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Abstract
Loss of customers in telecommunication industries has become one of the major
concerns in recent years. This is due to a very high of competition among indus-
tries and the customer acquisition costs, so it is of great value to keep existing cus-
tomers. For that purpose, it is of great significant to prevent churn by implement-
ing prediction models that are effective and accurate. However, the major problems
with building models for telecommunication are large volumes of data, enormous
feature space and Class Imbalance Problem (CIP). This study aims to compare the
performance of various machine learning classifiers for the prediction of customer
churn in telecommunication. In particular, we explore some pre-processing of the
dataset such as dimensionality reduction and seven oversampling techniques to re-
duce CIP, and hence to improve the performance of the concerned machine learning
models. To evaluate the performance of selected machine learning models, the Re-
ceiver Operating Characteristic and Area Under the Curve (ROC-AUC curve) was
adopted. The experimental results showed that the Logistic Regression classifier
coupled with Random Oversampling (ROS) and dimensionality reduction based
on linear autoencoder performs better than all other classifiers.
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Chapter 1

Introduction

Customer churn, simply meaning loss of customers, can be defined according to
the type of business. For instance, in [50, 53] customer churn in telecommunication
was defined as a condition in which existing customers or clients migrate from a
company or cancel their service to move to its competitors [40], or in a case where
a clients end their relationship with the organisation or close their accounts [49].
In the telecommunication businesses, customer churn or customer defection prob-
lem is one of the fundamental concentration in the Customer Relationship Manage-
ment (CRM) division [50]. The main purpose of CRM in customer churn is to build
strength and foster a good relationship with existing customers. According to [4]
many telecommunication companies are suffering from a higher churn rate due to
competition from their competitors. Moreover, [61] showed that customer turnover
plays a very important role in a company as it negatively affects the business’s rev-
enues and growth. Due to a very high cost of acquiring new customers and com-
petition among industries, numerous telecommunication companies are presently
moving their concentration from customer procurement to customer maintenance
[51, 66].

Given these potential negative effects, [22] argued that companies especially those
working with big data such as telecommunication, marketing, and insurance must
focus on developing effective and highly accurate predictive models that will be
able to flag/identify customers that are at risk of defecting or leaving. Over time,
different statistical techniques and machine learning models have been implemented
and tested to predict customer turnover. Machine learning techniques such as en-
semble learning-Random Forest (RF), Artificial Neural Network (ANN) [4, 60] yield
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a higher accuracy as compared to statistical models such as Logistic Regression
(LR) and Naive Bayes (NB) [60]. Moreover, the Support Vector Machines (SVM)
with different optimal penalty parameters and kernel parameters on grid search
and cross-validation can provide high accuracy [52].

When building churn prediction models for this specific industry, the problem that
emerges is the issue of CIP [25, 28]. The CIP is widely known issue in the context
of classification tasks. This problem can be defined as a situation whereby one of
the classes we are trying to predict is rarely or highly represented than the other
classes [11, 62]. For example, some of the applications known to have class imbal-
ance issues include, but not limited to are medical diagnosis [67], customer attrition
[68], and credit risk [19]. The main setback with learning from imbalance class is
that machine learning classifiers turn to ignore class distribution by just concentrat-
ing only in the majority class and overlook the minority class which is our interest.
Therefore, when building machine learning classifiers on imbalance classes, there
is a great chance of getting misleading results. For example, consider a rare case
of two classes with 98% majority and 2% minority class respectively. A classifier
would give the accuracy of 98% and ignore the minority class which we are inter-
ested in. In order to overcome this problem, different techniques, i.e. data-level,
algorithms, and ensemble approaches have been proposed. Data-level solutions at-
tempts to balance the data by up-sampling the minority class or down-sampling
the majority class. Some of the data-level solutions methods are; Random Over-
sampling (ROS), Random Under-sampling (RUS) [25], and synthetic methods such
as Synthetic Minority Over-sampling Technique (SMOTE) [11] and Adaptive Syn-
thetic (ADASYN) sampling approach [27]. Algorithmic approaches try to improve
the classification performance by focus lower represented class. This approach is di-
vided in cost-sensitive and one-class learning. Cost-sensitive assign high and low
costs to minority and majority classes respectively [58]. On the other hand, one-
class learning approach learn the data of one class and ignore the rest [56]. Lastly,
ensemble solutions uses the data-level solutions combined with ensemble learning
such as RF and boosting to overcome CIP [18]. These techniques have the potential
to improve customer churn prediction performance [25, 68].
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Another essential step in building machine learning models is feature engineer-
ing. Feature engineering is defined as a task of building or generating new input
variables using the existing variables from the raw dataset [21]. The purpose of
applying feature engineering step is to obtain new features that best represent the
underlying problem and in-turn improve the prediction performance. Hence, fea-
ture engineering play a very important part for any prediction models. One of the
main issues that are essentially encountered in a telecommunication is the large
amount of features space. These problem turns to affect or reduce the performance
of the models as well as long-time to train. However, different feature selection
and feature engineering techniques have been proposed [43, 63]. For the purpose
of this study, feature engineering based on dimensionality reduction using autoen-
coders with various activation functions, i.e., under-complete autoencoder (based
on linear, and non-linear sigmoid activation functions), sparse autoencoder (based
on non-linear relu activation function), and deep autoencoder was used to address
this issue.

1.1 Problem Statement

Most service-based businesses are now facing a high customer churn rate. Statisti-
cal techniques such as LR and NB have been widely used to solve this problem. Re-
cently, different machine learning approaches have been implemented for customer
defection prediction. These approaches have the potential to improve the predic-
tion performance of statistical approaches. However, there is a problem with class
distribution and high dimensional datasets in telecommunication which affect ma-
chine learning-based model predictions. Thus, the problem we address in this re-
search is to investigate whether machine learning algorithms with data re-sampling
(ROS, SMOTE, ADASYN, BorderlineSMOTE, SMOTE+Tomek, and SMOTE+ENN)
techniques provide satisfactory performance when evaluated on the selected di-
mensionality reduction techniques (under-complete and sparse autoencoders) based
on various activation functions, i.e., linear autoencoder, non-linear sigmoid-based
autoencoder, non-linear relu autoencoder, and deep autoencoder.
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1.2 Significance of the Study

Previous researches have shown that customer churn is the major priority concern
for telecommunication industries. The current study intends to make the follow-
ing contribution: the evaluation of different supervised machine learning classifiers
when combined with some selected pre-processing methods and different over-
sampling techniques for churn prediction using telecommunication data.

1.3 Research Aim and Objectives

1.3.1 Aim

The aim of this study is to develop a predictive model that can identify customers
that are likely to churn using telecommunication dataset.

1.3.2 Objectives

The objectives of this study are as follows:

• To apply dimensionality reduction techniques to address the issue of high-
dimensional space.

• To apply over-sampling techniques to address the CIP, and hence improve the
prediction accuracy.

• To apply LR, SVM, and RF as the predictive models in our study to identify the
customers that are likely to churn using publicly available telecommunication
datasets.

• To evaluate and compare the performance of all the above mentioned predict-
ing models using ROC-AUC measure.

1.4 Research Question(s)

• Which of the selected autoencoders methods, i.e., under-complete (based on
linear and non-linear sigmoid-based activation functions), sparse autoencoder
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(with non-linear relu), and deep autoencoder performs best in reducing fea-
ture dimensionality?

• Which of the selected over-sampling techniques, i.e., ROS, SMOTE, ADASYN,
Borderline-SMOTE, SMOTE+Tomek, and SMOTE+ENN would be more suit-
able in dealing with CIP for telecommunication data and in improving the
overall prediction accuracy?

• Which of the selected supervised machine learning algorithm (LR, SVM, and
RF) perform best in customer churn prediction using telecommunication data?

1.5 Limitations

This section addresses the scope of the research by identifying and discussing its
limitations. The empirical results reported herein should be considered in light
with some limitations. Firstly, we have performed missing values imputation using
median and mode for continuous and categorical features respectively. However,
given the nature of the high number of missing values in the larger dataset, it could
have been interesting to investigate the performance of other missing values mech-
anisms. In addition, the class imbalance problem was only limited to oversampling
techniques study. Although these techniques show potential to improve prediction
performance, it would be important to investigate the significance of some under-
sampling methods. Lastly, given the constraint on time and computational power
for techniques such as SVM, this study did not include parameter tuning for all
models, which might somehow limit the generalisation performance of the models.

1.6 Overview

The remainder of this research report is divided into 4 chapters. Chapter 2 fo-
cuses on background knowledge about dimensionality reduction using autoen-
coders with various activation functions and supervised machine learning tech-
niques, data-level solutions, models performance measure, and lastly, provides a
review of related work on customer churn prediction. Chapter 3 presents a de-
tailed research methodology. Section 3.2 breaks down the experiment setup into six
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phases and presents the datasets and algorithms used. Chapter 4 analyses the ex-
perimental results and discussion. Chapter 5 provides a conclusion and highlights
the direction for future work.
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Chapter 2

Background and Related Work

2.1 Introduction

In this chapter, we provide a review dimensionality reduction using autoencoders
with various activation functions as well as a review of supervised machine learn-
ing techniques (LR, SVM, and RF). In Section 2.4, we discuss the oversampling
techniques to deal with the CIP. The evaluation metric for supervised classifica-
tion is given in section 2.6. A review of related work on customer churn prediction
is provided in section 2.7.

2.2 Dimensionality Reduction

Dimensionality reduction is a process of transforming data from high-dimensional
feature space X ∈ Rn, to a low-dimensional feature space X ∈ Rp, such that p <

n, without losing much information. One commonly used reduction method is
Principal Component Analysis (PCA) which takes the original features X ∈ Rn and
extracts new features that are linearly uncorrelated called principal components.
To overcome the limitation of linear transformation used by PCA, in this study we
will apply the Autoencoders which is able to incorporate the non-linearity between
features [16].

