
RESEARCH REPORT

Investigating explainablity
methods in recurrent neural

network architectures for financial
time-series data

Author:
Warren FREEBOROUGH

Student number:
723388
Orchid:
0000-0003-3825-3401

Supervisor:
Prof. Terence VAN ZYL

A research report proposal submitted in partial fulfillment of the
requirements for the degree of Master of Science in the field of e-Science

in the

School of Computer Science and applied Mathematics
University of Witwatersrand

June 9, 2022

i

Declaration of Authorship
I, Warren FREEBOROUGH student number 723388, declare that this research
report titled, “Investigating explainablity methods in recurrent neural net-
work architectures for financial time-series data” and the work presented in
it are my own. I confirm that:

• This work was done wholly or mainly while in candidature for a re-
search degree at this University.

• Where any part of this research report has previously been submitted
for a degree or any other qualification at this University or any other
institution, this has been clearly stated.

• Where I have consulted the published work of others, this is always
clearly attributed.

• Where I have quoted from the work of others, the source is always
given. With the exception of such quotations, this research report is
entirely my own work.

• I have acknowledged all main sources of help.

• Where the research report is based on work done by myself jointly with
others, I have made clear exactly what was done by others and what I
have contributed myself.

Warren FREEBOROUGH

June 9, 2022

ii

UNIVERSITY OF WITWATERSRAND

Abstract
Faculty of Science

School of Computer Science and applied Mathematics

Master of Science in the field of e-Science

Investigating explainablity methods in recurrent neural network
architectures for financial time-series data

by Warren FREEBOROUGH

Statistical methods were traditionally used for time series forecasting. How-
ever, new hybrid methods demonstrate competitive accuracy, leading to in-
creased machine learning-based methodologies in the financial sector. How-
ever, very little development has been seen in explainable AI (XAI) for finan-
cial time series prediction, with a growing mandate for explainable systems.
This study aims to determine if the existing XAI methodology is transfer-
able to the context of financial time series prediction. Four popular methods,
namely: ablation, permutation, added noise, integrated gradients, were ap-
plied to an RNN, LSTM, and a GRU network trained S&P 500 stocks data
to determine the importance of features, individual data points and specific
cells in each architecture. The explainability analysis reveals that GRU dis-
played the most significant ability to retain long-term information, while the
LSTM disregarded most of the given input and instead showed the most
notable granularity to the considered inputs. Lastly, the RNN displayed fea-
tures indicative of no long-term memory retention. The applied XAI methods
produced complementary results, reinforcing paradigms on significant dif-
ferences in how different architectures predict. The results show that these
methods are transferable in the financial forecasting sector, but a more so-
phisticated hybrid prediction system requires further confirmation.

iii

Acknowledgements
I would like to acknowledge the efforts of my supervisor Prof. Terence van
Zyl whom has provided considerable technical advice throughout the project
and time to review the content. Furthermore, I would like to thank my fam-
ily for the support whilst undertaking this degree. Lastly, I would like to
thank the National e-Science Postgraduate Teaching and Training Platform
for funding and enabling myself to undertake this research.

iv

Contents

Declaration of Authorship i

Abstract ii

Acknowledgements iii

1 Introduction 1
1.1 Background . 1

1.1.1 Time series Forecasting 1
1.1.2 Statistical Methods . 2

Holt-Winters Smoothing 2
ARIMA . 2

1.1.3 Machine-Learning Methods 3
RNN . 3
LTSM . 4
GRUS . 4

1.1.4 Explainable AI . 6
1.2 Problem Statement . 7
1.3 Significance and Motivation . 7
1.4 Research Question . 8

1.4.1 Research Aims . 8
1.4.2 Objectives . 8

1.5 Outline . 9

2 Research Methodology 10
2.1 Research Design . 10
2.2 Methodology . 10

2.2.1 Dataset and Processing 11
2.2.2 Models . 12
2.2.3 Explainability Methods 13

Integrated Gradients . 13
Ablation . 14
Added Noise . 15
Permutation . 17

2.2.4 Visualisation . 18
2.2.5 Hardware and Software 18

2.3 Limitations . 18
2.4 Conclusion . 19

v

3 Results and Discussion 20
3.1 Ablation . 20
3.2 Added Noise . 22
3.3 Integrated Gradients . 23
3.4 Permutation . 26

4 Conclusion 29

Bibliography 30

vi

List of Figures

1.1 Structural overview of a typical RNN 4
1.2 Structural overview of a LSTM neural network 5
1.3 Structural overview of a GRU neural network 5

2.1 The closing price of S&P 500 stocks divided into training, val-
idation and test datasets . 11

2.2 Architecture for each of the three RNN models 12
2.3 Overview of the ablation method on the Test dataset 14

3.1 The log percentage SMAPE difference between the ablated pre-
diction and reference prediction 20

3.2 The log error introduced after adding 1% of noise at each day 22
3.3 The absolute log attributions for A) RNN, B) LSTM and C)

GRU neural networks . 23
3.4 The SMAPE error produced from permuting a varying num-

ber of data points in individual features. 27
3.5 Feature importance derived from permutation method for RNN,

LSTM and GRU . 27

vii

List of Tables

2.1 Hyper-parameters and test accuracy for the various RNN ar-
chitectures [1] . 12

viii

List of Abbreviations

RNN Recurrent-Neural Network
ES Exponential Smoothing
ARIMA AutoRegressive Intergrated
MA Moving Average
LSTM Long Short Term Memory
GRU Gated Recurent Unit
ML Machine Learning
STL Seasonal and Trend using Loess
NLP Natural Language Processing
AOPC Area Over Perturbation Curve
AI Artificial Intelligence
XAI eXplainable Artificial Intelligence
SMAPE Symmetric Mean Absolute Percentage Error

ix

List of Symbols

Tl, f Time series of length l and f features
w Sequence length of input
h Prediction window
A Ablation area

x

List of Publications

1. W. Freeborough and T. van Zyl, T. "Investigating Explainability Meth-
ods in Recurrent Neural Network Architectures for Financial Time Se-
ries Data". Applied Sciences, 12(3), p.1427, 2022 [1]

1

Chapter 1

Introduction

The financial sector comprises a diverse group of businesses, such as banks,
insurance, real estate and investment companies. Their essential service is
to provide financial services to customers in the form of loans, investments
and payouts. Subsequently, the financial sector deals with large amounts of
money, bringing inherent risks.

1.1 Background

In order to optimise profits, businesses in the financial sector are keenly inter-
ested in various mathematical techniques that aim to quantify risk and pre-
dict future trends. Understanding the probability of risk and its associated
costs allows businesses to make decisions that minimise losses. Equally, pre-
dicting future events based on past information allows businesses to identify
opportunities that have yet presented themselves. Time series forecasting is
one such means to achieve this.

1.1.1 Time series Forecasting

Time series data changes with respect to time, and generally, these tempo-
ral changes and patterns are of interest. Identification and understanding
of these patterns allow for forecasting, whereby future predictions are made
based on past knowledge. Most time series comprises three features: trend,
seasonality, and cyclics. Trend describes the long-term changes within the
data, namely: increasing, decreasing or both (changing trend). Seasons, or
the seasonality of the data, describe repetitive and predictable frequency pat-
terns that usually occur due to time factors, such as days of the week or time
of year. Lastly, cyclic patterns are similar to seasonal patterns; however, they
do not demonstrate a fixed and predictable frequency [2].

The finance industry shows particular interest when it comes to time se-
ries forecasting. Such a high-stakes environment coupled with the use of
automatic electronic trading systems has driven traders to search for increas-
ing more accurate tools to predict future outcomes. For most of this time
statistical methods proved to be the most simple and successful for financial
time series forecasting [3].

Chapter 1. Introduction 2

1.1.2 Statistical Methods

Statistical methods refer to method that leverage statistical principles in its
functioning. Statistical methods rely on assumptions regarding the proper-
ties of the data such as normality, linearity and equality of variance. It is
through understanding the properties present in the data that allow for ex-
trapolation given that future data points follow the same distributions and
properties.

Holt-Winters Smoothing

Initially, Holt proposed using exponentially decaying weighted averages of
previous observations to make future predictions [4]. This proposition rea-
sons that recent time-points contribute more than distant time-points to the
forecast. In its simplest form it follows,

lt = αyt + (1− α)lt−1

ŷt+1|T =
T−1

∑
j=0

α(1− α)jyT−j + (1− α)Tl0,
(1.1)

where 0 < α < 1 is the smoothing parameter at time point t. However, both
frequency and trend is not considered, and while Holt went on to incorporate
trend into the model, it was Winters that included seasonality [5]. Winters
proposed equations for level (lt), trend (bt) and seasonality (st):

ŷt+h|t = hbt + st+h−m(k+1)

lt = α(yt − st−m) + (1− α)(lt−1 + bt−1)

bt = β∗(lt − lt−1) + (1− β∗)bt−1

st = γ(yt − lt−1 − bt−1) + (1− γ)st−m,

(1.2)

with three corresponding smoothing parameters: 0 < α, β∗ and γ < 1, and m
representing the length of seasonality. Whilst exponential smoothing (ES) is
considered a standard prediction algorithm as it is found to be quite accurate
in forecasting, despite its simplicity and susceptibility to outliers [6].

