron in the lth layer. The bias vector bl can be defined as:

bl =


bl1

bl2
...

blm

 , (2.15)

where each entry blj is the bias in lth layer. Similarly, we can define the activation

vector al as:

al =


al1

al2
...

alm

 , (2.16)

where each alj is the activation in the lth layer.

The activation alj can be related to the previous activations in the (l − 1)th layer with

the equation

alj = f

(
m∑
k

wljka
l−1
k + blj

)
. (2.17)
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Having written the expressions for the weights, biases and activations compactly in

equations 2.14, 2.15 and 2.16, we can now rewrite 2.17 as

al = f
(
W lal−1 + bl

)
. (2.18)

Before calculating al we first need to calculate the weighted input of the neurons in

layer l, which is usually denoted by z in the literature. The neuron-wise expression of

z in layer l, is

zlj =
m∑
k

wljka
l−1
k + blj , (2.19)

and the more compact expression is given by

zl = W lal−1 + bl. (2.20)

This means we can simplify equation 2.18 further by substituting the argument of f

with zl such that

al = f
(
zl
)
. (2.21)

As mentioned earlier, before we can implement backpropagation, we must first forward

propagate. The process of forward propagation involves the computation of a, W, b

and z for all intermediate layers until the output layer, where the prediction of the

input data point is made. The next step is then to compute the error associated with

the prediction using the loss function [3, 23].

Suppose we have chosen the Mean Squared Error, denoted MSE, as our loss function.

Let L denote the loss function defined by

L =
1

n

n∑
i=1

(yi − ŷi)2 , (2.22)

where n is the total number of instances in the training data, yi the ground truth

labels and ŷi the predicted labels. Thus, for each instance xi, of the training data we

have

Lxi =
1

n

n∑
i=1

(yi − ŷi)2 , (2.23)
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and we can take the average of all Lxi ’s as the cost function

C =
1

n

n∑
i=1

Lxi . (2.24)

An important assumption of any cost function is that it should be differentiable over

the entire feature space. Backpropagation computes gradients of the cost function by

taking partial derivatives ∂C
∂w

and ∂C
∂b

of C with respect to W and b. In particular, it

performs element-wise partial derivatives of the form ∂C
∂wl

jk
and ∂C

∂blj
. In order to compute

these partial derivatives, we need to define an error term, El
j, where j is the jth neuron

in layer, l [3]. Define the error in the jth neuron in layer, l, to be

El
j ≡

∂C

∂zlj
. (2.25)

Similar to before, we can rewrite equation 2.25 in a vectorised form, where El denotes

the vector of errors in some layer, l. By implementing the backpropagation algorithm

we will be able to compute the errors El for each layer l of the network. It is worth

noting that the quantities

∂C

∂wljk
and

∂C

∂blj
(2.26)

are related to the weighted input, zlj, since it is a function of both the weight and

bias as shown by equation 2.19. Having all these tools we can successfully implement

backpropagation and update the weights of the network.

2.3.6 Vanishing and Exploding Gradients

One drawback of backward propagation is that it tends to ”vanish” gradients. Van-

ishing gradients tend to occur when the weights of a NN are too close to zero and

they become successively smaller with each update [51, 52]. This causes the model

to update marginally and take too long to converge. For any activation function, the

absolute change in weights will get smaller and smaller as we back propagate and the

earlier layers are the slowest to train [53, 54]. The exploding gradients problem is

the opposite of vanishing gradients. It is caused by an accumulation of error gradients

which cause large gradients and then large weight updates [55]. The explosion happens

when you have exponentially increasing weights that causes the model not to learn

and ultimately becomes unstable [53, 55].
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2.4 Decision Trees2

A decision tree is a rule based algorithm that classifies data by splitting it recursively

based on its features. Well known decision tree algorithms include the ID3, ASSIS-

TANT and C4.5. Decision trees organise data on the basis of a rule from the root node

to the leaf node (or terminal node) which makes the final classification. This process

works as follows: first test the feature in the root node and then proceed down the

tree through the branches to the value that matches the feature [6]. Figure 2.5 shows

an example of a tennis player contemplating tennis practice on a day with different

weather conditions.