2.2.1 Autoencoders

An autoencoder is a special type of neural network that is trained to generate out-
put values that are similar to the input values. It is often used for dimensionality



8

reduction or unsupervised feature learning. For an autoencoder network, the num-
ber of the nodes in the input layer must be equal to the number of nodes in the
output layer. There are other various types of autoencoders such as sparse, de-
noising, and variational autoencoders. Some of the interesting use of autoencoders
are data denoising and dimensionality reduction. Typically, Autoencoder is a feed-
forward NN that connects many neurons as shown in Figure 2.1. Autoencoders
usually consists of 3 phases; encoder layer, code or hidden layer, and decoder layer
[16].

1. Encoder: The encoder maps the original input data from the input layer to the
hidden layers (lower dimensional space for dimensionality reduction) using
some functions.

2. Code or Hidden layer: This part of the network is the desired lower represen-
tation features space that describe and represent the original inputs.

3. Decoder: The decoder takes the features from the hidden layer and attempts
to recreate the original inputs data using some functions. In other words, the
decoder function attempts to approximate the input data.

FIGURE 2.1: A simple representation of an autoencoder with one hid-
den layer [44].
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From Figure 2.1, the red neurons with {x1, · · · , x4} represent the original features
and black neurons {h1, h2} are the compressed features (reduced feature space).
The reconstructed features {x̂1, · · · , x̂4} of the original inputs features are shown in
blue neurons.

To transform the weighted sum of inputs that goes into the neurons we apply the
activation functions. These activation functions are used to compute the output of
an NN and it can be a linear or non-linear function. However, the non-linear func-
tions are mostly used in complex situations since they are confined to a restricted
range. They are various popular activation functions that are adopted including
ReLu, sigmoid, and hyperbolic tangent (tanh) functions. These activation functions
are depicted in Figure 2.2.

• Sigmoid function: converts the encoding or decoding outputs into a range of
[0, 1] using the following bounding function

τ(x) =
1

1 + e−x (2.1)

where τ(x) ∈ [0, 1].

• Hyperbolic tangent (tanh) is a version of sigmoid which is bounded between
-1 and 1,

τ(x) =
ex − e−x

ex + e−x (2.2)

for τ(x) ∈ [−1, 1].

• Another activation function that is typically used is Rectified Linear Unit (ReLU)
which is bounded between 0 and positive infinity given by

τ(x) = max(0, x) x ≥ 0 (2.3)

where τ(x) ∈ [0, ∞].
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(A) Sigmoid (B) Tanh

(C) ReLU

FIGURE 2.2: Activation Functions [59]

2.2.1.1 Undercomplete Autoencoder

Suppose an input layer x of an m-dimensional vector is given, then the encoder
part starts by transforming the input x to a hidden layer h of d-dimensional vector
where d < m, with weights matrix α1 of a d× m and a bias vector term b1 of a d-
dimensional vector. Then an encoder transform the inputs x to a hidden layer using
an activation function τ(·) : R → R for linear or τ(·) : R → [0, 1] for non-linear
sigmoid function.

h = τ1(α1x + b1) (2.4)

Then the decoder attempts to compute the outputs from the hidden layer that ap-
proximates the given inputs. Now we are given that the hidden layer φ is a d-
dimensional vector then the output layer φ will be comprised of m-dimensional
vector and a weight matrix of a m × d matrix and a bias vector term b2 of an
m-dimensional vector. Then the dencoder transform the inputs x from a hidden
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layer to the output layer using an activation function τ(·) : R → R for linear or
τ(·) : R→ [0, 1] for non-linear sigmoid function.

φ = τ2(α2h + b2) (2.5)

Then to train the autoencoder, we have to compute the parameters W = {α1, b1, α2, b2}
using the gradient descent algorithm and the main objective is to minimise the re-
construction error ` between the original and recreated features [35, 45]. For linear
reconstruction, that is τ1 and τ2 are linear, then the optimal solution will be the PCA
and can be computed by minimising the following reconstructive error:

`(W) = min
W

1
2N

N

∑
m=1
‖x(m) −φ(m)‖2 (2.6)

For non-linear reconstruction, that is if τ1 and τ2 are non-linear, the reconstruction
error can be given by:

`(W) = ‖x−φ‖2

= ‖x− τ2(α2(τ1(α1x + b1)) + b2‖2
(2.7)

2.2.1.2 Sparse Autoencoder

For sparse autoencoders, a regularisation penalty term, is included in the hidden
layer h. The main objective of sparse autoencoders is to penalise the neurons whose
values are close to zero and retains the ones with output close to one. The penalty
term in sparse autoencoder is based on the idea of using the Kullback-Leibler (KL)
divergence which essentially explains how the two distributions are different [31].
Then the loss function for sparse autoencoder is given by:

`sparse(W) = `(W) + β
h2

∑
i=1

KL(θ||θ̂) (2.8)

Where, h2 is the number of units in the hidden layer, KL divergence is given by

KL(θ||θ̂) = θ log(
θ

θ̂i
) + (1− θ) log(

1− θ

1− θ̂ i
)
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The penalty term is given by

β
h2

∑
i=1

KL(θ||θ̂)

Where the weight parameter β is the adjusted parameter. The sparse autoencoder
pushes θ̂ to be equal to the sparsity parameter θ so that some activation can close to
zero and θ̂ is the average activation of the hidden layer [16].

2.2.1.3 Deep Autoencoder

An autoencoder network with more than one hidden layer is referred to deep au-
toencoder [5]. Since the deep autoeconder is more like a multi-layer neural network,
so it has the same procedure for training a network. In deep autoencoder, we simply
compute the composition of functions for the encoder and the composite functions
for the decoder.

2.3 Supervised Machine Learning

1 This section provides details of each supervised machine learning technique.

2.3.1 Logistic Regression

Logistic Regression is a supervised machine learning classification technique that
is used to model the binary response. It can take an input variables that are either
categorical, numeric or heterogeneous data types. For our case the target variable
is given by

yi =

{
1 if customer churned
0 if customer retained

(2.9)

1The discussion in this section is informed by a discussion that appears in (Perlate Diala), (Pre-
diction of depression among university students using machine learning algorithms), University of
the Witwatersrand, 2018. All material from external sources has been referenced.



13

When modelling the output variable, we use the linear combination of variables
(features) and some weights η:

gη(x) = η0 +
m

∑
k=1

xkηk (2.10)

Where xk represents the given variables and m is the total number of variables. LR
is a linear method, however, in order to make the probability predictions, we need
to transform predictions of gη(x) into the binary using the logistic function given in
Eq.2.1. In addition, we need to build a classifier ρη(x) which may be used to assign
new observations to their respective classes [14, 55].

Now substituting Eq.2.10 in Eq.2.1 we get the following LR function.

ρη(x) =
1

1 + e−(η0+∑m
k=1 xkηk)

=
1

1 + e−ηT x

(2.11)

Where ηT represents the matrix transpose of η and

x =
[
x0, x1, · · · , xm

]T

ηT =
[
η0, η1, · · · , ηm

]
ηTx = ∑m

k=0 ηkxk = η0x0 + η1x1 + · · ·+ ηmxm

The parameters η are estimated using the gradient descent algorithm [55].

2.3.2 Support Vector Machines

Another machine learning algorithm that one can use to classify classes is the SVM
technique. SVM is a type of supervised machine learning algorithms that is used
for classification and regression tasks. This technique was firstly introduced in 1992
by [8]. In the context of classification, this technique attempts to separate classes by
using the concept of separating hyperplane (or decision boundary). To understand
how SVM work, one may look in Figure 2.3. The SVM can also be used to solve both
linear and non-linear problems. The decision boundary tries to separate the data in
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FIGURE 2.3: Binary Classification using SVM [20].

a feature space. Suppose we are given some input dataset x = (x1, x2, · · · , xn),
xi ∈ Rm and the target labels y = (y1, y2, · · · , yn), where yi ∈

{
− 1, 1

}
. If the given

dataset can be linearly separable, then the hyperplane can be expressed in the form

g(x) = βTx + b (2.12)

Where β ∈ Rm is the weight vector and β ∈ R is a bias term. Then all points are
correctly classified by the separate hyperplane if

yi(βTx + b); ∀i (2.13)

SVM attempts to maximise the distance between the closest training data points
from the hyperplane. However, there are various possible hyperplanes that can be
created for a dataset. Thus, in order to obtain the optimal hyperplane (the hyper-
plane that best separate the two classes), the Eq.2.12 should be rewritten in primal
form using the Quadratic Programming (QP) [10, 13].

maximise
β

2
‖β‖ (2.14)

This maximisation problem is equivalent to minimising

1
2

βTβ; subject to yi(βTx + b) ≥ 1, ∀i (2.15)
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The above QP minimisation problem formulated can be computed using the La-
grangian dual maximisation formulation

n

∑
i=1

ωi −
1
2

n

∑
i=1

n

∑
j=1

ωiωjyiyjxi
Txj (2.16)

subject to

ωi ≥ 0,
n

∑
i=1

ωiyi = 0 (2.17)

Where ωi are Lagrange multipliers. Thus, solving the above problem then g(x)
becomes:

g(x) = ∑
i

ωiyi(xi
Tx) + b (2.18)

Where xi are said to be the support vector points if ωi are non-zeros.