ARIMA

The auto-regressive integrated moving average (ARIMA) model requires sta-
tionary data: a constant mean and variance regardless of time. To make
data stationary requires the removal of the trend and seasonality compo-
nents. There are numerous ways to achieve stationarity, such as differencing,
transformations and seasonal differencing. The ARIMA model integrates an
auto-regression and a moving average model. The auto-regressive model
uses lagged yt in combination with θp parameter which is based on the cor-
relation between yt−n and yt in:

yt = c + θ1yt−1 + θ2yt−2 + · · ·+ θpyt−p, (1.3)

Chapter 1. Introduction 3

where p is the number of lagged forecast errors in the prediction. The moving
average makes predictions that centre around an average c by considering
the error ϵt between the previous prediction ŷt−1 and actual value yt−1 by:

yt = c + ϵt + ϕ1ϵt−1 + ϕ2ϵt−2 + · · ·+ ϕqϵt−q, (1.4)

where ϕ is the gradient coefficient and q is the order of the moving average
model. The gradient parameter provides insight regarding if the next predic-
tion falls above or below the preceding period mean, which allows for future
predictions. The ARIMA method combines both approaches incorporating a
differencing parameter d, which finds the difference y′t−1 between two series
at time t [7]. Taken together ARIMA is calculated using:

y′t = c + θ1y′t−1 + · · ·+ θpy′t−p + ϕ1ϵt−1 + · · ·+ ϕqϵt−q + ϵt (1.5)

Compared to ES, the ARIMA method shows improved fit to training data,
while the ES methods demonstrate greater accuracy in predictions [8]. Oth-
erwise, these two methods’ performance is comparable and has formed the
benchmark in forecasting. Commonly, benchmarking machine-learning-based
forecasting involves comparing model performance against ARIMA and ES.

1.1.3 Machine-Learning Methods

Artificial intelligence (AI) is increasingly an integral part of society, with it
applied in fields ranging from finance to healthcare and computer vision [9],
[10]. The premise behind machine-learning models is that given enough
data, a model can learn properties in the data without explicit programming
to do so. Learning occurs through an accuracy metric that undergoes itera-
tive improvement through gradient descent [11]. Several architectures have
since been developed to excel at specific tasks. One such architecture is the
recurrent neural network (RNN) which excels at sequential problems.

RNN

The RNN derive their name from the recursive nature of the architecture
whereby sequence data is fed into recurrent neural network cells (Figure
1.1). This design is well suited for sequential data as RNNs are able to learn
short patterns in data, making them desirable in natural language process-
ing (NLP), computer vision and time series forecasting. However, RNNs are
unable to learn long-term patterns in data since they suffer from either the
vanishing gradient or exploding gradient problem [12]. To combat the in-
ability to learn long-term patterns there has been research into alternative
RNN architectures, giving rise to the long short term memory (LTSM) and
gated recurrent unit (GRU) neural networks.

Chapter 1. Introduction 4

FIGURE 1.1: General overview of a typical RNN architecture.
A RNN takes a sequential input (Xt) into a recurrent activation
cell (A) that outputs a predictions (ht) that is also fed into sub-

sequent cells.

LTSM

The LTSM is architecturally distinct compared to traditional RNNs, housing
several additional gates: the input, forget and output gates (Figure 1.2). Each
cell of a LTSM receives a different input from the sequence data (Xt−1), in ad-
dition to receiving information from the previous cell in the form of the cell
state (Ct−1) and hidden state (ht). Given the input the forget gate controls
how much information is written to the current cell state (Ct) using a sig-
moidal (σ) function [13]. The function compresses the information R −→ [0,1]
and through a dot multiplication with Ct−1 "forgets" selective information
pertaining to the previous cell state. Next, the input gate is used to manip-
ulate the information that will be written to the cell state [13]. Lastly, the
output gate modulates how much information to reveal to the next cell as
the hidden state and produce an output if the architecture allows for it. To
combat the vanishing gradient problem, during back propagation, the error
is propagated backwards along the cell state to the individual gates where
the weights are updated [14].

GRUS

The GRU architecture is a simplified version of the LTSM (Figure 1.3). This
simplification is achieved by combining the input and forget gate to create
the update gate, which exposes the entire memory to operations, thereby re-
ducing the level of control in updating the cell state. Additionally, GRUs are
further simplified by merging the hidden and cell states when passing the in-
formation through the cell. The reset gate controls the uptake of information

Chapter 1. Introduction 5

FIGURE 1.2: Structural overview of a LSTM neural network
showing how the input (Xt) leads to the outputting the hidden
state of the cell(ht). Coloured boxes designate the various gates,
namely the forget gate (red), input gate (blue) and output gate

(purple). Adapted from [15]
.

from the previous cell, acting as a selective information filter. Due to these
changes, GRUs train faster than LTSM whilst still producing comparable per-
formance [16]. However, there is an inverse relationship between explain-

FIGURE 1.3: Structural overview of a GRU neural network
showing how the input (Xt) leads to the output(ht). Coloured
boxes designate the two gates, namely the update (red) and the

reset gate (blue). Adapted from [17]
.

ability in a system and its predictive accuracy [18]. Consequently, neural
networks and deep learning, which offer the highest accuracy for tasks such
as natural language processing and computer vision, are also the least inter-
pretable systems [19]. Specifically, their inherent complexity and non-linear
nature that enables such models to learn abstract patterns whilst leading to
difficulties in explaining their predictions.

Chapter 1. Introduction 6

1.1.4 Explainable AI

Explainable AI describes methods used to improve understanding behind
the predictions made by algorithms. The aim is to improve accountability,
reduce perpetuating bias and allow for greater understanding behind mech-
anisms that govern prediction for a given algorithm [20]. Machine learn-
ing models which lack explainable elements are classed as being a "black
box" and run the risk of perpetuating computer-based discrimination and
bias [21]. Furthermore, in the worst-case scenario, failing to understand how
an AI system may function could lead to physical harm as AI becomes fur-
ther integrated into society [22]. Recognising the necessity of explainable AI
(XAI) has seen a concerted effort by governments to implement laws con-
cerning the implementation of explainable prediction.

Broadly speaking, there are two means in which one can improve explain-
ability, implementing inherently explainable models or post hoc analysis. An
example of explainable models includes decision trees, general linear regres-
sion, or the K-nearest neighbours approach, whose design provides an intu-
itive understanding of the prediction. However, as previously stated, these
methods are not as accurate due to the inability to learn complex non-linear
relationships. In contrast, post hoc analyses are methodologies applied to al-
ready learnt ML systems and prove more popular since they attempt to make
a previously poorly understood but accurate algorithm explainable.

Post hoc analyses are further divided into deriving global or local un-
derstanding depending on whether they provide understanding behind all
predictions given a model or why a specific prediction was reached, respec-
tively [23]. While other ML fields such as natural language processing and
computer vision have made strides in creating explainable prediction sys-
tems, time-series RNN architectures have not experienced as much progress.
Currently, the SHAP and local interpretable model-agnostic explanations (LIME)
values are foremost choices when it comes to agnostic XAI methods [24], [25].

SHAP values derive explainability by determining how much a feature
contributes to the prediction by measuring the average change in prediction
for all possible coalitions. In contrast, LIME functions as a local explain-
ability predictor that perturbs the underlying data of a given model before
calculating the distance between permuted and original data. Subsequently,
the model attempts to fit a linear model on the n most informative features to
infer the contribution of features in the model. Practitioners commonly use
these methods to generate counterfactual explanations that describe the nec-
essary changes required in input to change a classification [26]. While LIME
and SHAP are desirable for their model-agnostic properties, researchers have
also observed success among model-specific XAI methods.

Recent advances in time series XAI methods focus on convolutional neu-
ral networks (CNN) applications. The XCM algorithm developed by Fauvel
et al. provides insights behind feature importance through time and feature
attribution maps in various health data [27]. This algorithm boasts granular-
ity in both global and local explainability and is based on gradient-weighted
class activation mapping (Grad-CAM) [28]. Additionally, Viton et al. simi-
larly incorporated the use of a CNN to generate heatmaps to describe feature

Chapter 1. Introduction 7

and time importance surrounding the decline of patients in health dataets [29].
Both methods demonstrate the practicality of CNN in determining feature
importance in deep classification networks. However, these methods prove
ineffective for financial time series forecasting. The methods are either not
applicable to time series data or are directed towards classification algorithms,
further highlighting the need for XAI methods for financial forecasting mod-
els. In devising such an algorithm, insight can be gained from examining
XAI methods used in other fields.