Figure 2.5 An illustration of a decision tree algorithm [6]

2.4.1 Bootstrapping and Bagging

Bootstrapping refers to random sampling with replacement where multiple models

are tested on resamples with different characteristics such as the mean, median and

variance. Bagging solves the overfitting problems of decision trees by creating multiple

resamples and multiple versions of a classifier. This means that bagging makes use

of bootstrapping to build new training data sets from the original training data set.

Bagging is particularly good at producing varied classifiers by taking advantage of

unstable learning algorithms to improve accuracy. It then tests all these classifiers on

each of the resamples similar to a multiple hypothesis testing problem [56].

2The discussion in this section is informed by a discussion that appears in T.C Gaelejwe, ”Sup-

presing Fake Missing Transverse Energy using Multivariate Analysis with the ATLAS Detector”,

University of the Witwatersrand, 2018.
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2.4.2 Information Gain and Entropy

Decision trees are constructed from the top-down. We first have to establish which

attribute must be tested at the root node and then make the same determination for

all other attributes to be tested at each node going down the tree. In general, the

attribute with the most discriminating power should be used at the root node. This is

where the concepts of information gain and entropy become relevant. We define and

discuss these concepts in the next paragraphs.

”Entropy is a property that characterises the purity or impurity of an arbitrary col-

lection of instances. Mathematically, it is formulated as follows:

Let C be an arbitrary collection of examples with both negative and positive examples

of some target concept. The entropy of C relative to this Boolean classification is

Entropy(C) = −p⊕ log2 p⊕ − p	 log2 p	 (2.27)

where p⊕ and p	 are proportions of positive and negative examples in C respectively”

[6, 22].

”Information theory states that entropy is a property that specifies the minimum

number of pieces of information required to determine the classification of an arbitrary

element of C. For cases where the target variable has to assume more than two different

values, the definition of entropy is stated as

Entropy(C) ≡
d∑
j=1

−pj log2 pj (2.28)

where pj is the proportion of C belonging to class j and d is the number of different

values the attribute can assume” [6, 22].

”Information gain is a metric used to measure the effectiveness of an attribute in

classifying the input data. It is the expected reduction in entropy resulting from

separating the examples based on this attribute” [6, 22]. ”The information gain of some

attribute K relative to a collection of examples C can be formulated mathematically

as

25



G(C,K) ≡ Entropy(C)−
∑
v∈Ω

| Cv |
| C |

Entropy(Cv) (2.29)

where Ω (= values in K) is the set of all possible values for attribute K and Cv is the

subset of C for which attribute K has value v. G (C,K) is the expected reduction in

entropy caused by knowing the value of attribute K” [6].

2.4.3 Boosted Decision Trees

Boosting can be thought of as a form of bagging where more attention is assigned

to poorly performing aspects of the decision tree classifier. BDTs are an ensemble of

learners where poorly modelled instances are given a weight and returned as training

data for the next learner [56, 57]. Decision trees are well known for being fast, scaling

easily to large data sets and being robust against outliers, missing values as well as

irrelevant input features. Decision trees, like many other algorithms, have their own

drawbacks, which includes overfitting. This is because larger trees tend to be unstable

and the piecewise approximation of smaller trees [58, 59].

As a result, a method called boosting was introduced to the improve the robustness

of decision trees and remedy these challenges. The strengths of BDTs come from

its learning speed, the fact that its parameters are easily tuned and its insensitivity

to scale [60]. The main weakness of BDTs is overfitting, but this can be corrected

by performing cross-validation which is computationally expensive in large data sets.

There are various ways of boosting weak learners and below we list some well known

boosting examples.

1. Gradient Boosting (GBoost)

• ”This makes use of the gradient descent algorithm to find new learners

and has two main parameters, i.e. learning rate and number of iterations.

Gradient boosting is invariant under monotone transformations of inputs”

[60].

2. Adaptive Boosting (AdaBoost)

• ”This algorithm boosts weak decision learners by adding their probabilistic

predictions and adapts to the errors of the weak learners. It requires no
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prior knowledge of the accuracies of the previous learners” [58].