In a case where the classes are not separable linearly, the hyperplane can be defined
by minimising the following function

1
2

βTβ + C
n

∑
i=1

ξi (2.19)

subject to:

yi(βTx + b) ≥ 1− ξi, ∀i, ξi ≥ 0 (2.20)

Where ξi for i = 1, · · · , n are the slack variables that measures the misclassification
error and C is regularisation parameter. The larger value of C may lead to the issue
of overfitting [10]. This problem for non-linear separable can also be solved with
Lagrangian dual maximisation formulation

n

∑
i=1

ωi −
1
2

n

∑
i=1

n

∑
j=1

ωiωjyiyjxi
Txj (2.21)

subject to

0 ≤ ωi ≤ C,
n

∑
i=1

ωiyi = 0 (2.22)
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Non-linear separable problem can also be solved using the kernel trick. Kernels
K transforms input data that is non-linearly separable to a new high- dimensional
space such that this new mapping is linearly separable [13, 37]. Let φ(·) : χ 7→
Υ be a mapping function that map non-linearly separable input data χ to a high-
dimensional space Υ such that this new space is linearly separable.

K(xi, xj) = φ(xi) · φ(xj) (2.23)

Where · is the dot product between φ(xi) and φ(xj) and K compute dot product
between features xi and xj mapped into Υ. Substituting Eq.2.23 in Eq.2.21 the La-
grangian dual maximisation formulation becomes

n

∑
i=1

ωi −
1
2

n

∑
i=1

n

∑
j=1

ωiωjyiyjK(xi, xj) (2.24)

subject to

0 ≤ ωi ≤ C,
n

∑
i=1

ωiyi = 0 (2.25)

Thus solving the Lagrangian dual maximisation above then g(x) becomes:

g(x) = ∑
i

ωiyiK(xi, x) + b (2.26)

Some of the popular used kernels are, linear, radial basis function, and polynomial
[65].

2.3.2.1 Kernel Functions of the SVM

• Linear kernel Function
K(xi, xj) = xi · xj (2.27)

• Radial Basis Kernel Function (RBF)

K(xi, xj) = e−
||xi−xj ||2

2σ2 , σ2 ∈ R+ (2.28)

where σ is the Gaussian kernel width [7].
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• Polynomial Kernel Function (POLY)

K(xi, xj) = (xi · xj + 1)d (2.29)

where d is the polynomial degree.

2.3.3 Random Forest

Random Forest is an ensemble learning method meaning that it involves a combina-
tion of multiple models [9]. RF operates by constructing a number of decision trees
D = (D1, D2, · · · , DB) at training time using Bootstrap Aggregating or bagging and
random feature selection. Bagging tries to reduce the variance by averaging the out-
puts of many classifiers. The RF makes use of many trees and its prediction is based
on the average predictions of each component tree Di [46]. Let (x1, x2, · · · , xn) be
a set of features, then using the bagging method we randomly select m number of
features for which m < n. It is recommended for the classification problems to cre-
ate m =

√
n sub-features for any tree [46]. Then a decision tree is generated from

these sets of m features. Below are the steps for constructing RF:

1. Initially take the original data
{

x(i), y(i)
}n

i=1 of size n.

2. Randomly generate with replacement, B bootstrap samples sk
∗ from the orig-

inal data such that the bootstrap samples have the same size as the original
data.

3. Train B number of decision tree models D∗1 , D∗2 , · · · , D∗B using bootstrap data
s(1)∗ , s(2)∗ , · · · , s(B)

∗ respectively.

4. Output the final predictions based on the aggregation of the majority predic-
tions (votes) from D∗(i) trees for classification.

2.4 Class Imbalance Problem

CIP is a situation where the number of samples in one class is more than that of
other classes. As a result, it is advisable before building any machine learning clas-
sifier to check how classes are represented relative to one another. In predominant
situations where one class is highly dominant compared to the other the issue of



18

CIP will emerge. Furthermore, some challenges related to class imbalance include
that machine learning classifiers tend to be more biased to the majority classes in
making predictions and give a misleading overall model accuracy [27]. That is, ma-
chine learning algorithms tend to give poor results because they were designed to
reduce errors and not taking class distribution into consideration.

2.5 Class Imbalance Problem Solutions

Although CIP is still the main issue for many classification methods, various tech-
niques such as re-sampling [2, 3], ensemble [69, 68], and cost-sensitive learning [33,
69] have been implemented to address the problem. In our study, we focus on re-
sampling methods. To address the issue of CIP, different sampling methods have
been implemented to alleviate this problem [11, 25]. Hence, this study was limited
to only data-level solutions focusing on seven oversampling techniques namely,
ROS, and six synthetic oversampling methods; SMOTE, ADASYN, Borderline-SMOTE1,
Borderline-SMOTE, SMOTE + Tomek, and SMOTE + ENN. Some of the class-imbalance
solutions are summarised in Figure 2.4.

FIGURE 2.4: Class Imbalance Solution Approaches

2.5.1 Random Oversampling

ROS technique works by randomly adding some observations in the minority class
by replicating some instances. The major drawback of ROS is that it may lead to
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over-fitting due to replications of some information [6] and increase the computa-
tional time [25].

FIGURE 2.5: Data Re-sampling using Random Oversampling [34].

In Figure 2.5 the blue and green bars represent the majority and minority classes
respectively. It is clear from the figure that the Random Oversampling algorithm
takes samples from the minority class and make copies so that the classes are equally
represented.

2.5.2 Synthetic Minority Oversampling Technique

Contrary to ROS, SMOTE is an oversampling technique that operates by creating
artificial observations between neighbouring observations in the minority [11]. The
advantage of SMOTE over ROS method is the fact that it reduces the issue of over-
fitting by the machine learning classifiers [25]. SMOTE produces random synthetic
points by finding a straight line between existing points. It then identify the feature
vector and its nearest neighbour in a minority class and multiply those new data
points by a random number between 0 and 1. Those synthetic data points are added
to the original training data set which will be used for training the models. How-
ever, the major drawbacks of this technique is that (1) it turns to be ineffective in
high dimensional data, (2) SMOTE does not look for neighbouring instances from
other classes when it generates synthetic data which could lead to more noisy data
due to class overlapping [11].

Let y(ori)
i represents each observation in the minority class, and y(rand) be its ran-

domly selected neighbour. Then SMOTE creates new samples between the original
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samples and the selected neighbour using the formula below:

y(new−SMOTE) = y(ori)
i + (y(rand) − y(ori)

i )× κ

= y(ori)
i + (y(rand) − y(ori)

i )× rand(0, 1)
(2.30)

Where κ = rand(0, 1) is a random number.

FIGURE 2.6: Synthetic Data Generation using SMOTE [57].

Figure 2.6 depicts the simple SMOTE algorithm with pink squares representing mi-
nority (positive) class, blue circles showing the majority class. The orange triangles
between pink squares are the synthetic positive samples in the minority class gen-
erated by SMOTE. Together the original positive samples and the synthetic samples
form the minority class. This will bring balance between the majority and the mi-
nority classes.

2.5.3 Adaptive Synthetic

Another synthetic data oversampling technique is called Adaptive Synthetic (ADASYN)
sampling approach which was first introduced in [27] with the essence of bringing
balance between data classes by adaptively generating data samples in the minority
class based on their distribution with specific balance level. This algorithm has two
objectives. Firstly, the algorithm is able to identify the required number of samples
needed for each sample in the minority class. Second, ADASYN forces the machine
learning algorithms to identify or learn the samples that are hard to learn.
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2.5.4 Borderline-SMOTE

Borderline-SMOTE is one of the SMOTE variants [24]. However, instead of just cre-
ating artificial observations between neighbouring observations in the minority, it
puts more focus on the samples closer to the decision boundary. Similar to regu-
lar SMOTE, Borderline-SMOTE oversamples the observations in the minority class
and their nearest neighbours. There are two parameters variations in Borderline-
SMOTE, namely, borderline-1 and borderline-2. In Borderline-SMOTE, samples in
the minority class are firstly grouped into three sets, danger, noise, and safe based
on the number of nearest neighbours each has from the majority class samples. Let
ai be a point from a minority class Amin and Amaj be the number of majority class
samples that are the k nearest neighbours of point ai. Then

• The point ai is said to be noise if all of its k nearest neighbours are from the
majority class samples (i.e. k = Amaj).

• If the half of point point ai’s k nearest neighbours are from the majority class,
then the point ai is said to be in danger (i.e. k

2 ≤ Amaj < k).

• If point ai’s all k nearest neighbours are from the minority class then the point
ai is said to be safe (i.e. 0 ≤ Amaj <

k
2 ).

Using SMOTE, the points which are classified as the danger data points will be
taken as the minority data points and considered for oversampling to create syn-
thetic points. The main distinction between Borderline-SMOTE1 and Borderline-
SMOTE2 is that the former creates the data points along the line between the dan-
ger points in the minority class and their k nearest neighbours while the latter go a
step further by considering both classes when generates the data points.

2.5.5 SMOTE + Tomek Links

One of the major drawbacks of SMOTE is that it does not look for neighbouring
instances from other classes when it generates synthetic data which could lead to
more noisy data due to class overlapping. For SMOTE + Tomek, the minority class
is firstly over-sampled using the SMOTE procedure to balance the classes and then
Tomek Links is applied to the over-sampled data to clean the data space [6]. Sup-
pose two data points pi ∈ minority class and pj ∈ majority class are given and
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the distance between pi and pj is φ(pi, pj). Then a pair of instances (pi, pj) from
different classes is said to have Tomek Link if there is no data point pk such that
φ(pi, pk) < φ(pi, pj) or φ(pj, pk) < φ(pi, pj). This method can be applied as either
the data cleaning or under-sampling technique. For data cleaning, the data points
that form Tomek Links from both classes are eliminated from. As a data cleaning
method, the data points from the majority class that form Tomek Links are removed.
Figure 2.7 below illustrates the procedure of Tomek Links.

FIGURE 2.7: SMOTE + Tomek Links [6].