1.2 Problem Statement

Explainable time series forecasting tools would enable insights behind stock
trading and allow for transparency and understanding regarding decisions
made from predictions. However, the historical use of statistical forecasting
methods has led to stagnation in XAI research in this field. As the use of
deep "black box" machine-learning methods increase in the financial sector,
so does the risk of perpetuating algorithmic bias. Subsequently, this study
investigates the applicability of commonly used XAI techniques on RNN ar-
chitectures for financial time series forecasting.

1.3 Significance and Motivation

The M5 competition demonstrated superior accuracy among deep and en-
semble machine-learning-based financial forecasting methods. Furthermore,
as machine-learning models become further integrated into society, there is
an increase in legislation requiring transparency from models to protect in-
dividuals. Subsequently, models are facing pressure to comply with explain-
ability criteria, and failure to do so may fail to deploy the model [30]. This
expectation to comply with legislation necessitates developing and bench-
marking a basis of explainability to progress this field. There has been some
progress in time series XAI methods [31], [32]. However, these XAI meth-
ods were developed for classification tasks in the healthcare field and not for
financial regression tasks. While applying these XAI methods to a financial
setting is feasible, it is equally important to consider the differences behind
the motivation of XAI methods between fields. Finance seeks XAI not only to
comply with legislation but also to use XAI evaluative tool to determine if the
model is learning non-existent patterns or is overfitting as forecasting mod-
els have a high risk of backtest overfitting[33]. In contrast, healthcare may
focus on the mechanisms responsible for producing the data rather than the
model’s behaviour. For example, Nguyen et al. developed their XAI method
to understand the reason behind the patient decline and not understand how
the model was making predictions. Consequently, XAI methods designed for
models used in healthcare may not be appropriate in a financial setting.

The methods presented in this study are not novel as they are used ex-
tensively in multiple fields. However, the application of these existing XAI
methods in financial time series forecasting will be novel. Furthermore, the

Chapter 1. Introduction 8

alterations made to the ablation will change the XAI method classification
from local to a global XAI method. Collectively, these results seek to estab-
lish a baseline for explainability within the financial time series forecasting
sector. If successful, this study would demonstrate that machine-learning-
based forecasting systems are able to be held to the same explainable criteria
as others, such as health and computer vision.

1.4 Research Question

Despite the existence of numerous post hoc explainablity methods, it is still
not known how well these function within a time series context. This study
seeks to answer the question of how effective existing explainability methods
are on various RNN architectures within the context of financial time series
forecasting.

1.4.1 Research Aims

The overall aim of this research was to implement post hoc analyses in vari-
ous RNN architectures in order to explore explainability in time series fore-
casting. The aim was achieved by first training various open-sourced RNN
(RNN, LTSM, GRU) models on financial time series data before implement-
ing four post hoc analyses (added noise, ablation, block-bootstrap permu-
tation and inter-grated-gradient). This research attempted to better quantify
how predictions were made using these architectures and provided comment
on which of these methods has the best performance in time series forecast-
ing.

1.4.2 Objectives

In order to complete the research aim, the following objectives were achieved:

1. Find and construct a multidimensional financial time series dataset span-
ning 2-10 years.

2. Find, implement and train open-source code of the three RNN architec-
tures (RNN, LTSM, GRU) of interest

3. Implement and modify, if necessary, the post hoc analyses (added noise,
ablation, permutation and integrated-gradient) on each of the RNN net-
works.

4. Develop a visualization strategy to derive meaning from post hoc anal-
yses in the context of the developed RNN networks.

Chapter 1. Introduction 9

1.5 Outline

The subsequent chapter will go into further detail regarding the methods
used in this study. Chapter 3 will expand upon details surrounding the na-
ture of data, models’ architecture, and the implementation of the four XAI
methods. Subsequently, Chapter 4 focuses on the results for each of the XAI
methods and the interpretations of each figure. Lastly, the conclusion will
summarise and bring context to this study whilst making future research
recommendations.

10

Chapter 2

Research Methodology

Before the subsequent methods can be explicitly detailed, it is essential to
describe the overarching research design. Understanding the research de-
sign is useful in focusing on what the research is investigating and how it
was achieved. Furthermore, the research can only be considered successful
if there is a clear defined goal as what the research was trying to achieve.

2.1 Research Design

The undertaken research was considered confirmatory applied research. Con-
firmatory research refers to research that tests a priori hypotheses, whereas
applied research aims in addressing a practical problem. Specifically, our
research aimed to confirm whether established post hoc analysis are applica-
ble in time series forecasting. Furthermore, this study addressed a practical
problem: given historical stock prices of the S&P 500, can an accurate RNN-
based algorithm be developed and produce explainable reasons behind its
predictions. The study provided evidence in support of the hypothesis for
the explored XAI methods.

2.2 Methodology

Many consider the results to be the defining feature regarding whether a
study successfully achieved the outlined aim. However, if a study is not
reproducible, the results will fail to have any tangible impact in solving its
described problem. To ensure reproducibility, requires an extensive method-
ology section that describes what was performed in the research simply and
effectively. Furthermore, it is equally essential to describe how the data was
acquired and processed.

Chapter 2. Research Methodology 11

2.2.1 Dataset and Processing

A multivariate time series Tl; f was constructed from the daily S&P 500 be-
tween 02 December 1984 and 28 May 2021, excluding weekends, spanning
l = 9197 days [1]. The stock price index value of the S&P 500 is determined
by calculating the market cap of the 500 largest companies in the United
States. This calculation takes into consideration the number of held shares in
the market and the market price for a single share. Thereby satisfying the first
objective. Each day contains f = 5 features representing the opening, clos-
ing, adjusted closing, maximum price, minimum price and volume traded
for the day for each stock. Subsequently, the trend was removed through sea-
sonal and trend decomposition using LOESS. The augmented Dickey-Fuller
test confirmed if the time series was stationarity before it underwent global
normalization [34].

0 2000 4000 6000 8000
Number of Observations

0

500

1000

1500

2000

2500

3000

3500

4000

C
lo

si
n
g
 P

ri
ce

 (
$
)

Training
Validation
Test

FIGURE 2.1: The closing price of S&P 500 stocks divided into
training, validation and test datasets [1]

Additionally, as shown in Figure 2.1, the data was split into training, val-
idation and test dataset, where the validation and test datasets constitute the
last 400 data points, split evenly between them. Furthermore, the last 99 val-
ues of the training dataset were prepended to the validation set to allow for
prediction of the first validation value. The inclusion of the preceding 99 val-
ues of the validation set was repeated in the test dataset to allow for the same
predictions [1].

Chapter 2. Research Methodology 12

2.2.2 Models

1

128

1

128

1

64

GRU

LSTM

y
n+7

y
n+7

y
n+7

h0

h0

h0

c t-1

×

σ σ tanh

+×

× tanh

σ ×

σ σ tanh

+×

× tanh

σ ×

σ σ tanh

+×

× tanh

σ ×

1 92XX

1 92XX

1 92XX

×

×

×

σ σ tanh

1-

+

h

×

×

×

σ σ tanh

1-

+t-1

×

×

×

σ σ tanh

1-

+

× ×

×

×

×

σ σ tanh

1-

+

tanh tanh

h0

h0 ht-1

RNN

σ

tanh
tanh

σσ

×

+

×

[0,0,...,0]

[0,0,...,0]

[0,0,...,0]

ht-1

ht-1

FIGURE 2.2: Models were initialized with a zero vector (red
region) and provided a series of 92 days of financial data.
Non-linearity was introduced in each model using the ReLU
function prior to the fully-connected layer where dropout was
applied to the LSTM and GRU. Dropout was applied to the
8,46,61,67,83,92 and 123rd value in the fully connect layer. The
same dropout was applied to the GRU with the addition of the

64 and 125th value

TABLE 2.1: Hyper-parameters and test accuracy for the various
RNN architectures [1]

Model Hidden
States

Layers
(# Cells) Dropout Alpha Test Accuracy

(SMAPE)

RNN 64 1 0.000 0.005 1.83
GRU 128 2 0.065 0.010 1.81
LSTM 128 2 0.050 0.008 1.81

The study used three different recurrent neural network architectures as mod-
els to investigate explainability methods: a standard RNN, a GRU, and an

Chapter 2. Research Methodology 13

LSTM. Hyper-parameters [# hidden states, layers (# Cells), dropout and al-
pha] were optimised using Adam, minimising mean-squared error on the
validation set [35], [36]. As shown in Figure 2.2, the networks follow the
same general structure. The models used w = 92 time steps as an input win-
dow, representing a financial quarter. The models forecast the closing price
ŷt at a horizon h = 7 days in the future.