3. eXtreme Gradient Boosting (XGBoost)

• ”This boosting technique is very popular in Kaggle competitions where it

usually outperforms many other models. XGBoost scales very well and it

has been optimized for high dimensional data which is characterized by

sparsity [61]. The XGBoost algorithm takes advantage of computing archi-

tectures such as distributed computing to increase performance” [61].
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Chapter 3

Research Methodology

In this study, we have signal events with real missing transverse energy and back-

ground events with fake missing transverse energy. We consider two types of learning

paradigms, fully supervised and weakly supervised learning. The choice of ML algo-

rithms are Gradient Boosted Decision Trees, which we will refer to as GBDT, and

DNNs respectively. As mentioned in section 1.3, we want to compare supervised

GBDT with supervised DNNs first and then compare supervised GBDT with weakly

supervised GBDT.

3.1 Research Design

This research aims to develop an experiment where two ML algorithms are trained

through a fully supervised and weakly supervised learning paradigm. This experiment

can be described as follows, (i) explore and pre-process the data (ii) train two algo-

rithms by full supervision with a labelled data set and (iii) train one algorithm by

weak supervision using a data set with inaccurate labels. The reason for training by

full supervision is so that we can classify SM signals (whose labels are already known)

with a much higher precision than traditional physics techniques could. For example,

new data on the SM Higgs boson can provide new information which allows us to

measure its properties with higher accuracies using ML. On the other hand, we train

by weak supervision because we do not have accurate labels for BSM signals such as

the Madala Boson. Weak supervision allows us to exploit the usefulness of unlabelled

or inaccurately labelled instances of data. This method is justified because often in
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HEP, the signal is unknown.

3.2 Data

All data used here are Monte Carlo (MC) simulations of proton-proton collisions with

the LHC running at a centre-of-mass energy of
√
s = 13 TeV. In this research, we will

use the word data to refer to these MC simulations. We make this known to avoid

confusion because the convention in HEP is to refer to real data from the experiment

as data and simulated data as MC samples. This data is made available to us by the

Institute for Collider Particle Physics at the University of the Witwatersrand through

its affiliation with CERN.

Before making choices about suitable algorithms, we must begin by exploring the data,

understand it and organise it in a format most suited to our purposes. A notable

characteristic of the data is that it is highly class imbalanced, where the background

constitutes the majority of the data set and the signal constitutes only a small frac-

tion (usually less than one percent) of that data set. There is also a strong overlap

between the two classes due to a noise factor called pile-up that pollutes the signal

giving it background-like properties making the discrimination more difficult. Given

this information, the first step of the data exploration was to visualize the univariate

distributions for all the features in the data set. These visualizations are shown by

Figures A.1, A.2 and A.3 in Appendix A.1 and A.4, A.5 and A.6 in Appendix A.2.

The second step was to check for correlations between the features. We make use

of Pearson’s correlation for this task. The correlation matrices are shown by Figures

A.7a and A.7b in Appendix A.

For the weakly supervised BDT, the data is organized as follows. We have two sam-

ples for training, i.e. sample 1 and sample 2. Sample 1 contains sideband or pure

background (which is defined as γγ events with the invariant mass outside 240− 280

GeV) and sample 2 contains a mixture of sideband and signal data in the mass region

of 240−280 GeV. The sideband data is well known so we have ground truth labels for

it but the signal is not very well known or sometimes we do not know it at all so its

labels are poor. For this reason, we implement inaccurate supervision since it is the
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most suitable learning paradigm given these labels.

For the DNNs, the data is corrected for class imbalance before training. We make use

of the Synthetic Minority Oversampling TEchnique (SMOTE) for this task [62, 63, 64].

For the GBDT model, this is not necessary because it can deal with class imbalances

relatively well.

We have three data sets as detailed in Table 3.1. We also consider three missing

transverse energy significance (SEmiss
T

) categories for each data set which implies that

we will have nine data sets to train. Table 3.2 shows these SEmiss
T

categories.

Table 3.1 Data samples used

Data Description

R21 A400 Z vv H250 yy comb Gluon fusion sample with Z decay-

ing to two neutrinos and H to two

photons containing 16631 events.