From 2.7, the original data is represented by (a) with negative (-) and positive (+)
depicts the majority and minority classes respectively. In (b) the original data (a),
is over-sampled using SMOTE procedure. The nearest neighbours ( circled - and +
data points) are selected by using Tomek Links as shown in (c). Lastly, the selected
Tomek Links points are then removed from the data depicted in (d)
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2.5.6 SMOTE + ENN

By using the same idea as SMOTE + Tomek, the SMOTE + ENN attempts to pro-
vides more deeper cleaning space by applying Wilson’s Edited Nearest Neighbour
rule (ENN). Firstly the data (minority class) is oversampled through SMOTE then
the ENN followed [64]. Essentially, ENN eliminates all the data points in both mi-
nority and majority classes that are misclassified by at least 2 out 3 of its nearest
neighbours. [6] highlighted that the ENN tends to remove more data points as
compared to Tomek Links and hence provide more cleaning data.

2.6 Stratified K-Fold Cross-Validation

When we evaluate a machine learning performance, we usually divide the data into
train and one test data to evaluate model performance. The problem with this split
is that the model can be unreliable because it can perform differently on different
test datasets. To overcome this, we can use the Stratified K-Fold Cross-Validation
(stratified K-fold CV) [22]. It preserves the equal percentage of samples in each fold
with respect to minority class and can evaluate the robustness of the model since
it partitions the training data into k-groups, giving each piece of data chance to
be used in both test and training. In a K-fold CV method, (1) original data set is
randomly divided into roughly equal folds (groups); (2) randomly shuffle the train
data; divide the training dataset into k number of groups; (3) take each group as a
train data and build a model and use the testing dataset to validate the model (4)
repeat the process until all the k groups have been used and average the accuracy
of each model as one overall accuracy. For each round, each fold is used as either
a train or validation data exactly once. More formally, suppose that we are given a
dataset y, then the main objective is to split a dataset into k groups, such that the
test error CV for each group/fold is given by:

CV =
m

∑
i=1

ei =
m

∑
i=1

(yi 6= ŷi), ∀i = 1, · · · , m (2.31)
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which implies that the average test error for all groups is given by:

CVaverage =
1
k

k

∑
j=1

CV(j), ∀j = 1, · · · , k (2.32)

Where ei is the misclassification error between the actual yi and predicted ŷi classes
and m is the total number of samples in each fold. In addition, k is the total number
of folds. Then we train a machine learning classifier on each group j = 1, · · · k and
evaluate on the remaining fold .

2.6.1 Stratified K-Fold Cross-Validation for Imbalance Classes

[54] addressed the importance of correctly performing the K-fold cross-validation
when the data is imbalanced classes. For dataset with equally distributed classes or
for traditional cross-validation, the original train data is usually divided randomly
into equal folds to evaluate the performance of the model. In cases where the im-
balance exists in the given data, the re-sampling has to be implemented within the
cross-validation to ensure that only the training samples are over-sampled. This
procedure will avoid the problem of model overfitting and overoptimism. Overop-
timism occurs when re-sampling is performed before cross-validation resulting in
having similar samples in both training and validation data sets. Figure 2.8 shows
how the K-fold cross-validation should be implemented if the class imbalance exists
in a dataset.
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FIGURE 2.8: Proper K-fold Cross-Validation [41].

Figure 2.8 shows that the cross-validation is implemented such that at each iteration
some samples in the minority class (blue bar with small yellow bar inside) are held-
out for validation (not over-sampled).

2.7 Evaluation Metrics Review

After developing a predictive model, different measures are required to assess model
performance. Some of the most commonly used are accuracy, F-score, and Geomet-
ric Mean. The ROC-AUC curve will be used to evaluate the performance of the
classifiers.

2.7.1 Receiver Operating Characteristic and Area Under the Curve

ROC is a graph which plots the trade-off between the sensitivity/True Positive rate
(TPrate) against False Positive rate (FPrate) based on diverse thresholds [25, 61]. It
plots TPrate on the y-axis and FPrate on the x-axis. The AUC scores are bounded
between a range of 0 and 1. An AUC value equal to 1 indicates a perfect classifier
and a value closer to one indicate a good classifier. On the other hand, if an AUC
score is equal to 0.5 then a classifier is equal to a random classier. The AUC score
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can be evaluated using the following formula:

AUC =
1
2
(1− TPrate − FPrate) (2.33)

Where,

TPrate =
TP

TP + FN
(2.34)

and
FPrate =

FP
FP + FN

(2.35)

Where True Positive (TP) are the positive samples that are correctly classified as
positive and True Negative (TN) are negative samples that are correctly classified
as negative. Furthermore, False Positive (FP) refers to the samples that are actual
negative but are classified as positive and False Negative (FN) refers to the samples
that are actual positive but are classified as negative [25, 61]. An example ROC-
AUC curve is depicted in Figure 2.9.

FIGURE 2.9: A simple representation of a ROC curve [26].

From the plot, it is clear that as the curve goes close to 1 (top left corner) then the
best prediction model. The red line represents the roc curve of a random guess
classifier.
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2.8 Related Works On Churn Prediction

2This section provides a review of the literature associated with the use of differ-
ent supervised machine learning algorithms in the prediction of customer churn.
Machine learning techniques can be very useful in detecting customer satisfac-
tion in telecommunications due to the vast amount of data generated daily in the
telecommunications industries. In order to address and predict customer turnover
or churn, various strategies including data mining methods have been implemented
to extract knowledge.

Recent studies have shown that machine learning techniques can deliver better
results for the prediction of churn [4, 25, 66]. In order to build a machine learn-
ing binary classifier, [17] used comprehensive SVM to predict customer churn in
the American bank dataset. Four SVM models were implemented and compared,
namely; SVM, SVM with sensitivity only, SVM with Naive Bayes (NB) using sensi-
tivity alone, SVM with Naive Bayes of reduced features, NBTree. or feature selec-
tion, and SVM with RFE. Dataset about bank credit card customers was obtained
from Latin American bank in 2004. The dataset comprised of a total sample of 13 812
and 22 features. The data has a class distribution proportion of about 7% churner
customers compared to loyal customers, which means the dataset was highly im-
balanced. Four class balancing techniques namely; SMOTE, RUS, ROS, and com-
bined under-sampling and over-sampling were employed to balance the classes.
The data was split into the ratio of 80:20 and a 10-fold cross-validation method was
employed on the train data set and test data was used to validate the overall model
accuracy. Using all the features on imbalance data the accuracy and sensitivity were
high for NBTree and (SVM + NBTree) respectively. The results were lower with re-
duced features. The best model was achieved by (SVM + NBTree) with SMOTE
with accuracy and sensitivity of more than 85% respectively.

To address the problem of data imbalance classes, [23] compares the performance

2The discussion in this section is informed by a discussion that appears in (Perlate Diala), (Pre-
diction of depression among university students using machine learning algorithms), University of
the Witwatersrand, 2018. All material from external sources has been referenced.
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of various re-sampling techniques using the mobile telecommunication customer
churn data. The study used three different feature selection methods; Standard-
ised Regression Coefficients (SRC), Relative Weight (RW) and Random Forest (RF).
All these selection methods were evaluated and compared on three sampling tech-
niques namely; SMOTE, random under-sampling, and random over-sampling. Thus,
12 models were built. After data preprocessing step, 78 411 observations were used
for the experiment. About 13% represents the not-loss class which implies that the
class ratios were about 1:6.7. Hence the class distribution was highly imbalanced.
The data set was split into the ratio of 80:20, 80% training and 20% testing for all
the algorithms. To evaluate the model performances, five metrics were utilised;
accuracy, recall, precision, F-score and cost which determine the value and real in-
vestment. The results showed that random forest with SRC over-sampling on the
original dataset outperformed all other models.

Churn prediction using different machine learning techniques was studied and
compared in [4]. A number of classifiers namely; LR, SVM, ANN, C4.5, DT, RF,
AdaBoost, Gradient Boosting were compared with fuzzy models which are models
that are able to deal with noise data. Therefore, the study compared various Fuzzy
classifiers, namely; FuzzyNN, VaguelyQuantifiedQNN, FuzzyRoughNN, OWANN.
The dataset used was from a telecom company operating in South Asia and data
was large with 600 000 observations and 722 features. The data was highly im-
balanced with only 9% represents the churners group. The data was divided into
a ratio of 80:20. Since the data was noisy, the instances with noisy data were re-
moved. Most relevant features were obtained by just using domain knowledge. All
the features were numeric and min-max data normalisation technique was used to
normalise the data. The models performance were evaluated using recall, precision,
AUC, and lift curve with RF outperformed logistic regression and other models.

In addition, the study by [32] applied deep 1D Convolution Neural Network (CNN)
to address the issue of customer churn. The features were manually reduced from
and ultimately using the Least Absolute Shrinkage and Selection Operator (LASSO)
feature selection method. The publicly available Telecom dataset from Orange com-
pany was used. Since the data consisted of many missing values, the features that
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have more than 30% of missing values were removed from the data. The standard
AUC metric with 10-fold cross-validation was used. Although the churn rate was
very low, the re-sampling techniques were not utilised. The model consists of one
convolutional layer and the ReLU activation function was used. The sigmoid acti-
vation was used in the output layer and the Adam optimiser was used to optimising
the weights as well as compiling the model. The cross-entropy was used as the ob-
jective function. The CNN manages to achieve the accuracy of 98.85%. The CNN
was compared to some classic machine learning algorithms and it outperformed all
of them.