We trained the models for 30 epochs with mini-batches of size 3000. After
that, we evaluated model performance using the symmetric mean absolute
percentage error (SMAPE):

2
n

n

∑
i=1

|Yi − Ŷi|
|Yi|+ |Ŷi|

(2.1)

where Yi is the actual value and Ŷi is the predicted value over n predictions.
Despite the differences in the parameters among the models, the models were
comparable in accuracy, as shown in Table 2.1. Subsequent training and op-
timisation of RNN model lead to the completion of objective 2.

2.2.3 Explainability Methods

The following explainability methods all use the same principle to test differ-
ent aspects of RNNs. The principle is that significance of a particular input,
node or feature is determined by measuring the change in prediction follow-
ing its perturbation. The ablation and integrated gradients methods focus
on input importance, whereas the noise and permutation reveal node and
feature importance.

Integrated Gradients

The integrated gradient method is popular in both NLP and computer vision
field as an alteration to traditional feature gradient methods. Integrated gra-
dients is an approach that assigns importance to features as attributions [37].
It achieves this by considering the gradients respect to its input whilst desat-
urating the data to predefined baseline [38]. A baseline represents a state of
no information for the model prediction. By integrating between the base-
line and original dataset, the change in gradient versus the model’s predic-
tive accuracy allows for the determination of nodal importance. The change
in gradients are scaled against the models’ inputs, creating the attributions,
whose sign and magnitude provide insights behind the importance of each
input in the model.

In order to adapt this method for time-series data, the baseline needs to
provide no information conferred by the previous inputs allowing the deter-
mination of nodal level importance without noise from previous time points.
Subsequently, the baseline used in the study replaced each value with the
average of the previous 91 entries. In doing so, the model only receives in-
formation regarding the average of the previous time-step, thereby receiving
no new information other than the trend [1].

Chapter 2. Research Methodology 14

Ablation

Ablation is a technique used in the computer vision to identify which pixels
are most crucial for a given classification. The method traditionally functions
by removing information from a grid of pixels (block or line) by zeroing the
entry. This ablation region then moves over the image resulting in a change
in the prediction, the magnitude in the prediction error is used to infer im-
portance in the picture [39]. This information can then be overlaid onto the
original image, giving insight to the original image.

Adapting this method to the time series data, feature ablation blocks can
be introduced whereby the mean of previous features are forward fed into the
sliding window of the RNN. In doing so, as the RNN passes over the abla-
tion block and the model receives no new information, allowing inference of
feature importance based on the magnitude in the change in prediction. This
is reminiscent of the baseline in the integrated gradients method, with the
distinction that the ablation area does not change with respect to the models
input while the baseline does.

wwx1

1

x1

f

RNNx1 xw

y1

A = T - (2w +2) - h

T

RNNxi x

yi+1

RNNx xT

y200

T-92

xT

RNN x2l+i

y i+92

RNN

yi

RNN x2l+i

y i+92

i-1

i-92
X[]i

i-1

i-92
X[]i

1
n

1
n

A A

RNNx1 xw

y1
A=

i=1

i=108

,

w+i

,

,,

xw+ix i

yi

l,f

RNNx

y200

T-92

ablate(X,p,feature)

A A a

Y=

yAblated =
ablate(X,p,feature)

h

Ablatedy

FIGURE 2.3: .
Overview of the ablation method on the Test dataset. The time series T com-
prises of an ablation area (orange), a prediction horizon (h) and two flanking
regions (yellow) of size w where l is the sequence length of the RNN mod-
els. As the models slides over T predictions that differ from the Ŷ due to
inclusion of the ablated input are noted (red) [1].

Ablation studies use regions of non-information to determine significant
data points in an input. In RNNs, zeroing of input can be achieved through
forward filling with the average of prior inputs. The rationale for using the
average is that an RNN exploits prior information in the time-series. There-
fore, replacing a single input value with the average of the previous cells
removes any information supplied by those cells as seen in Figure 2.3. A sin-
gle data point would be ablated and fed into the model, whereby predictions
would be made by sliding over the single ablated feature value (Algorithm: 1

Chapter 2. Research Methodology 15

and Figure 2.3). For a given multivariate time series Tl of length l, there exists
a region A which can be ablated at point p, given that there are w− 1 values
that precede the value and an additional w − 1 values that follow it. It fol-
lows that there must be a sufficient number of entries preceding the ablated
value, whilst still allowing the RNN to slide over the time-series, generating
the errors. Specifically, in this study, using models that take in w = 92 val-
ues and have 7 day forecast horizon (h = 7), A spans the central 108 values.
The method produces w pairwise errors e, calculated by taking the absolute
value of the differences between the ablated and non-ablated predictions as
the RNN slides over the ablated data. The algorithm returns the average
percentage pairwise error for all the inputs into the RNN [1].

input : A time series Tl, f // length l and features f

: A RNN model (·) l − (w + h)predictions

output: An Error matrix EAvg of size w× f
ErrorAvg =[]

ŷ← model(X)

for feature in f do
EFeature = []

/* Iterate over region A */
for i in 1:len (A) do

XAblated ← ablate(X, i + 91, feature)

ŷAblated ← model(XAblated)

e← |ŷAblated − ŷ|
ŷ

/* Concatenate non-zero errors from RNN sliding over ablated
value */

EFeature ← concat(EFeature, e [i:i + 91])

end

EAvg[f eature]← 1
len(A)

∑
j=1
len(A)

E f eature[j]

end
return EAvg

Algorithm 1: Ablation Algorithm

Added Noise

Drawing inspiration from the ablation method, specific noise is introduced
to the input instead of removing information parsed into the RNN (through
forward feeding). The reasoning behind this method is that if an input is un-
informative, then the introduction of random noise in the input would not
cause a large change in the prediction. Conversely, if the feature input were
necessary, a randomised value would lead to a more considerable change in

Chapter 2. Research Methodology 16

the prediction. However, the larger the difference between the original and
the altered input, the greater the prediction error. This ratio between original
and altered values must be noted and factored into the results, or we must
standardise the amount of noise added. We have opted to observe the change
in prediction when 1% of noise is added [1].

While the ablation methods seek to remove information from the algo-
rithm, the added noise technique is more nuanced because it still provides
informative knowledge. Furthermore, isolating the noise to a specific cell in
the unrolled RNN allows for observing information flow through the net-
work.

A variant of random noise was implemented on the trained networks to
test which cells in the network contributed most to predictions. The noisy
time series, XNoise is constructed by adding 1% noise to all features f iter-
atively in Tl, f so that following unrolling, the same cell in the RNN model
receives additional noise for each prediction (Algorithm 2). This approach
ensures that the added noises are localised to a single position in the RNN
model, whereas the ablation method leveraged the model sliding over the
ablation to infer importance. The calculated SMAPE between the resulting
prediction, ŷNoise, and original prediction, ŷ, inferred the degree that each
cell contributes to the prediction.

input : A time series Xl; f // length l and features f
: a RNN model (·) l − (w + h) predictions

output: SMAPE error array eDay of size w
ecell = []

ŷ← model (X)

/* Iterate over each cell in the unrolled RNN model (·) */

for each cell in 1:w do
XNoise = []

for i in 1:l-w-7 do
Xtemp = X[i:i+w]

/* Adds 1% noise to all features received by cell */

XNoise[i] = Xtemp[cell;] +
Xtemp[cell;]

100
end
ŷnoise← model (Xnoise)

eSMAPE ← SMAPE (ŷNoise, ŷ)

ecell ← concat (ecell,eSMAPE)

end
return ecell

Algorithm 2: Noise Algorithm

Chapter 2. Research Methodology 17

Permutation

The permutation method is a global explainability method. It is global in
that it aims to explain why all predictions are made with a given model,
as opposed to a single prediction as with local explainability models. The
permutation method infers feature importance by quantifying the predictive
error following permuting all values from a single feature [40]. Thereby de-
termining feature importance for all predictions and not in a single-use case.