R21 ggZH125 comb Signal sample with real missing

energy from neutrinos containing

37236 events.

R21 HHDMmr275mx60br50 comb Heavy scalar sample with 49998

events.

R21 Background comb Sample of combined background

events with 4167613 events.

Table 3.2 Table showing SE
miss
T categories.

Category Pre-selection

Low SE
miss
T SE

miss
T > 2.5 & SE

miss
T < 3.5 & Njet ≥ 1

Int SE
miss
T SE

miss
T > 3.5 & SE

miss
T < 5.5 & Njet ≥ 1

High SE
miss
T SE

miss
T > 5.5 & Njet ≥ 1

After the pre-selection cuts, each data set in Table 3.1 is reduced to just a few thousand

events. Specifically, we are left with the data sizes shown in Table 3.3.
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Table 3.3 Number of events in each data set

A400Z

Category GBDT DNN

Low SE
miss
T 1767 1767

Int SE
miss
T 3866 3866

High SE
miss
T 3840 3840

ggZH125

Category GBDT DNN

Low SE
miss
T 2744 2744

Int SE
miss
T 1968 1968

High SE
miss
T 5442 5442

275mx60

Category GBDT DNN

Low SE
miss
T 5720 5720

Int SE
miss
T 8063 8063

High SE
miss
T 5311 5311

Background

Category GBDT DNN

Low SE
miss
T 193964 *

Int SE
miss
T 71640 *

High SE
miss
T 23839 *

In Table 3.3 above, the subtable with information about the background data sizes

has asterisks (*) for the DNN because the actual data sizes are identical to that of

the corresponding signal data sets in all SE
miss
T categories. These data sizes are a

result of applying the SMOTE algorithm when correcting for class imbalance. Before

training the data sets are split 70:30 for training and validation. After validating an

independent test data set is used to test the model’s performance.

As mentioned earlier we train the GBDT and DNN on nine data sets. Figure 3.1 shows

a schematic of how the algorithms are trained. Each signal data set is combined with

a background data set in its corresponding SE
miss
T category. In particular, the heavy

scalar (275mx60) signal data set will have three categories as shown by the red boxes

in the diagram. Similarly, the neutrino and gluon fusion signal samples will have three

categories as shown by the green and black boxes in the diagram.
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Figure 3.1 An illustration of the data being split into different SE
miss
T categories

3.3 TensorFlow

TensorFlow1 is an open source ML library often used for deep learning tasks. It is one

of the most popular ML libraries currently. We train our DNN model using the high

level Keras API integrated into TensorFlow.

3.4 Features

The following features are the main input variables for the models trained in this re-

search project. The visualisations for each of these variables can be found in Appendix

A.

• ”Photon pointing Vertex
∑
p2
T .

1https://www.tensorflow.org/
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• NPV: Number of vertex reconstructed in an event.

• JV T Jncorr, n = 1, 2, 3: Corrected jet vertex fraction is the ratio of track pT and pT

of jets in the calorimeter.

• RJn
pT
, n = 1, 2, 3: Scalar sum of jet primary vertex track and jet track transverse

momentum, pT , associated with the diphoton system.

• ∆φ (J1, Emiss
T ): Angular distance between jets system and missing transverse

energy

• ∆φ (γγ,Emiss
T ): Angular distance between diphoton system and missing trans-

verse energy

• ∆φ (γγ, jet1): Angular distance between diphoton system and leading jet1

• ∆φ (softjets, Emiss
T ): Angular difference between soft jets system (jets with pT

less than 30 GeV) and missing transverse energy

• ∆φ (forjets, Emiss
T ): Angular distance between forward jets (jets outside the

central region of the detector η ≤ 2.4) and missing transverse energy

• N j central: Number of central jets”.