Lastly, in [22] it was argued that the SVM technique together with ROC-AUC met-
ric can provide a good model generalisation performance. This means that a good
choice of parameters could be helpful when building predictive models in terms
of improving the overall performance of models. The SVM-RBF kernel function
showed good performance compared to other kernel functions (for example, lin-
ear kernel). In addition, the results in different studies showed that the machine
learning models with re-sampling techniques outperform models on imbalanced
data. However, according to [4] very few studies where machine learning tech-
niques were utilised to solve customer churn prediction did not put more focus on
TP rate and ROC-AUC. Moreover, the study has also emphasised the importance
of handling the CIP before building machine learning models for customer churn
prediction.

The existing studies have shown that the performance of machine learning clas-
sifiers can be limited by various issues including small datasets, preprocessing,
feature selection, handling class imbalance and choice of evaluation metric. For
example, in [28] the problem of imbalanced classes was not handled. Dimension-
ality reduction, is one of the important step in building machine learning mod-
els. However, existing studies have been limited to linear methods such as PCA
[38]. There is limited literature for unsupervised dimensionality reduction related
to telecommunication. To avoid this potential issue of linearity, we perform di-
mensionality reduction based on linear and non-linear autoencoders. Although the
issue of class imbalance has been addressed in many studies, very few studies in
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telecom have used more advanced sampling techniques such as SMOTE+Tomek
and SMOTE+ENN.

We did not find any study related to telecommunication sector that investigated the
dimensionality reduction based on non-linear methods. With that said, in this re-
search we investigate non-linear dimensionality reduction based on autoencoders
using various functions, i.e, linear, sigmoid, and relu. In addition to that, we ad-
dress the issue of class imbalance which is common with telecommunication data
by investigating the performance of various oversampling, and oversampling fol-
lowed by data cleaning techniques. The performance of these techniques is evalu-
ated on machine learning models, i.e., LR, SVM, and RF.

2.9 Conclusion

Supervised machine learning techniques become popular in many areas including
health care, business, and telecommunication domains. In this chapter, we dis-
cussed the various dimensionality reduction methods as well as the supervised
machine learning techniques. The issue of CIP problem was also addressed and
various over-sampling techniques were discussed. Different evaluation metrics
have been used to evaluate the performance of the prediction models. Lastly, we
reviewed the literature linked to how different supervised machine learning algo-
rithms have been used in customer churn prediction.
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Chapter 3

Research Methodology

3.1 Introduction

This chapter presents the methodology that was used to carry out this research.
The research design was divided into six phases from the data collection, data pre-
processing, features engineering, oversampling, to model training and evaluations.
The classification framework that we have used is given in Figure 3.1. All analyses
and implementations were performed using the open-source software Python 3.6
(Jupyter Notebook).

3.2 Research design

This section provides a framework that we used to implement all the models; LR,
SVM, and RF. The pre-processing of data consisted of two phases, i.e., missing val-
ues handling and data standardisation. Moreover, To avoid data leakage issues, we
perform data splitting before feature engineering and oversampling data. The strat-
ified train-test split provided by sklearn library in python was used to split the data
into the training data and testing data. After splitting the data, feature engineering
based on autoencoders using various activation functions namely, linear, sigmoid,
and ReLU were trained to address the problem of high dimensional data. These
autoencoders were performed only on the training dataset and then evaluation on
the test data was done in order to have the same dimension. We have also handled
the issue of class imbalance through utilizing seven oversampling techniques; ROS,
SMOTE, ADASYN, Borderline-SMOTE1, Borderline-SMOTE2, SMOTE + Tomek,
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and SMOTE + ENN. The 5-fold cross-validation combined with oversampling tech-
niques was used to train models on the training data and the test data was used to
evaluate the final performance of the model. To evaluate the performance of the
models, we have used ROC-AUC. In addition, we have built all the models under
the following settings.

• Category 1: Baseline models were built on the original datasets with missing
values filled with median and mode for continuous and categorical features
respectively.

• Category 2: Build models based on features extracted by undercomplete au-
toencoder using linear activation functions.

• Category 3: Build models based on features extracted by undercomplete au-
toencoder using sigmoid activation functions.

• Category 4: Build models based on features extracted by sparse autoencoder
using non-linear relu-based regularised activation function.

• Category 5: Build models based on features extracted by deep autoencoder.

The framework we have used to build machine learning classifiers is displayed in
Figure 3.1 and the details of each component of the experimental setup are provided
below.

FIGURE 3.1: Machine Learning Classification Framework
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3.3 Data

3.3.1 Data Description

In this research, we have used two publicly available telecommunication customer
churn datasets, which we refer to as dataset 1 and dataset 2 hereafter. Dataset 1 was
obtained from IBM sample datasets [30]. The dataset consists of 7043 instances and
21 features. Moreover, the data heterogeneous is meaning it contains mixed-data
types; categorical and numeric features. In total it consists of 3 numeric features
and 18 categorical features. The data contains customer information including de-
mographic, service signed for such as the contract term of the customer, and tech
support and account information such as total amount charged to the customer. The
ratio between the churn and non-churn class is 1:2.8 with only 26.5% representing
churn class. Dataset 2 was obtained from Orange, a telecommunication corpora-
tion [1]. The dataset consists of 40000 instances and 230 features, and the dataset
is highly imbalanced with 7.4% representing churn class as compared to dataset 1.
The names of the features in dataset 2 are anonymized. In total it consists of 190
numeric and 40 categorical features.

Table 3.1 displays the data description summary where IR refers to the imbalance
ratio between churn class and non-churn class and labels represent the class of each
sample. The class imbalance can be computed using formula below [15]:

IR =
nB

nA
(3.1)

Where nA and nB are the total number of minority and majority class samples re-
spectively.

TABLE 3.1: Summary Description of the Datasets.

Data Source Number of Samples Number of Features Labels IR

Dataset 1
[30] 7043 21 {Yes, No} 2.77
Dataset 2
[1] 40000 230 {-1, 1} 12.51
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The distribution of churn and non-churn classes for each dataset is shown in Figure
3.2. The red bar is the non-churn class and blue is churn class. The graphs below
show that the two classes are not fairly distributed.

(A) Class Distribution for Dataset 1 (B) Class Distribution for Dataset 2

FIGURE 3.2: Class distribution of the original datasets.

3.3.2 Data Preprocessing

3.3.2.1 Missing Values Handling

Missing values or missing data refer to the missing records in the dataset. Data
may have missing values due to various reasons such as, incorrect measurement
and manually entering data. In the telecommunication industry, datasets tend to
have a lot of noisy values such as missing values, inappropriate values like NULL
and special characters. Dataset 1 has no missing values, therefore, no missing val-
ues handling technique was employed. The customerID was the only feature that
was removed from the data since it has no impact on churn retention. In dataset 2
there were lots of features with missing values. The features with at least 70% of
missing values were removed. The categorical features with more than 100 cate-
gories were removed from the data. Furthermore, after removing those features we
remain with 75 features. With the remaining features, we have filled missing values
for continuous features with the maximum value for each feature. For categori-
cal features, however, due to higher cardinality for some features, instead of using
OneHotEncoding, we opted for encoding categorical values with their frequencies
to avoid a large number of features and it can be too computationally expensive.
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In addition, we fill the missing values for categorical features with zero. The distri-
bution of missing values for each feature of the dataset 2 where each vertical line
represents a feature (e.g. first vertical line corresponds to Var1) is depicted in Figure
3.3. The x-axis represents features and y-axis shows the percentage of missing val-
ues. The values of 1.0 means that the feature has no missing values and 0.0 means
that the feature column is empty as is shown in Figure 3.3 below.

FIGURE 3.3: The Distribution of Missing Values for each Feature.

3.3.2.2 Standardisation of the Data

In order to avoid different scales of feature values, we need to normalise all the
continuous feature values to the same scale. The Min-Max Scalar standardisation
technique is used to normalise all feature values to the range of [0, 1]. The Min-Max
Scalar equation is given by:

u
′
i =

ui −min(u)
max(u)−min(u)

(3.2)

Where min(u) and max(u) are the minimum and maximum values of the ith feature
and u

′
i is the normalised value [4].
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3.4 Methods

3.4.1 Data Split

Both datasets were split into 80% training data and 20% testing data using a strati-
fied train-test split mechanism provided in Python Sklearn Model Selection library.
The main objective of a stratified train-test split is to preserve the same proportions
of class samples for train and test datasets as the original class. The training data
was further divided into 5 folds using 5-fold cross-validation to develop and evalu-
ate the model performances on the train data. The test data was used in a final step
to assess the overall performance of the models.

3.4.2 Feature Engineering

Feature engineering is a process of creating new features using the existing ones
by transforming these features into a new feature space. The objective of per-
forming feature engineering is to construct new features that could improve ma-
chine learning model performance [43, 63]. Feature engineering helps in the sense
that it eliminates model over-fitting, reduces model complexity, and frees up mem-
ory. Although it sometimes vanishes model interpretability, it allows the algorithm
to learn faster. Lastly, it eliminates unnecessary covariance between the features
[39]. In this study, feature engineering was based on dimensionality reduction us-
ing autoencoders with various activation functions i.e., linear autoencoder, non-
linear sigmoid-based autoencoder, non-linear relu-based regularised autoencoder,
and deep autoencoder.

3.4.2.1 Dimensionality Reduction

One of the major problems with the telecommunication datasets is the large feature
space. To address this problem, we have implemented the autoencoders technique
for dimensionality reduction under three settings; autoencoders based on linear ac-
tivation, non-linear sigmoid, and non-linear ReLU. For dataset 1, the autoencoder
network was trained using two parameters; batch_size of 32 and 50 epochs. The
shape of the input data was the size of the input features (size_input = 23) and the
hidden_layer size of 16. For dataset 2, the network was trained with the following
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parameters; batch_size = 32 and number_o f _epochs = 50. Moreover, the autoen-
coder architecture consisted of input_size = number_o f _input f eatures = 76 and
one hidden layer of size 32. The size of the hidden layer (code) was selected by
evaluating the performance of the autoencoders on different sizes of feature sets.
The model was compiled using two arguments; Adam optimiser for learning and
mean squared error (MSE) for evaluating the performance. All the autoencoders in
dataset 1 have the same architecture except activation functions. The details of each
layer for this autoencoder are given below.