This method entails permuting each feature by randomly replacing each
value with another value that preceded it in the time series. Thereby en-
suring that the model is not exposed to any future information when mak-
ing a prediction. Following the permutation of a single feature, the SMAPE
was calculated between the permuted and original predictions (Algorithm 3).
Each feature was permuted 300 times to account for the stochastic nature of
permutation. Feature importance was inferred through fitting a simple linear
regression to fit one-hot-encoded (OHE) permuted features to the SMAPE er-
ror. Specifically, the magnitudes of the regression coefficient determined the
feature importance [1].

input : A time series Xl; f // length l and features f
: a RNN model (·) l − (w + h) predictions

output: Importance of each feature to prediction
XOHE ← []

ŷError ← []

ŷ← model (X)

for feature in f do
/* Repeated to address stochastic nature of permutation */

for i in 1:300 do
XPermuted ← permute(X, f eature) // Permute all of X f=Feature

ŷPermuted ← model (XPermuted)

eSMAPE ← SMAPE (ŷ,ŷPermuted)

XOHE ← concat (XOHE, OHE for Feature F)

ŷError ← concat (ŷError, eSMAPE)

end
end
OLS← Fit XOHE to ŷError using a simple linear regression

Importance← 1
n

OLS
∑ OLS

// OLS refers to the feature coefficients

return Importance
Algorithm 3: Permutation Algorithm

Chapter 2. Research Methodology 18

2.2.4 Visualisation

Visualisation is a critical tool in focusing information and explaining results.
Visualisation is even more critical in XAI when considering the function of
XAI methods for explaining complicated models. Failure to adequately vi-
sualise results from XAI methods may result in an inability to explain model
prediction, invalidating the methodology. Therefore, result visualisation is
equally essential, justifying why it is an objective. Taking inspiration from
existing XAI methods, a heatmap is a common and powerful tool to visu-
alise large amounts of information. These have been extensively used in dif-
ferent XAI methods to present various explainable metrics [31], [32], [39]. An
option is to generate results for each prediction and visualise the results as
a video, thereby allowing the identification of patterns as it moves through
time. However, visualising the local explainability proved too noisy and de-
viated from the aim of the study: to understand model behaviour and not
the reasoning behind a specific prediction. Instead, a global visualisation ap-
proach is a better fit: global in the sense that it visualised patterns existing
in multiple predictions. This approach also allowed for the comparison be-
tween all methods since they were all reporting different aspects of a singular
mechanism: the behaviour of RNN in time series forecasting.

2.2.5 Hardware and Software

All three models were implemented using the Pytorch(v1.8.1) library within
a Python(v3.8.8) environment [41]. Data was scraped and pre-processed us-
ing the Pandas-Datareader (v0.80), Scipy (v1.6.2) and Statsmodel (v0.12.2)
libraries respectively [42], [43]. The Captum (0.3.1) library was implemented
with the integrated gradients method [44]. Custom scripts that incorporated
patsy (v0.5.1) and Statsmodels generated results for the ablation, permuta-
tion and noise methods. Visualisation was performed using a combination
of Matplotlib (v3.3.4) and Seaborn (v0.11.1) [45], [46]. A 64-bit system in-
corporating an Intel Core i7-7700HQ CPU with 16GB RAM and a NVIDIA
Geforce GTX 1050 GPU with 4GB internal RAM performed the model train-
ing and analysis. Due to restrictions in GPU memory requirements, the GRU
and LSTM analysis could only run on the CPU.

2.3 Limitations

There are a few limitations in the methodologies used in this study. A no-
table limitation of this study is that the methods applied here may not apply
to deep-learning methods. This limitation follows the understanding that the
presented methods leverage visualisation of results to understand the model
prediction, requiring human input to provide insights behind models. Con-
sequently, the presented methods may not function well in deep-learning

Chapter 2. Research Methodology 19

models that require longer time-series inputs or high dimensional data. Fur-
thermore, whilst the different error metrics provided understanding for dif-
ferent aspects of the network, they may not prove intuitive to average per-
sons seeking to benefit from explainable AI. Additionally, consistent use of a
single more-suitable metric may allow better comparisons between models.

2.4 Conclusion

The methods provided above have undergone minor alterations to be ap-
plicable in a time series forecasting context. The integrated gradients and
the ablation methods leverage the same paradigm surrounding providing
the model with no new information by incorporating a feed-forward aver-
age approach. The results will reveal where each network places importance
on its inputs. In contrast, the added noise and permutation methods rely
on similar principles: inferring importance through the magnitude of change
following altering a specific time-interval or feature, respectively. The added
noise method identifies which time-intervals contribute most to prediction,
whilst the permutation method quantifies an overall feature’s importance.
These methods will provide global insights behind the three models at vary-
ing resolutions and different focuses if successful.

20

Chapter 3

Results and Discussion

It needs to be noted that many of the results and conclusions presented in
this dissertation have been published in a previous paper [1]. The results
below provide information behind the mechanisms that culminate in pre-
diction in various RNN architectures, demonstrating success as post hoc XAI
methods [1]. Additionally, the results complement each other, providing sup-
porting evidence for the well-established paradigms. Although there may be
overlap between information produced by the methods, it is crucial to con-
sider that different methods provide different granularity and focus. The
needs of the model developers will determine which combination of meth-
ods are most applicable.

3.1 Ablation

High

Low

Open

Close

Volume
Adj Close

C

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 14

12

10

8

6

4

2

0

Log
Ablation Error

High

Low

Open

Close

Volume
Adj Close

B

High

Low

Open

Close

Volume
Adj Close

A

FIGURE 3.1: The log percentage SMAPE difference between the
ablated prediction and reference prediction.

A) RNN, B) LSTM and C) GRU neural networks [1].

Traditionally, ablation uses an ablated pattern to determine the importance
of inputs within the region. Consequently, a common criticism for ablation is

Chapter 3. Results and Discussion 21

that it leads to false-positive/negatives as informative and non-informative
inputs may be grouped in a single pattern. Furthermore, it is relatively slow
as numerous iterations are required to test many patterns. However, a conse-
quence specific to time series forecasting is that ablating one or more points
will lead to numerous prediction errors as the model slides over the ablated
area. Furthermore, the prediction error equals the sum of all errors that result
from the ablation region falling within the model, making it difficult to deter-
mine a single input’s importance when the error pertains to numerous input
ablations. To account for this, a single ablated point was fed into the model,
producing w predictive errors: one for each position the ablation sits in the
network. The reasoning behind this choice is that any ablation region’s pre-
dictive error can be derived by knowing all the individual predictive errors
that would make up the region. Furthermore, limiting the ablation area to a
single input prevents noise from other inputs from influencing the predictive
error, conflating importance [1].

Ablation can be considered a more straightforward form of integrated
gradients: the technique removes information from a feature, and the change
in prediction is measured. We can then use the magnitude of the predictive
error to infer the feature’s importance. If an input is non-informative to pre-
diction, ablating it would fail to produce a large change in prediction, leading
to a near-zero error. A unifying feature between models is that the most in-
formative cells lie at the last few inputs (cells 90-92). This result follows the
logic that the most recent inputs provide a stronger basis for prediction than
more distant inputs and is expected in time series forecasting. This reason-
ing forms the basis of ES and has stood as the statistical benchmark for many
years [4], [5].

Feature importance decays, albeit at different rates, moving backwards
through the model which is evident in the spectrum gradient which is evi-
dent in Figure 3.1. A rapid change in colour represents a smaller window in
which information is retained from past information. The GRU model shows
the greatest ability to retain past information, whilst the LSTM appears to
be least capable of retaining past information. However, when considering
additional information from the integrated gradients and noise methods, it
later becomes apparent that this is not the case and will be discussed in sec-
tions 3.2 and 3.3. Specifically, the GRU network considers the most features
in making predictions, with most of the uninformative inputs situated be-
tween cells 4-38 as seen in Figure 3.1. In contrast, the LSTM shows the least
number of informative features, which most are present from the 78th cell.
Interestingly, the RNN presents with an alternating banding pattern of fea-
tures importance from the 60th cell onward. This pattern perpetuates in both
the attributions and cell importance as seen in Figure 3.2 and 3.3.
Notably, volume was the only feature that showed consistently lower impor-
tance following ablation in all three models at any given point. This result
suggests that the models are purposely disregarding volume when making
predictions.

Chapter 3. Results and Discussion 22

3.2 Added Noise

FIGURE 3.2: The log error introduced after adding 1% of noise
at each day [1]

Adding a defined noise level (1%) to all inputs in a particular cell deter-
mined which cells, and by extension, which days were most important to
the prediction. Localising the noise to a particular cell ensures that the RNN
model does not slide over the augmented input like the ablation method.
Consequently, the added noise method sacrifices granularity at the input
level in exchange for sensitivity on the importance of a single day, provid-
ing improved visualisation in the changes to importance between time inter-
vals [1].

Complementing the ablation method, the results provides further evi-
dence that almost all the predictive power lies in the last three (90-92) cells,
as seen in Figure 3.2. Furthermore, the decay of importance between models
becomes more apparent and shows more sensitivity compared to the abla-
tion results (Figure 3.1). Notably, this improved sensitivity shows that the
GRU dismisses most of the information between the 23 and the 35th nodes.
Furthermore, the LSTM displays a characteristic gradient spectrum suggest-
ing memory retention as it perpetuates through the cell state leading to pre-
diction. However, this gradient sits between the 69-81st nodes, whereby the
nodes situated towards the front (82-92) show a more irregular but subtle
banding pattern more indicative of the RNN.

The banding between the RNN and LSTM does not match, suggesting
that the mechanism behind its presentation differs between models. A clear
spectrum pattern is predominantly absent from the RNN, which primarily
presents as a banding pattern alternating between time intervals of higher
and lower importance. This lack of decay in importance provides further ev-
idence for the models’ inability to retain distant information as one would
not expect such regular dramatic changes in model attention. Specifically,
if a cell holds information from the previous n cells, one would not expect
a significant change in importance in the following cell, given that it would
hold approximately the same past information.