3.5 Hyperparameters

Hyperparameters are parameters of the model that can be adjusted (randomly or algo-

rithmically) to find the optimal configuration of the model that results in the highest

performance and robustness. For the GBDT, we tune the following hyperparameters:

number of trees, maximum depth and learning rate. For the DNN we tune the number

of nodes/neurons, number of hidden layers, learning rate and activation function. For

the DNN, we make use of Xavier’s weight initialisation where we multiply randomly

generated weights by Equation 2.2 [45]. Initially, we had used He’s weight initializa-

tion, however, it caused some overfitting despite evidence in the literature suggesting

it is most suited to ReLU activated layers [44]. In the end, we settled on Xavier’s

technique. The hyperparameters for both the GBDT and DNN are tuned using the

GridSearch function from scikit-learn. The optimal hyperparameters are listed in Ta-

bles 3.4, 3.5 and 3.6.

33



Table 3.4 Table showing GBDT hyperparameters.

Hyperparameter Optimal Setting

Number of trees 800

Learning rate 0.1

Maximum depth 2

Table 3.5 Table showing DNN hyperparameters.

Hyperparameter Optimal Setting

Optimiser Adaptive Momentum

Loss Function binary cross entropy

Batch size 100

Initial learning rate 0.001

Table 3.6 DNN Model Architecture

Input Layer

Layer Nodes Activation

1 16 Leaky

ReLU

Hidden Layers

Layer Nodes Activation

2 128 Leaky

ReLu

3 128 Leaky

ReLu

4 128 Leaky

ReLu
...

8

128 Leaky

ReLu

9 128 Leaky

ReLu

10 48 Leaky

ReLu

Output

Layer Nodes Activation

11 1 Sigmoid
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3.6 Performance Metrics

We make use of two performance metrics to gauge and analyse the performance of the

models trained. These are explained in detail and contextualised in the sense of HEP

data analysis below.

3.6.1 Receiver Operating Curves

”The Receiver Operating Curves (ROC) show the discrimination power of a binary

classifier. A ROC curve plots the True Positive Rate (TPR) against the False Positive

Rate (FPR) where TPR is the ratio of correctly predicted positive data points to

all positive data points in the data set and FPR is the ratio of incorrectly predicted

positive data points to all negative data points in the data set. Essentially, a ROC

curve shows the trade-off between true positives and false positives. A very good

prediction would lie in the upper left corner of the canvas and a poor prediction would

lie in the bottom left corner of the canvas (for the kind of ROC curves we consider

here. See Figures 4.4 and 4.5). ROCs usually have a curve that runs along the x-y

axis. This is called the No Improvement or Random Guessing curve. Any prediction

along this curve yields signal acceptance and background rejection which is no better

than randomly guessing the class of a given data point”. Mathematically,

TPR =
True Positives

All Positives
=

True Positives

True Positives + False Negatives
= 1−False Negative Rate

(3.1)

and

FPR =
False Positives

All Negatives
=

False Positives

False Positives + True Negatives
= 1−True Positive Rate.

(3.2)

In the context of HEP, the ROC plots background rejection efficiency on the y-axis

against signal acceptance efficiency on the x-axis. This makes sense because TPR is

signal efficiency and FPR is background efficiency. By taking 1 − FPR, we obtain

background rejection, and so our ROC will run from the top left corner of the canvas

to the bottom right corner of the canvas. In this case, the region in the upper right

corner will be the best in terms of background rejection and signal efficiency. This
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can be thought of as a reflection of the usual ROC curve about the x = 0 line. Signal

efficiency and background rejection can be expressed mathematically in terms of TPR

and FPR as given by equations 3.3 and 3.4.

Signal efficiency = TPR =
True Positives

All Positives
=

True Positive

True Positives + False Negatives
(3.3)

Background Rejection = 1− FPR = 1− False Positives

False Positives + True Negatives
. (3.4)

3.6.2 Confusion Matrix

A confusion matrix is tool that provides a summary of prediction results on a model’s

performance in matrix form. It shows the count of all correct and incorrect predictions

for each class. For a binary classification problem this will be a 2×2 matrix. Typically,

the top left entry, c11, is the true positive count, the top right entry, c12, is the false

negative count, the bottom left entry, c21, is the false positive count and the bottom

right entry, c22, is the true negative count. This metric provides us with a lot more

information about a model’s performance compared to accuracy and AUC. Essentially,

it tells the user the extent to which the model is confused when making classifications.