The linear autoencoder architecture implemented for dataset 1 consists of three lay-
ers; input, code, output layers. The first layer is the input layer which contains the
input features. Then the encoder maps the input features using linear activation
function to a lower dimension which is the second layer. The second layer consists
of a dimension of 16 number of features (23->[16]->23). The final layer, which is the
third layer reconstructed from the second layer using decoder with linear activation
function, also has 23 features, i.e., the same as the first layer. For non-linear sigmoid
autoencoder, however, similar architecture was used. The main difference is that
the latter used sigmoid functions in both layers. Furthermore, for non-linear sparse
autoencoder with ReLU, we have used ReLU activation function in the second layer
and sigmoid function in the output layer.

For dataset 2, the autoencoder with three layers was also used. However, for this
case, the architecture has 76 inputs in its first layer. For linear autoencoder, the
linear activation function was used for both the first and second layers. The data
was compressed from 76 (input layer) to 32 features (second layer) using encoder
with linear function and then was reconstructed to the 76 features (third layer) using
the decoder with the linear activation function (76->[32]->76). In addition, we have
used similar architecture for non-linear autoencoder with sigmoid functions used
for both second and third layers. Lastly, with respect to a non-linear autoencoder
with ReLU, the sigmoid function was used in the output layer.
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With respect to deep autoencoder for dataset 1, the network consisted of five lay-
ers; input layer, hidden layer, code, hidden layer, output layer was implemented
(23->[19->16->19]->23). The layers were connected using relu activation function
except for the final layer which used sigmoid function. For dataset 2, we have used
more layers. The architecture contained seven layers; input layer, hidden layer,
hidden layer, code, hidden layer, hidden layer, output layer (76->[62->46->32->46-
>62]->76). Also relu activation function was used to connect layers. For the final
layer, sigmoid function was used.

3.4.3 Class Imbalance

It is common that most of the datasets in the telecommunication domain have im-
balanced classes due to the fact that the rate of customers that are leaving is much
less than those who retained. The problem arising with imbalance class data is
that the machine learning models only pay attention to the highly represented class
overlooking the minority class which will lead to poor prediction accuracy. The two
datasets we worked on had a class imbalance problem since the customer churn
rate was about 26.5% and 7.4% on dataset 1 and dataset 2 respectively. To address
this issue, we have implemented seven oversampling techniques namely; ROS,
SMOTE, ADASYN, Borderline-SMOTE1, Borderline-SMOTE2, SMOTE + Tomek,
and SMOTE + ENN. To avoid the issue of overoptimistic and overfitting, these over-
sampling methods were only applied to the training dataset within 5-fold cross-
validation. This implies that oversampling will only be applied to the first 4 folds
and then evaluated on the fifth fold. The following table provides the details of the
oversampling methods used. The parameters used by oversampling techniques are
the number of nearest neighbours k needed to generate artificial samples and the
number of nearest neighbours m needed to decide whether the point is in danger
for Borderline-SMOTE.



39

TABLE 3.2: Oversampling techniques implemented to address the
class imbalance in this study.

Oversampling technique Description Parameters

ROS Random Oversampling -
SMOTE Synthetic Minority

Oversampling
Technique

k = 5

ADASYN Adaptive Synthetic
Approach

k = 5

Borderline-SMOTE
borderline-1 m = 10
borderline-2 m = 10

SMOTE + ENN SMOTE followed by
Edited Nearest
Neighbours

-

SMOTE+Tomek SMOTE followed by
Tomek Links

-

3.4.4 Churn Prediction Models

After the data pre-processing phase was done, we performed the dimensionality re-
duction on the training data using various autoencoders; linear autoencoder, non-
linear based on sigmoid, sparse autoencoder using ReLU, and deep autoencoder.
To address the issue of class imbalance distribution, we investigated seven over-
sampling techniques to balance the classes. For the process of implementing mod-
els, every model was built on the combination of every dimensionality reduction
coupled with the oversampling method. Furthermore, 5-fold cross-validation was
used to train and evaluate the performance of the models for the train datasets. The
test data was left out during the model training process and was only used to eval-
uate the overall performance at the last stage (See Figure 3.1). For model building,
each classifier (LR, SVM, and RF) was implemented with the following parameter
settings.
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• Logistic Regression: We have fitted LR with the L2 regularisation parameter
to prevent overfitting and the default inverse regularization parameter set to
C = 1.0.

• Support Vector Machine: The SVM model was fitted with radial basis function
(kernel) and the regularisation penalty term of 1 (i.e. C = 1.0).

• Random Forest: For the RF classifier, we have fitted the model with the fol-
lowing parameters; the number of trees was set to 100 (n_estimators = 100).

3.4.5 Implementation

All the analyses and implementations of machine learning classifiers were per-
formed using Dell Core i7 with Intel(R) Core(TM) i7-7Y75 CPU at 1.30GHz pro-
cessor and 16GB Ram. We have utilised various open-source libraries provided in
Python. For data importing and manipulations we have used Numpy [47] and Pan-
das [42]. Moreover, Matplotlib [29] (with Seaborn, for nice plots) was used for data
visualisation. In addition, Keras library [12] was used to implement the autoen-
coders dimensionality reduction techniques. For data-level solution, imbalanced-
learn [36] was used to implement all the oversampling techniques. Lastly, sklearn
[48] library was used to build machine learning models (i.e. LR, SVM, and RF).

3.5 Analysis

This section identifies the metric used to assess the model performances, the pro-
cedures used to describe the baseline models as well as the comparison of machine
learning models.

3.5.1 Baselines

In order to evaluate the impact of dimensionality reduction based on autoencoder
and oversampling techniques for customer churn prediction, we need a baseline to
make comparisons. For this purpose, as a baseline, we train all the selected classi-
fiers; LR, SVM, and RF on the original datasets without performing dimensionality



41

reduction and oversampling. The baseline models were also trained using strati-
fied 5-fold cross-validation. In addition, the overall performance of these baseline
models was evaluated on test data using AUC-ROC.

3.5.2 Evaluation Metric

To evaluate how well our models are performing, we need to use metric that is suit-
able for the classification problem. Once all the predictive models are implemented
and tested, we need to evaluate their performances. To do that, we have used the
ROC-AUC curve which plots the trade-off between TPR and FPR. Furthermore, a
good classifier should have an AUC score closer to 1, whereas a random classifier
would have an AUC score of 0.5.

3.6 Conclusion

In this chapter, we have discussed the methodology that was adopted to carry out
this research. We have started by providing the research design and framework
to be used. The oversampling and dimensionality reduction techniques to address
the class imbalance problem and the curse of high dimensional features space were
implemented. In addition, machine learning classifiers used for customer churn
prediction were defined.
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Chapter 4

Results and Discussion

4.1 Introduction

In this chapter we present the results of various techniques using two publicly avail-
able telecommunication datasets. This chapter is divided into four sections. We
start by providing the performance of the baseline model in section 1. In section 2,
we compare the performance of various oversampling techniques, dimensionality
reductions and the machine learning classifiers. Section 3 gives the overall perfor-
mances of the classifiers. Lastly, section 4 presents a brief summary.

4.2 Baseline Results

This section provides the results of the baseline models (without dimensionality
reduction and oversampling techniques). The results of these prediction models
are based on 5-fold cross-validation as discussed in the previous sections. Figure
4.1 illustrates the performance of the prediction models (LR, SVM, and RF) based
on AUC measure. The results also reveal that LR outperformed other classifiers
for smaller dataset (i.e. dataset 1) and larger dataset (i.e. dataset 2). The red dot-
ted line represents the performance results of a random classifier with AUC=0.50.
The prediction models performed significantly better on dataset 1 and worst on
dataset 2. From Figure 4.1a, it can be observed that all classifiers outperformed the
random classifier (with AUC=0.50). In comparison, the LR achieved the highest
score (AUC=0.729) outperformed both SVM and RF. Furthermore, the SVM per-
formed better than RF with the former achieved AUC=0.693 and the latter obtained
AUC=0.687.
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On the other hand, the prediction models on dataset 2 performed slightly higher
than the random classifier. However, all these baseline models obtained AUC score
of less than 0.51. Contrary to dataset 1, the LR with AUC=0.5 was outperformed by
both SVM and RF classifiers for dataset 2 as displayed in Figure 4.1b. Interestingly,
both classifiers scored AUC=0.505.