Interestingly, the GRU is the only one of three models to demonstrate a
recovery in the magnitude of the importance at the 1-3rd cells. This recovery

Chapter 3. Results and Discussion 23

would entail that the GRU is selectively applying focus to information en-
tering the first three cells. Given that the window size represents a financial
quarter (w =92), this observation would suggest that the strength of the mar-
ket at the start of a financial quarter is a greater indicator than the market 28
days preceding prediction for future stock prices.

The RNN demonstrated the most irregular of the results regarding input
importance compared to the LSTM and GRU (Figure 3.1 and 3.3A). Notably,
these irregularities present as alternating bands of low and high importance.
This banding pattern is prevalent in both the magnitudes and signs of the
attributions. By considering both the model properties and understanding
behind attributions, these results suggest that the function of this pattern is
to fine-tune the prediction. The RNN derives most of its meaning from the
last three days of input (cells 90-92), whereby all subsequent inputs alter-
nate between adjusting the prediction up and down from the moving av-
erage, whilst these adjusts decaying in magnitude. This banding pattern is
also present in the permuted results (Figure 3.2). This behaviour suggests
that the RNN is randomly adjusting predictions rather than applying focus
to specific areas in the data, thus supporting the paradigm that RNNs are
unable to learn long term information. Given this information, the results
suggested that the RNN model could provide comparable performance with
smaller input size.

3.3 Integrated Gradients

FIGURE 3.3: .
The absolute log attributions for A) RNN, B) LSTM and C) GRU neural net-
works. Bordered areas represent negative attributions [1]

Chapter 3. Results and Discussion 24

Integrated gradients have become a popular and intuitive method to mea-
sure the correlations between the input features and correct prediction. The
attribution magnitude pertains to how strongly the input contributes to pre-
diction, whereas the sign relates to if the correlation is positive or negatively
associated with a given prediction. Traditionally, an input with zero attri-
bution represents an input with no influence on prediction, whereas a high
positive value would suggest that the input feature is positively associated
with the correct prediction. However, in regression, the signs of the attribu-
tions represent regions within the neural networks responsible for increasing
(+) or decreasing (-) the prediction, whilst the magnitude refers to the scale of
change. These attributions are determined relative to the baseline, the mean
of the last 91 cells, following similar logic behind the ablation method. The
logic behind this baseline is that if an input to a time series consists of only
noise, there would be a given mean and variance; therefore, supplying only
the mean from previous cells contributes no new information from the past.
Such a baseline would determine input attributions in the absence of past in-
formation in the time series, enabling the determination of individual input
importance without the noise from previous cells. Consequently, it is unsur-
prising that integrated gradients show greater sensitivity than the ablation
method as the model introduces noise as it slides over the ablated input be-
cause it still receives information from inputs surrounding the ablation.

There are both commonalities between the models as well as model-specific
features [1]. Notably, the magnitude of the attributions for volume are consis-
tently lower than the attributions for any other feature in a given day, shown
in Figure 3.3. This provides additional support that the models largely disre-
gard the volume when making predictions, which was first noted in the ab-
lation results (Figure 3.1). All three models demonstrated their largest mag-
nitudes clustered towards the last inputs (87-92).

Interestingly, the patterns of negative attributions present differently in
each model, revealing the intricacies behind the model prediction. The RNN
model demonstrates an alternating pattern between positive and negative at-
tributions, reminiscent of the banding pattern seen in Figures 3.1 and 3.2. The
pattern extends into the magnitudes of the attribution. These results suggest
that the function of this banding pattern is to fine-tune the prediction. The
RNN predominately uses the last three days of input (cells 90-92) to form the
predictions, whereby all subsequent inputs fine-tune the prediction. Specif-
ically, the model alternates between adjusting the prediction up and down
from the moving average, whilst these adjustments become smaller as they
move backwards in time. This behaviour suggests that the RNN is randomly
adjusting predictions rather than applying focus to specific areas in the data,
thus supporting the paradigm that RNNs cannot learn long-term informa-
tion. Given this information, the results suggested that the RNN model could
provide comparable performance with a smaller input size.

Provided with greater sensitivity, the characteristic spectrum associated
with long-term learning is clearly visible in the LSTM attributions. Further-
more, the LSTM had all its negative attributions localised at the model’s
front (82-92) and showed significantly lower numbers than both the GRU and

Chapter 3. Results and Discussion 25

RNN. Despite this, the LSTM network in this study assigns very little impor-
tance to data preceding the 78th cell (Figure 3.3). One possibility is that the
LSTM demonstrates a lack of memory retention. However, when provided
with increased sensitivity from the integrated gradients, the LSTM demon-
strates the spectrum decay of importance present in the GRU network. This
result provides evidence for remembering past information, demonstrating
the flow and decay of past information through the cell state, supporting the
paradigm that LSTMs can learn long-term information [47].
If the LSTM can learn distant information, it does not explain why it assigns
such low importance to inputs preceding the 78th cell. This conflict between
the ablation and attribution results suggests that the model deliberately for-
gets long-term information to improve the prediction. If true, then long term
memory retention appears to be less critical in prediction than the GRU for
this instance.

A possible reason for the deliberate exclusion of distant information is
that the sequence length (92) may be insufficient for the LSTM to learn long-
term patterns adequately. Given that LSTM performs better with longer and
more complex sequences compared to the GRU, the LSTM may rely more on
its granularity in memory gates when provided a smaller input size [48]. Un-
like the GRU, the LSTM can fine-tune the contents of its memory through the
output gate, meaning that the predictive strength of the LSTM, in this con-
text, is derived from how it applies importance explicitly to each input rather
than long-term patterns. This idea is further supported when considering the
attributions of the LSTM (Figure 3.3). The LSTM demonstrates the least num-
ber of negative attributions, and they are all localised towards the end of the
network meaning these inputs are critical in reducing the magnitude of the
prediction whilst considering relatively few inputs. Consequently, the LSTM
considers fewer data points of relatively high importance to adjust the pre-
diction down to the correct level. Interestingly, while the 92nd cell confers
most of the information to the prediction, it also is the cell that contains most
of the negative attributions, excluding only the open feature. This result im-
plies that the LSTM functions by primarily considering the opening price, at
the 92nd, to raise the prediction to an appropriately high level whilst consid-
ering the remaining features to create an upper ceiling in the prediction.
Equally in the GRU, the higher sensitivity reveals further evidence regarding
the model’s long memory retention and attention placement. This evidence
is most apparent in the larger overall magnitudes observed in the attribu-
tions: any input in the GRU confers more information to prediction than any
input preceding the 60th day in the LSTM (Figure 3.3). Given that GRUs
combine the input and forget gate, creating an update gate, GRUs are only
able to act on the entire contents of their memory when remembering past
information [16]. Subsequently, GRUs demonstrate less precision in forget-
ting past information compared to LSTM. Therefore, the results suggest the
GRU model relies on remembering more past information while the LSTM
leverages its precision in forgetting past information to achieve comparable
levels of accuracy.

When considering the details regarding the attention placed in the model,

Chapter 3. Results and Discussion 26

the role surrounding the negative attributions becomes clearer. Specifically,
most of these negative attributions are situated where the GRU places atten-
tion, which is indicated by the increase seen in the attributions around the
1-4th cells. While most inputs function to increase the prediction, the model
focuses on the first 12 days to lower the prediction. The magnitudes of nega-
tive attributions suggest that the attention in early inputs lowers the predic-
tion as a form of fine-tuning rather than creating an upper threshold of pre-
diction like that seen in the LSTM. Interestingly, the magnitudes of the first
and last inputs in the region of negative attributions are smaller than those
in the centre. This observation suggests that the GRU specifies the regions
that reduce prediction when the magnitude of the attribution drops below
a specific threshold. If accurate, this would provide an intuitive explanation
for how the GRU model selected specific inputs to fine-tune prediction rather
than contribute to it.

Lastly, it is worth noting that ablation provides less sensitivity compared
to integrated-gradients when comparing results (Figures 3.1 and 3.3). How-
ever, ablation provides a less abstract understanding of the input importance.
Indeed, the black regions in the ablation results are absent in the integrated
gradients method, showing practically where the regions of non-importance
lie regarding prediction. Consequently, ablation is arguably more informa-
tive to users who seek to understand what information is vital to prediction
rather than the particulars underlying the trained model, in which case attri-
butions becomes more informative to users.

3.4 Permutation

Initially, feature importance was determined by dividing the error of per-
muting a single feature by the sum of permuting each feature. This mode
of determining feature importance relied on the assumption that the change
in SMAPE error following permutation displayed linear properties: specifi-
cally, the error needed to be additive. This assumption proved to be correct
for RNN; however, the GRU and LSTM showed that permuting all features
produced an error greater than the sum of its parts as shown in Figure 3.4.
This error discrepancy implies that the model has learned some non-linear
relationships between features when making the prediction. The error dis-
crepancy suggests that the GRU, and to a lesser extent the LSTM, uses in-
formation from one feature to modulate the information of another feature
when making predictions. Specifically, this non-linear relationship results in
a 22% and 2% discrepancy between the sum of all feature errors and permut-
ing all features in the GRU and LSTM, respectively. Consequently, using the
above-proposed means would underestimate feature importance in the GRU
and LSTM networks. An alternative strategy would be required to ensure
that individual feature importance sums to 100% .