We can define the components of the matrix as follows:

Positive (P) : Event is positive (i.e. signal event)

Negative (N) : Event is not positive (i.e. background event)

True Positive (TP) : A positive event is predicted to be positive (i.e. signal event is

correctly predicted as signal event)

True Negative (TN) : A negative event is predicted to be negative ( i.e. background

event is correctly predicted as background event)

False Negative (FN): A positive event is predicted to be negative

False Positive (FP) : A negative event is predicted to be positive

Table 3.7 A typical confusion matrix

Signal Predictions Background Predictions

Actual Signal TP FN

Actual Background FP TN
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1. Classification Accuracy

Classification accuracy is the ratio of correct predictions (positive and negative)

to the total number of predictions made. It can be expressed mathematically as

Accuracy =
TP + TN

TP + FP + TN + FN
(3.5)

The main problem with classification accuracy is that it is not robust against

high class imbalances. That is, the model can achieve an accuracy of 95% but

95 events out of every 100 could be background.

2. Recall

An important metric from the confusion matrix is Recall. It is the ratio of all

correctly classified positive events to all positive (signal) events. Ideally, we want

to have a high recall which would mean the model is recognising the signal very

well.

Recall =
TP

TP + FN
(3.6)

3. Precision

Precision is the ratio of all correctly classified positive (signal) events to the total

number of events predicted as positive (both correct and false). As the name

suggests, this metric tells us how precise the model is in predicting positive

(signal) events. It is defined as

Precision =
TP

TP + FP
(3.7)
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Chapter 4

Results

4.1 Supervised Learning Results

Below are GBDT output plots showing the performance of the supervised BDT in

classifying background and signal events on the test data set. Figures 4.1, 4.2 and 4.3

show the GBDT output for the low, intermediate and high SEmiss
T

categories respec-

tively. The GBDT output plots the number of normalised events on the y-axis against

the predicted probability estimate on the x-axis. The corresponding ROC curves for

the GBDT and DNN models are shown by Figures 4.4 and 4.5. Since we have three

different SEmiss
T

categories for each of the three data sets, we have effectively trained

nine different models and we should expect nine plots in total.

Figure 4.1 Fully supervised BDT output for the low SE
miss
T category

Figure 4.2 Fully supervised BDT output for the intermediate SE
miss
T category
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Figure 4.3 Fully supervised BDT output for the high SE
miss
T category

Figure 4.4 Supervised GBDT ROC curves for Low, Intermediate and High SEmiss
T

Figure 4.5 Supervised DNN ROC curves for Low, Intermediate and High SEmiss
T

Table 4.1 below shows a comparison of the AUC scores for each supervised model.

This table consists of three side-by-side subtables with the heading representing the

data set used for training (written in bold text).

Table 4.1 Comparison of Area Under the Curve for BDT and DNN

A400Z

Category BDT DNN

Low SE
miss
T 0.733 0.772

Int SE
miss
T 0.805 0.843

High SE
miss
T 0.860 0.797

ggZH125

Category BDT DNN

Low SE
miss
T 0.780 0.873

Int SE
miss
T 0.822 0.875

High SE
miss
T 0.917 0.852

275mx60

Category BDT DNN

Low SE
miss
T 0.733 0.782

Int SE
miss
T 0.779 0.854

High SE
miss
T 0.938 0.942
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4.2 Weakly Supervised Learning Results

Below are BDT output plots showing the performance of the weakly supervised model

in classifying background and signal events on the same test data used for the fully

supervised GBDT. Figures 4.6, 4.7 and 4.8 show the GBDT output for the low, inter-

mediate and high SEmiss
T

categories respectively. As in section 4.1, the GBDT output

plots the number of normalised events on the y-axis against the predicted probability

estimate on the x-axis. The corresponding ROC curves for the fully supervised and

weakly supervised GBDT models are shown by Figures 4.9 and 4.10.