(A) Performance of Baseline Models
on Dataset 1

(B) Performance of Baseline Models
on Dataset 2

FIGURE 4.1: ROC-AUC Curve for each Baseline Classification Model

4.3 Comparison of Dimensionality Reduction, Oversam-

pling and Classification Techniques

This section presents the results of the dimensionality reduction and oversampling
techniques. To evaluate or study the impact of the dimensionality reduction and
oversampling techniques on churn prediction, we investigated two solutions; di-
mensionality reduction and oversampling techniques. Moreover, for dimension-
ality reduction, we have compared autoencoders using various activation func-
tions, i.e. linear, sigmoid, non-linear based on ReLU, and deep autoecoder. To ad-
dress the class imbalance problem, we have compared the performance of various
oversampling techniques namely; ROS, SMOTE, ADASYN, Borderline-SMOTE1,
Borderline-SMOTE2, SMOTE + Tomek, and SMOT + ENN. The performance of
these techniques was evaluated using three classifiers (i.e. LR, SVM, and RF). Thus,
we need to compare the results of these solutions to the baselines.
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4.3.1 Comparison of the Performance of Classifiers and Oversam-

pling Methods Evaluated on Features Reduced by Linear Au-

toencoder

The performance of various dimensionality reduction and oversampling techniques
are shown in Table 4.1. The best performing strategy or a combination of techniques
are shown in bold. As shown in Table 4.1, when applying linear autoencoder with
one hidden layer on dataset 1, some of the selected classifiers performed well as
compared to the baselines as shown in Figure 4.1a. Although these oversampling
techniques showed effective improved results, when applied to the dataset from
linear autoencoder dimensionality reduction, a simple naive ROS outperformed all
the complex synthetic oversampling methods when applied with LR. ROS outper-
formed synthetic methods across all the classifiers with the LR obtaining the high-
est AUC score. This indicates that more advanced synthetic oversampling meth-
ods could have created more overlapping classes and generated noisy data points.
Furthermore, both LR and SVM obtained the AUC of more than 0.73 across all re-
sampling techniques for dataset 1. Although RF classifier was outperformed by
others, its results have significantly improved when dataset is over-sampled first
by SMOTE and then cleaning procedure followed (i.e. SMOTE + ENN). The model
achieves the AUC score of 0.724 compared to ROS with AUC of 0.643. Additionally,
two advanced versions of SMOTE; SMOTE + Tomek and SMOTE + ENN, which
try to clean class overlapping created by SMOTE fail to outperform SMOTE when
trained with SVM. From Table 4.1 it can be observed that ROS performed the best
with AUC=0.747 followed by AUC=0.746 and SMOTE+ENN performed worst with
AUC=0.737 when trained with the SVM.

For dataset 2, the best preforming classifier was LR (AUC=0.649). As reported in
Table 4.1, the results indicated that ROS outperformed all the synthetic oversam-
pling techniques. Similar to dataset 1, RF showed best results when coupled by
SMOTE+ENN and SVM get good results when trained on dataset 2 with ROS. In
addition, both Borderline-SMOTE1 and Borderline-SMOTE2 performed better than
SMOTE+Tomek and SMOTE+ENN. Thus, when we build an LR classifier using a
linear autoencoder, a naive ROS is recommended.
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TABLE 4.1: The performance evaluation of machine learning classi-
fiers, oversampling techniques and linear autoencoder based on AUC

for dataset 1 and 2.

Linear AutoEncoder Oversampling Technique LR SVM RF

Dataset 1 ROS 0.756 0.747 0.643
SMOTE 0.750 0.746 0.659

ADASYN 0.753 0.743 0.665
Borderline-SMOTE1 0.752 0.742 0.662
Borderline-SMOTE2 0.753 0.741 0.679

SMOTE + Tomek 0.749 0.745 0.675
SMOTE + ENN 0.732 0.737 0.724

Dataset 2 ROS 0.649 0.634 0.505
SMOTE 0.644 0.610 0.534

ADASYN 0.645 0.604 0.525
Borderline-SMOTE1 0.645 0.611 0.525
Borderline-SMOTE2 0.640 0.604 0.536

SMOTE + Tomek 0.645 0.604 0.524
SMOTE + ENN 0.616 0.608 0.554

Figure 4.2 below illustrates the aggregated AUC scores between each classifier against
the baseline results. Moreover, a negative bar plot indicates that the results of the
baseline were better than of the classifiers trained on the dataset resulted from lin-
ear autoencoder and oversampling techniques. It is clear from Figure 4.2 that LR
and SVM benefited more from dimensionality reduction and oversampling with
each classifier shows an increased AUC score. Although RF does not show much
improvement, it benefited more when combined with SMOTE+ENN followed by
Borderline-SMOTE2.
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FIGURE 4.2: The difference in performance evaluation of various clas-
sifiers on datasets from dimensionality reduction using linear autoen-

coder and oversampling methods against the baseline results.

4.3.2 Comparison of the Performance of Classifiers and Oversam-

pling Methods Evaluated on Features Reduced by Autoen-

coder using Sigmoid Functions

With respect to the autoencoder dimensionality reduction based on non-linear sig-
moid, all the oversampling methods showed potentials to improve the prediction
performance of LR and SVM classifiers. On contrary to the linear autoencoder,
LR showed the best results when trained with the dataset 1 over-sampled with
Borderline-SMOTE2. Again the classifier achieved the lower AUC score when SMOTE
and SMOTE+Tomek were used and interestingly, these two methods were outper-
formed by ROS. Although LR showed worst results when using SMOTE followed
by the cleaning method, however, it manages to outperform RF when SMOTE was
followed by Tomek Links (SMOTE+Tomek). Interestingly, the RF classifier again
showed good results when data was over-sampled by (SMOTE+ENN) and it per-
forms better more similar to SVM and LR. Compared with the linear autoencoder,
the results obtained by the LR trained on the features from an autoencoder using
non-linear sigmoid functions and over-sampled by Borderline-SMOTE2 was the
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highest as compared to all classifiers prediction performance on the linear autoen-
coder as reported in Table 4.2. That is, the LR classifier achieved an overall AUC
score of 0.750 outperforming all other classifiers across the various combinations of
techniques.

With respect to dataset 2, the LR classifier with ROS showed the best performance
(AUC=0.649) as compared to other classifiers. The ROS did not show significant
performance for RF classifier (AUC=0.503) outperformed by the baseline model.
On the other hand, SVM and LR performed well when coupled with ADASYN
outperforming both data cleaning methods SMOTE+Tomek and SMOTE+ENN re-
spectively. With respect to RF, the best results were achieved when the dataset was
over-sampled by ADASYN and SMOTE+Tomek. The best prediction performance
was obtained by LR with ROS (AUC=0.655) as reported in Table 4.2.

TABLE 4.2: The performance evaluation of machine learning classi-
fiers, oversampling techniques and non-linear sigmoid autoencoder

based on AUC for dataset 1 and 2.

Non-Linear sigmoid Oversampling Technique LR SVM RF

Dataset 1 ROS 0.740 0.749 0.658
SMOTE 0.738 0.747 0.664

ADASYN 0.742 0.741 0.681
Borderline-SMOTE1 0.748 0.745 0.651
Borderline-SMOTE2 0.750 0.746 0.651

SMOTE + Tomek 0.735 0.748 0.672
SMOTE + ENN 0.747 0.741 0.732

Dataset 2 ROS 0.655 0.628 0.503
SMOTE 0.654 0.613 0.529

ADASYN 0.651 0.610 0.535
Borderline-SMOTE1 0.643 0.614 0.527
Borderline-SMOTE2 0.645 0.605 0.522

SMOTE + Tomek 0.645 0.604 0.524
SMOTE + ENN 0.616 0.608 0.552
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Figure 4.3 shows the aggregated AUC score differences between the baseline mod-
els and classifiers implemented on the dataset reduced by non-linear sigmoid and
over-sampled using various techniques. It is clear from Figure 4.3 that RF trained
with ROS, Borderline-SMOTE1, and Borderline-SMOTE2 did not perform better
than the baseline model. In addition, it shows the best improvements when SMOTE
followed by ENN was used to balance the data. On the other hand, both LR and
SVM showed much improvement with ROS reported the highest score (more than
0.08 AUC score improvement) respectively.

FIGURE 4.3: The difference in performance evaluation of various clas-
sifiers on datasets from dimensionality reduction using non-linear sig-
moid autoencoder and oversampling methods against the baseline re-

sults.

4.3.3 Comparison of the Performance of Classifiers and Oversam-

pling Methods Evaluated on Features Reduced by Autoen-

coder using ReLU Function

Another dimensionality reduction utilised was non-linear autoencoder using relu.
From Table 4.3, it is clear that the prediction models continued improved results
as compared to the baseline classifiers. In particular, LR performed better when
dataset 1 was over-sampled with Borderline-SMOTE1, SMOTE, and SMOTE+Tomek.
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The overall best score was obtained when LR is coupled with Borderline-SMOTE1
(AUC=0.753) compared to SVM and RF. Moreover, for SMOTE+ENN oversam-
pling technique all the classifiers have obtained similar performance with LR with
AUC=0.737 outperforming SVM with AUC=0.738 followed by RF with AUC=0.731.
Interestingly, for dataset 2 SMOTE followed by Tomek’s Links combined with LR
achieved the highest prediction performance. Although the RF classifier showed
best results when coupled with SMOTE+ENN for linear and non-linear sigmoid au-
toencoders, then with respect to non-linear relu both were outperformed by ADASYN
(AUC=0.571).

TABLE 4.3: The performance evaluation of machine learning classi-
fiers, oversampling techniques and non-linear relu autoencoder based

on AUC for dataset 1 and 2.

Non-Linear ReLU Oversampling Technique LR SVM RF

Dataset 1 ROS 0.746 0.743 0.630
SMOTE 0.748 0.748 0.665

ADASYN 0.747 0.750 0.665
Borderline-SMOTE1 0.753 0.750 0.655
Borderline-SMOTE2 0.746 0.729 0.653

SMOTE + Tomek 0.748 0.748 0.688
SMOTE + ENN 0.737 0.738 0.731

Dataset 2 ROS 0.643 0.638 0.503
SMOTE 0.643 0.598 0.528

ADASYN 0.617 0.610 0.571
Borderline-SMOTE1 0.644 0.617 0.515
Borderline-SMOTE2 0.640 0.604 0.536

SMOTE + Tomek 0.645 0.604 0.524
SMOTE + ENN 0.616 0.608 0.549

Moreover, as illustrated in Figure 4.4 it can be seen that RF did not benefit from
non-linear relu autoencoder with ROS, Borderline-SMOTE1 techniques. Compared
to linear and sigmoid autoencoders, the RF obtained an improved AUC score of
0.02. For the SVM classifier, the best improvement was found when data was
oversampled by ROS followed by Borderline-SMOTE1 and ADASYN. On the other
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hand, the LR showed significant results improvement when data was balanced us-
ing Borderline-SMOTE1 and SMOTE+Tomek.