The focus of the permutation methods was to determine which feature
contributes the most to prediction for each RNN architecture. Interestingly,
all three models assigned the lowest priority to the volume of traded stock,
whilst there was no single feature with the highest priority between the three

Chapter 3. Results and Discussion 27

0 50 100 150 200 250 300

10

8

6

4

2

0

2

GRU
0 50 100 150 200 250 300

of Data point permuted

17.5

15.0

12.5

10.0

7.5

5.0

2.5

0.0

2.5
LSTM

Feature 1
Feature 2

Feature 3
Feature 4

Feature 5
Feature 6

All Features
Sum_Features

0 50 100 150 200 250 300

17.5

15.0

12.5

10.0

7.5

5.0

2.5

0.0

2.5
Lo

g
 S

M
A
PE

E
rr

o
r

RNN

FIGURE 3.4: The SMAPE error produced from permuting a
varying number of data points in individual features. Addi-
tionally, the error of permuting all the features and the sum of

individually permuted feature errors are shown

High

Low

Open

Close

Volume

Adj closed

RNN LSTM GRU

19.13%

18.28%

20.0%

19.47%

3.42%

19.7%

19.24%

17.86%

18.49%

20.34%

4.67%

19.4%

17.97%

14.22%

22.21%

19.8%

1.71%

24.1%.

Percent of Predicted Error Contributed

FIGURE 3.5: Feature importance derived from permutation
method for RNN, LSTM and GRU [1]

models, as shown in Figure 3.5 [1]. Consequently, the volume of traded
stocks had little to no effect on predictions in all three models. The poten-
tial reason is that volume only refers to the number of stocks traded within
a given day, not necessarily the price. The volume for a given stock could

Chapter 3. Results and Discussion 28

increase following a spike in stock price, indicating investors’ interest in buy-
ing the stock. Equally, the volume may also increase following the decrease
of a stock which indicates that investors are selling a given stock following
the reduction in stock price. Consequently, volume taken in isolation does
not provide a strong correlation to the price of a stock at closing. Notably,
all three models are cognisant of the lack of correlation between volume and
closing stock price and have primarily disregarded volume when making
predictions.
Notably, the GRU and the LSTM place higher importance on volume com-
pared to the RNN, and by considering the attributions, the reason becomes
clear (Figure 3.3). In the LSTM, volume importance comes from the negative
attributions, whereby 45% of negative attributions fall in the volume feature.
In comparison, the GRU focuses on the first few cells (0-4), which contains
a region of negative attributions present in the volume feature. While the
LSTM uses the most recent inputs to create the upper predictive ceiling, the
GRU uses the most distant inputs, where it places attention, for its predic-
tive ceiling. This observation around attributions and attention may explain
why the RNN largely disregards the volume data: it cannot apply attention
in long-term patterns or precisely regulate information retention.
Overall, there are similarities between the feature importance for GRU and
LSTM compared to the RNN. This similarity is present despite the attribu-
tions displaying considerably different modes of prediction (Figure 3.3). It is
unlikely that the ability to retain long-term information, as seen with LSTM
and GRU neural networks, is responsible given that the RNN shows greater
retention than the LSTM (Figures 3.1 and 3.2).
In contrast, the RNN shows the most differences in where it places impor-
tance in its features. The RNN appears to emphasise the adjusted closing
price and the opening rather than the high and low price for stocks. This
result suggests that both the opening and the adjusted closed is more criti-
cal to prediction in the absence of long-term information. This logic makes
sense as it is unsurprising that one should consider the most recent open-
ing and closing price, adjusted against stocks traded, to predict the closing
price. Consequently, long-term memory enables a more nuanced prediction
by considering the change in patterns in more features with respect to closing
price when making a prediction, as seen in the GRU and LSTM.

29

Chapter 4

Conclusion

This study aimed to demonstrate the successful application of existing XAI
post-hoc methods in financial time series forecasting in various ’black box’
RNN architectures. The four presented methods provided complementary
evidence, at varying granularity, behind the learnt strategies that different
RNN models use to make predictions by examining the importance of fea-
tures, individual inputs, and time intervals. Notably, the RNN showed lim-
ited ability to retain past information, opting to randomly fine-tune predic-
tion using past information. Whereas both the GRU and LSTM showed ev-
idence of retention of past information, they distinctly demonstrated differ-
ent strategies exploiting the nature of their gates to make comparable pre-
dictions. These results support existing paradigms pertaining to the mecha-
nisms governing the investigated RNNs.

The understandings derived from the presented results indicate the suc-
cessful integration of long-standing XAI methods to time series forecasting
to provide a global understanding of model prediction strategies. Conse-
quently, these findings suggest that the financial time series forecasting field
is not as far behind in XAI advancement as previously thought and should be
held to the same XAI standards seen in other fields using machine learning
methods. We acknowledge that this study is not a comprehensive explo-
ration of existing XAI methods, nor does it aim to provide the standard for
XAI methods in time series forecasting.

Instead, subsequent research should explore alternative metrics consis-
tent between methods and provide more intuition behind the error they re-
port. Additionally, the performance of these methods may not apply to all
deep-learning strategies, as it relies on visualisation to derive meaning. In
such cases, the use of CNN may provide useful means to quantify deep
model behavior and prove promising for the finance sector [49], [50]. Fur-
thermore, whilst the different error metrics provided understanding for dif-
ferent aspects of the network, they may not prove intuitive to average per-
sons seeking to benefit from explainable AI. In conclusion, this study pro-
vides a strong basis for further research into XAI methodologies for time se-
ries forecasting by demonstrating the success of various existing methods in
unveiling mechanisms behind predictions in various RNN architectures.

30

Bibliography

[1] W. Freeborough and T. van Zyl, “Investigating explainability meth-
ods in recurrent neural network architectures for financial time series
data,” Applied Sciences, vol. 12, no. 3, p. 1427, 2022.

[2] C. Chatfield, Time-series forecasting. CRC press, 2000.

[3] T. Mathonsi and T. L. van Zyl, “A statistics and deep learning hybrid
method for multivariate time series forecasting and mortality model-
ing,” Forecasting, vol. 4, no. 1, pp. 1–25, 2022.

[4] C. Holt, “Forecasting seasonals and trends by exponentially weighted
averages (onr memorandum no. 52),” Carnegie Institute of Technology,
Pittsburgh USA, vol. 10, 1957.

[5] P. R. Winters, “Forecasting sales by exponentially weighted moving av-
erages,” Management science, vol. 6, no. 3, pp. 324–342, 1960.

[6] A. Kotsialos, M. Papageorgiou, and A. Poulimenos, “Long-term sales
forecasting using holt–winters and neural network methods,” Journal
of Forecasting, vol. 24, no. 5, pp. 353–368, 2005.

[7] G Box and G Jenkins, “Time series analysis-forecasting and control. san
francisco: Holden day. 553 p.,” 1970.

[8] R. J. Hyndman and G. Athanasopoulos, Forecasting: principles and prac-
tice. OTexts, 2018.

[9] E. Tjoa and C. Guan, “A survey on explainable artificial intelligence
(xai): Toward medical xai,” IEEE Transactions on Neural Networks and
Learning Systems, 2020.

[10] C. Rudin, “Algorithms for interpretable machine learning,” in Proceed-
ings of the 20th ACM SIGKDD international conference on Knowledge dis-
covery and data mining, 2014, pp. 1519–1519.

[11] M. Andrychowicz, M. Denil, S. Gomez, et al., “Learning to learn by
gradient descent by gradient descent,” in Advances in neural information
processing systems, 2016, pp. 3981–3989.

[12] S. Squartini, A. Hussain, and F. Piazza, “Preprocessing based solution
for the vanishing gradient problem in recurrent neural networks,” in
Proceedings of the 2003 International Symposium on Circuits and Systems,
2003. ISCAS’03., IEEE, vol. 5, 2003, pp. V–V.

[13] K. Greff, R. K. Srivastava, J. Koutník, B. R. Steunebrink, and J. Schmid-
huber, “Lstm: A search space odyssey,” IEEE transactions on neural net-
works and learning systems, vol. 28, no. 10, pp. 2222–2232, 2016.

Bibliography 31

[14] Y. Yu, X. Si, C. Hu, and J. Zhang, “A review of recurrent neural net-
works: Lstm cells and network architectures,” Neural computation, vol. 31,
no. 7, pp. 1235–1270, 2019.

[15] C. Olah, “Understanding lstm networks,” colah’s blog, p. 1, 2015, [Ac-
cessed: 2021-03-31]. [Online]. Available: http://colah.github.io/
posts/2015-08-Understanding-LSTMs/.