Figure 4.6 Weakly supervised GBDT output for the low SE
miss
T category

Figure 4.7 Weakly supervised GBDT output for the intermediate SE
miss
T category

Figure 4.8 Weakly supervised GBDT output for the high SE
miss
T category
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Figure 4.9 Fully supervised GBDT ROC curves

Figure 4.10 Weakly supervised GBDT ROC curves

Table 4.2 below shows a comparison of the AUC scores for each supervised model.

This table consists of three subtables with the heading representing the data set used

for training and testing (written in bold text).

Table 4.2 Comparison of Area Under the Curve for fully supervised (GBDTF ) and

weakly supervised (GBDTW ) GBDT

A400Z

Category GBDTF GBDTW

Low SE
miss
T 0.733 0.824

Int SE
miss
T 0.805 0.852

High SE
miss
T 0.860 0.847

ggZH125

Category GBDTF GBDTW

Low SE
miss
T 0.780 0.879

Int SE
miss
T 0.822 0.892

High SE
miss
T 0.917 0.883

275mx60

Category GBDTF GBDTW

Low SE
miss
T 0.733 0.841

Int SE
miss
T 0.779 0.891

High SE
miss
T 0.938 0.957
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4.3 Discussion

Based on Table 4.1, the fully supervised results show that the DNN outperforms the

GBDT in terms of AUC in general. For the low SE
miss
T category, the DNN outperforms

the GBDT by at least 5% across all data sets and for the intermediate SE
miss
T cate-

gory, the DNN outperforms the GBDT by at least 4%. In the high SE
miss
T category,

the GBDT outperforms the DNN on the A400Z and ggZH125 data sets but the DNN

does better on the 275mx60 data set. Based on the confusion matrices in Appendix

B Figures B.1, B.2 and B.3, the DNN has a decent recall (i.e. diagonal values of

the matrices) for both the signal and background. This indicates that the model is

robust and fairly accurate. Another set of plots that assist our analysis of the DNN’s

performance are the loss function plots which are given by Figures C.1, C.2 and C.3

in Appendix C. Ideally, we want the loss function to decrease asymptotically close

to zero, however, we can accept training and validation loss functions that decrease

together without a significant deviation from each other.

Looking at the results for the fully supervised GBDT and weakly supervised GBDT

in section 4.2, it is clear that the weakly supervised model outperforms the supervised

model in terms of AUC. Based on the GBDT output plots given by Figures 4.6, 4.7 and

4.8 it is evident from the observed overlap that the weakly supervised model misclassi-

fies a lot. Also another noticeable feature on the plots is that the probability estimates

for the signal (in blue) are mostly below 0.5 meaning that the model predicts the signal

as background quite often. Correctly predicted signal events would have probability

estimates above 0.5. This is in contrast to the GBDT output plots for the super-

vised model in section 4.1 where the signal probability estimates are mostly above

0.5 and there is a separation between the blue and red distributions. This, however,

does not discount the fact that the supervised GBDT also misclassifies to some extent.

The misclassification of the weakly supervised model is also confirmed by the confusion

matrices in Appendix B Figures B.4, B.5 and B.6. If we look at the diagonal entries

which represent the recall of the model, we immediately see that the recall is excellent

for the background but terrible for the signal. This is an important observation because

it tells us that the model is often confused when classifying the signal and also reminds

us that the AUC can sometimes be misleading.
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Chapter 5

Conclusions & Future Work

5.1 Conclusions

Based on the ROC curves for GBDTs and DNNs in the Low, Intermediate and High

SE
miss
T categories (corresponding to Figures 4.4 and 4.5), the DNNs performed rela-

tively better than the GBDTs. This result is important since we had initially sought

to investigate which of the two algorithms would perform best for our data sets. Table

4.1 shows the AUC scores for all these categories. It is worth noting, however, that the

DNN outperforms the GBDT marginally and given the fact that the DNN takes longer

to train, one might choose the GBDT without significantly compromising performance.