FIGURE 4.4: The difference in performance evaluation of various clas-
sifiers on datasets from dimensionality reduction using non-linear relu
autoencoder and oversampling methods against the baseline results.

4.3.4 Comparison of the Performance of Classifiers and Oversam-

pling Methods Evaluated on Features Reduced by Deep Au-

toencoder

Lastly, we have also studied deep autoencoder which consisted of 3 hidden lay-
ers for dataset 1. The results for this dimensionality reduction method decreased
significantly for SVM across all the oversampling methods as compared to under-
complete autoencoders (i.e. linear, non-linear sigmoid, non-linear relu). As il-
lustrated in Table 4.4, it is clear that the LR showed consistent and good results
across all dimensionality reduction with all oversampling techniques. In addition,
LR with SMOTE achieved the best results with an AUC score of 0.742 whereas
Borderline-SMOTE2 got the lowest score (AUC=0.729). The performance of both
SVM and RF, however, were significantly higher trained on the data over-sampled
with SMOTE+ENN with both classifiers achieved an AUC score greater than 0.70.
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On the other hand, LR gets better results for deep autoencoder when combined
with SMOTE. Overall, RF outperformed LR and SVM when deep autoencoder di-
mensionality reduction was followed by SMOTE+ENN. Furthermore, the RF also
obtained the highest score (AUC=0.752) followed by LR (AUC=0.740). This means
for SMOTE+ENN the RF is preferred. Overall for dataset 1, the LR showed effec-
tive results for linear autoencoder with ROS, non-linear sigmoid autoencoder com-
bined with Borderline-SMOTE2 and non-linear relu autoencoder combined with
SMOTE+Tomek. On the other hand, for deep autoencoders the RF achieved the
highest AUC score when combined with SMOTE+ENN. To evaluate the signifi-
cance of autoencoder, we have used 5 hidden layers for dataset 2. The results are
significantly lower for SVM as compared to the other three autoencoders dimen-
sionality reduction techniques. Both LR and SVM obtained better results when
ADASYN was applied as an oversampling technique. In addition, LR outper-
formed both SVM and RF across all oversampling techniques. Lastly, SMOTE fol-
lowed by ENN proved to be the best oversampling technique for RF.

TABLE 4.4: The performance evaluation of machine learning classi-
fiers, oversampling techniques and deep autoencoder based on AUC

for dataset 1 and 2.

Deep AutoEncoder Oversampling Technique LR SVM RF

Dataset 1 ROS 0.740 0.672 0.634
SMOTE 0.742 0.668 0.666

ADASYN 0.730 0.663 0.672
Borderline-SMOTE1 0.734 0.650 0.654
Borderline-SMOTE2 0.729 0.660 0.645

SMOTE + Tomek 0.740 0.667 0.688
SMOTE + ENN 0.740 0.715 0.752

Dataset 2 ROS 0.639 0.606 0.518
SMOTE 0.638 0.607 0.523

ADASYN 0.643 0.614 0.519
Borderline-SMOTE1 0.637 0.608 0.524
Borderline-SMOTE2 0.633 0.598 0.534

SMOTE + Tomek 0.639 0.606 0.518
SMOTE + ENN 0.614 0.604 0.558
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Compared to linear, non-linear sigmid, and relu autoencoders it can clearly be ob-
served in Figure 4.5 that the average performance of both SVM and RF significantly
decreased. Except for SVM+ENN, the results of SVM coupled with oversampling
significantly decreased to scores of about 0.04 from much improvement of 0.08. In
line with ROS oversampling, the results still not improved for RF similar to other
autoencoders which shows performance decrease (0.02) compared to baseline re-
sults.

FIGURE 4.5: The difference in performance evaluation of various clas-
sifiers on datasets from dimensionality reduction using deep autoen-

coder and oversampling methods against the baseline results.

4.4 Overall Comparison Performance

Figure 4.6 depicts the aggregated overall results of all classification models. In com-
parison with aggregated AUC scores of the baseline results, 4.6 clearly shows that
for LR and SVM the results are pretty across all oversampling and dimensional-
ity reduction techniques. In line with RF, pre-processed results have not improved
when RF was coupled by ROS mostly, and all the dimensionality reduction tech-
niques. Overall, results were lower for RF and SVM when deep autoencoder was
used whereas LR showed better consistent results.
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FIGURE 4.6: Experimental Performance of Oversampling, Dimension-
ality Reduction, and Machine Learning Techniques

4.5 Summary

In this chapter, we presented on how machine learning classification techniques
combined with various oversampling methods and dimensionality reduction using
autoencoder variations can be used to prevent and address the problem of customer
churn. With the issue of class imbalance, we have demonstrated how oversampling
techniques could improve machine learning models prediction performance. More-
over, 5-fold cross-validation was used as a remedy to build the classification mod-
els. Additionally, variations of autoencoders dimensionality reduction techniques
showed a significant impact in improving model performances and hence reduce
computational run-time. Thus, through our experimental setup, we were able to
improve models performance as compared to the baseline results.
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Chapter 5

Conclusions and Future Work

5.1 Conclusion

In this study, we examined and compared the performance of three supervised
machine learning classifiers i.e, Logistic Regression, Support Vector Machine, and
Random Forest. Moreover, we also addressed the issue of class imbalance prob-
lem (CIP) and high dimensionality. To overcome the CIP, the performance of seven
oversampling techniques namely, ROS, SMOTE, ADASYN, Borderline-SMOTE1,
Borderline-SMOTE2, SMOTE + Tomek, and SMOTE + ENN were compared. On the
other hand, dimensionality reduction using autoencoders with various functions;
linear autoencoders, non-linear sigmoid, ReLU, and deep autoencoders were used.
The experimental results show that the performance of machine learning classifiers
can significantly vary. In addition, it was revealed that more complex techniques
such as advance synthetic oversampling methods and deep autoencoder dimen-
sionality reduction do not necessarily guarantee the best results. The findings from
this study demonstrate that there is no much of difference in terms of models per-
formance among these oversampling techniques. From the experimental analysis, it
was found that the LR combined with a simple ROS and linear autoencoder yielded
the overall best prediction performance. Moreover, LR which is a linear model have
yielded a higher performance compared to the RF and non-linear SVM. Since LR is
able to separate churn and non-churn classes, then this means that the dataset is
linearly separable.
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5.2 Future Work

There are some interesting areas that could be extended from this current study. It
would be interesting for future work to address the significant impact of the out-
liers and high cardinality for categorical features. Although the oversampling tech-
niques showed the potential to improve machine learning models performance,
it will be important to investigate some of the under-sampling and cost-sensitive
methods. In addition, deep learning techniques could also be implemented for the
improvement of prediction performance.



56

Bibliography

[1] Kdd cup 2009. Customer relationship prediction Data. 2009. URL: https://www.
kdd.org/kdd-cup/view/kdd-cup-2009/Data/ (visited on 06/12/2019).

[2] Abdelrahim Kasem Ahmad, Assef Jafar, and Kadan Aljoumaa. “Customer
churn prediction in telecom using machine learning in big data platform”. In:
Journal of Big Data 6.1 (2019), p. 28.

[3] Adnan Amin et al. “Comparing oversampling techniques to handle the class
imbalance problem: A customer churn prediction case study”. In: IEEE Access
4 (2016), pp. 7940–7957.

[4] Muhammad Azeem, Muhammad Usman, and ACM Fong. “A churn pre-
diction model for prepaid customers in telecom using fuzzy classifiers”. In:
Telecommunication Systems 66.4 (2017), pp. 603–614.

[5] Pierre Baldi. “Autoencoders, unsupervised learning, and deep architectures”.
In: Proceedings of ICML workshop on unsupervised and transfer learning. 2012,
pp. 37–49.

[6] Gustavo EAPA Batista, Ronaldo C Prati, and Maria Carolina Monard. “A
study of the behavior of several methods for balancing machine learning
training data”. In: ACM SIGKDD explorations newsletter 6.1 (2004), pp. 20–29.

[7] Rezaul Begg and Joarder Kamruzzaman. “A machine learning approach for
automated recognition of movement patterns using basic, kinetic and kine-
matic gait data”. In: Journal of biomechanics 38.3 (2005), pp. 401–408.

[8] Bernhard E Boser, Isabelle M Guyon, and Vladimir N Vapnik. “A training al-
gorithm for optimal margin classifiers”. In: Proceedings of the fifth annual work-
shop on Computational learning theory. ACM. 1992, pp. 144–152.

[9] Leo Breiman. “Random forests”. In: Machine learning 45.1 (2001), pp. 5–32.

[10] Christopher JC Burges. “A tutorial on support vector machines for pattern
recognition”. In: Data mining and knowledge discovery 2.2 (1998), pp. 121–167.

https://www.kdd.org/kdd-cup/view/kdd-cup-2009/Data/
https://www.kdd.org/kdd-cup/view/kdd-cup-2009/Data/


57

[11] Nitesh V Chawla et al. “SMOTE: synthetic minority over-sampling technique”.
In: Journal of artificial intelligence research 16 (2002), pp. 321–357.

[12] François Chollet et al. Keras. https://keras.io. 2015.

[13] Nello Cristianini, John Shawe-Taylor, et al. An introduction to support vector
machines and other kernel-based learning methods. Cambridge university press,
2000.

[14] Dursun Delen, Glenn Walker, and Amit Kadam. “Predicting breast cancer
survivability: a comparison of three data mining methods”. In: Artificial intel-
ligence in medicine 34.2 (2005), pp. 113–127.
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