[16] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical evaluation of
gated recurrent neural networks on sequence modeling,” arXiv preprint
arXiv:1412.3555, 2014.

[17] G. Drakos, “What is a recurrent neural networks (rnns) and gated re-
current unit (grus),” GDCoder, p. 1, 2019, Accessed: 2021-04-10. [On-
line]. Available: https : / / gdcoder . com / what - is - a - recurrent -
neural-networks-rnns-and-gated-recurrent-unit-grus/.

[18] P. P. Angelov, E. A. Soares, R. Jiang, N. I. Arnold, and P. M. Atkinson,
“Explainable artificial intelligence: An analytical review,” Wiley Inter-
disciplinary Reviews: Data Mining and Knowledge Discovery, vol. 11, no. 5,
e1424, 2021.

[19] B. Goodman and S. Flaxman, “European union regulations on algo-
rithmic decision-making and a “right to explanation”,” AI magazine,
vol. 38, no. 3, pp. 50–57, 2017.

[20] A. Holzinger, “From machine learning to explainable ai,” in 2018 world
symposium on digital intelligence for systems and machines (DISA), IEEE,
2018, pp. 55–66.

[21] R. B. Parikh, S. Teeple, and A. S. Navathe, “Addressing bias in artificial
intelligence in health care,” Jama, vol. 322, no. 24, pp. 2377–2378, 2019.

[22] R. Caruana, Y. Lou, J. Gehrke, P. Koch, M. Sturm, and N. Elhadad, “In-
telligible models for healthcare: Predicting pneumonia risk and hospi-
tal 30-day readmission,” in Proceedings of the 21th ACM SIGKDD inter-
national conference on knowledge discovery and data mining, 2015, pp. 1721–
1730.

[23] S. M. Lundberg, G. Erion, H. Chen, et al., “Explainable ai for trees: From
local explanations to global understanding,” arXiv preprint arXiv:1905.04610,
2019.

[24] S. M. Lundberg and S.-I. Lee, “A unified approach to interpreting model
predictions,” in Proceedings of the 31st international conference on neural
information processing systems, 2017, pp. 4768–4777.

[25] M. T. Riberio, S. Singh, and C. Guestrin, “Why should i trust you?”
Explaining the Predictions of Any Classifier. In KDD, 2016.

[26] R. Confalonieri, L. Coba, B. Wagner, and T. R. Besold, “A historical per-
spective of explainable artificial intelligence,” Wiley Interdisciplinary Re-
views: Data Mining and Knowledge Discovery, vol. 11, no. 1, e1391, 2021.

[27] K. Fauvel, T. Lin, V. Masson, É. Fromont, and A. Termier, “Xcm: An
explainable convolutional neural network for multivariate time series
classification,” Mathematics, vol. 9, no. 23, p. 3137, 2021.

http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://gdcoder.com/what-is-a-recurrent-neural-networks-rnns-and-gated-recurrent-unit-grus/
https://gdcoder.com/what-is-a-recurrent-neural-networks-rnns-and-gated-recurrent-unit-grus/

Bibliography 32

[28] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D.
Batra, “Grad-cam: Visual explanations from deep networks via gradient-
based localization,” in Proceedings of the IEEE international conference on
computer vision, 2017, pp. 618–626.

[29] F. Viton, M. Elbattah, J.-L. Guérin, and G. Dequen, “Heatmaps for vi-
sual explainability of cnn-based predictions for multivariate time series
with application to healthcare,” in 2020 IEEE International Conference on
Healthcare Informatics (ICHI), IEEE, 2020, pp. 1–8.

[30] A. B. Arrieta, N. Díaz-Rodríguez, J. Del Ser, et al., “Explainable artificial
intelligence (xai): Concepts, taxonomies, opportunities and challenges
toward responsible ai,” Information Fusion, vol. 58, pp. 82–115, 2020.

[31] T. T. Nguyen, T. Le Nguyen, and G. Ifrim, “A model-agnostic approach
to quantifying the informativeness of explanation methods for time se-
ries classification,” in International Workshop on Advanced Analytics and
Learning on Temporal Data, Springer, 2020, pp. 77–94.

[32] E. Delaney, D. Greene, and M. T. Keane, “Instance-based counterfactual
explanations for time series classification,” in International Conference on
Case-Based Reasoning, Springer, 2021, pp. 32–47.

[33] D. H. Bailey, J. Borwein, M. Lopez de Prado, A. Salehipour, and Q. J.
Zhu, “Backtest overfitting in financial markets,” Automated Trader, 2016.

[34] S. E. Said and D. A. Dickey, “Testing for unit roots in autoregressive-
moving average models of unknown order,” Biometrika, vol. 71, no. 3,
pp. 599–607, 1984.

[35] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[36] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhut-
dinov, “Dropout: A simple way to prevent neural networks from over-
fitting,” The journal of machine learning research, vol. 15, no. 1, pp. 1929–
1958, 2014.

[37] G. S. Goh, S. Lapuschkin, L. Weber, W. Samek, and A. Binder, “Under-
standing integrated gradients with smoothtaylor for deep neural net-
work attribution,” in 2020 25th International Conference on Pattern Recog-
nition (ICPR), IEEE, 2021, pp. 4949–4956.

[38] M. Sundararajan, A. Taly, and Q. Yan, “Axiomatic attribution for deep
networks,” in International Conference on Machine Learning, PMLR, 2017,
pp. 3319–3328.

[39] R Meyes, M Lu, C. W. de Puiseau, and T Meisen, “Ablation studies
to uncover structure of learned representations in artificial neural net-
works,” in Proceedings on the International Conference on Artificial Intelli-
gence (ICAI), The Steering Committee of The World Congress in Com-
puter Science, Computer . . ., 2019, pp. 185–191.

[40] A. Altmann, L. Toloşi, O. Sander, and T. Lengauer, “Permutation im-
portance: A corrected feature importance measure,” Bioinformatics, vol. 26,
no. 10, pp. 1340–1347, 2010.

Bibliography 33

[41] A. Paszke, S. Gross, F. Massa, et al., “Pytorch: An imperative style, high-
performance deep learning library,” Advances in neural information pro-
cessing systems, vol. 32, pp. 8026–8037, 2019.

[42] S. Seabold and J. Perktold, “Statsmodels: Econometric and statistical
modeling with python,” in Proceedings of the 9th Python in Science Con-
ference, Austin, TX, vol. 57, 2010, p. 61.

[43] P. Virtanen, R. Gommers, T. E. Oliphant, et al., “Scipy 1.0: Fundamental
algorithms for scientific computing in python,” Nature methods, vol. 17,
no. 3, pp. 261–272, 2020.

[44] N. Kokhlikyan, V. Miglani, M. Martin, et al., “Captum: A unified and
generic model interpretability library for pytorch,” arXiv preprint arXiv:2009.07896,
2020.

[45] J. D. Hunter, “Matplotlib: A 2d graphics environment,” Computing in
science & engineering, vol. 9, no. 03, pp. 90–95, 2007.

[46] M. L. Waskom, “Seaborn: Statistical data visualization,” Journal of Open
Source Software, vol. 6, no. 60, p. 3021, 2021.

[47] F. A. Gers and E Schmidhuber, “Lstm recurrent networks learn sim-
ple context-free and context-sensitive languages,” IEEE Transactions on
Neural Networks, vol. 12, no. 6, pp. 1333–1340, 2001.

[48] T. Trinh, A. Dai, T. Luong, and Q. Le, “Learning longer-term dependen-
cies in rnns with auxiliary losses,” in International Conference on Machine
Learning, PMLR, 2018, pp. 4965–4974.

[49] E. Hoseinzade and S. Haratizadeh, “Cnnpred: Cnn-based stock market
prediction using a diverse set of variables,” Expert Systems with Appli-
cations, vol. 129, pp. 273–285, 2019.

[50] I. E. Livieris, E. Pintelas, and P. Pintelas, “A cnn–lstm model for gold
price time-series forecasting,” Neural computing and applications, vol. 32,
no. 23, pp. 17 351–17 360, 2020.

	Declaration of Authorship
	Abstract
	Acknowledgements
	Introduction
	Background
	Time series Forecasting
	Statistical Methods
	Holt-Winters Smoothing
	ARIMA

	Machine-Learning Methods
	RNN
	LTSM
	GRUS

	Explainable AI

	Problem Statement
	Significance and Motivation
	Research Question
	Research Aims
	Objectives

	Outline

	Research Methodology
	Research Design
	Methodology
	Dataset and Processing
	Models
	Explainability Methods
	Integrated Gradients
	Ablation
	Added Noise
	Permutation

	Visualisation
	Hardware and Software

	Limitations
	Conclusion

	Results and Discussion
	Ablation
	Added Noise
	Integrated Gradients
	Permutation

	Conclusion
	Bibliography