For the weakly supervised study the trained GBDT produces very good AUC scores

but shows signs of high misclassification of the signal on the confusion matrix. That

is, the weakly supervised model has poor recall for the signal. Figure 4.10 shows the

ROC plots for all three data sets in the respective SE
miss
T categories using the weakly

supervised model. Given these results, we can only make the conclusion that the

weakly supervised GBDT was not able to match the performance and robustness of

the fully supervised GBDT for the particular data sets and features we used. It is

possible that a different algorithm with different features could yield a more positive

result.
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5.2 Future Work

For future work, an implementation of the Classification Without Labels technique

(CWoLA) could be useful given its strong similarity with the technique used here for

the weakly supervised learning paradigm [33]. In fact, the only difference between

CWoLA and the technique used here is that the CWoLA uses two mixed samples for

training whereas our technique uses one mixed sample and one unmixed sample. The

CWoLA technique provides a rigorous mathematical proof for its claim that any su-

pervised algorithm can be trained by weak supervision to produce comparable results

to full supervision, yet the authors make no assertions about this being true for any

training data set. This is especially important since not all algorithms are robust

against high class imbalances.

The problem we have considered in this study is essentially an anomaly detection

problem. Taking into consideration the structure of the data, it may be worthwhile ex-

ploring a one class Support Vector Machine or a Fuzzy K-Means clustering algorithm.

A one class SVM could be trained on just the majority class (i.e. the background)

so that it learns to recognize it very well and any instances of the minority class (i.e.

signal) will be classified as an anomaly [65].

A fuzzy k-means clustering algorithm can also be used considering that there is a

strong overlap between the two classes of the data and most instances cannot be eas-

ily assigned to one group or cluster. With fuzzy clustering a data point can possibly

belong to more than one cluster and membership is determined by likelihood. For

each data point, a likelihood score will be generated to establish which cluster does it

belong to based on a predefined threshold [66].

Another technique that can be considered for training the weakly supervised model is

to extend the problem from binary to multiple classification. Specifically, a three class

problem where the first class corresponds to sideband, the second class pure signal and

the third class a mixture of sideband and signal. The aim here will be to extract the

signal directly from the weakly supervised model. The idea is that when the model

assigns low probability estimates for the sideband and the mixture, it implies that the

event under consideration has a higher probability estimate of being a signal.
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Appendix A

Univariate Distributions

A.1 Fully Supervised Features

(a) (b)

(c) (d)

Figure A.1 Fully Supervised 1D Distributions

45



(a) (b)

(c) (d)

(e) (f)

Figure A.2 Fully Supervised 1D Distributions
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(a) (b)

(c) (d)

Figure A.3 Fully supervised 1D Distributions
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A.2 Weakly Supervised Features

(a) (b)

(c) (d)

Figure A.4 Weakly supervised 1D Distributions
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(a) (b)

(c) (d)

(e) (f)

Figure A.5 Weakly supervised 1D Distributions
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(a) (b)

(c) (d)

Figure A.6 Weakly supervised 1D Distributions
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A.3 Correlation Matrices

(a) Pearson Correlation Matrix for signal data

(b) Pearson Correlation Matrix for background data
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Appendix B

Confusion Matrices

B.1 Confusion Matrices

As mentioned in the results section, we take the confusion matrix of each model into

consideration when analysing its ability to make predictions. Essentially, we want to

know what the recall is for the background and signal to see how many times the

model correctly classifies each of them. Below are confusion matrices for each one of

these.

Figure B.1 Low SEmiss
T

: Confusion Matrices for A400Z, ggZH, and 275mx60

Figure B.2 Intermediate SEmiss
T

: Confusion Matrices for A400Z, ggZH, and 275mx60
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Figure B.3 High SEmiss
T

: Confusion Matrices for A400Z, ggZH, and 275mx60

Figure B.4 Low SEmiss
T

: Confusion Matrices for A400Z, ggZH, and 275mx60

Figure B.5 Intermediate SEmiss
T

: Confusion Matrices for A400Z, ggZH, and 275mx60

Figure B.6 High SEmiss
T

: Confusion Matrices for A400Z, ggZH, and 275mx60
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Appendix C

Overfitting Check

C.1 Loss Plots

Figure C.1 Low SEmiss
T

: Train Val Loss Plots

Figure C.2 Intermediate SEmiss
T

: Train Val Loss Plots

Figure C.3 High SEmiss
T

: Train Val Loss Plots
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